
Cryptanalysis of Achterbahn

Thomas Johansson1, Willi Meier2 ⋆, and Frédéric Muller3

1 Department of Information Technology, Lund University
P.O. Box 118, 221 00 Lund, Sweden

thomas@it.lth.se
2 FH Aargau, 5210 Windisch, Switzerland

w.meier@fh-aargau.ch
3 HSBC-France

Frederic.Muller@m4x.org

Abstract. We present several attacks against the Achterbahn stream
cipher, which was proposed to the eSTREAM competition. We can break
the reduced and the full version with complexity of 255 and 261 steps.
Extensions of our attacks are also described to break modified versions
of the Achterbahn stream cipher, which were proposed following the
publication of preliminary cryptanalysis results.
These attacks highlight some problems in the design principle of Achter-
bahn, i.e., combining the outputs of several nonlinear (but small) shift
registers using a nonlinear (but rather sparse) output function.

1 Introduction

The European project ECRYPT recently decided to launch a competition to
identify new stream ciphers that might be suitable for widespread adoption.
This project is called eSTREAM [3] and received 35 submissions, some of which
have already been broken.

Among these new algorithms, a challenging new design is Achterbahn [5].
It is a relatively simple, hardware-oriented stream cipher, using a secret key of
80 bits. In this paper, we present several attacks which break the cipher faster
than a brute force attack. Our results provide new directions to break stream
ciphers built by combination of several small, but nonlinear shift registers, like
Achterbahn.

2 Description of Achterbahn

2.1 General structure

Achterbahn uses 8 small non-linear registers, denoted by R1, . . . , R8. Their size
ranges from 22 to 31 bits (see Table 1). The total size of the internal state is
211 bits. At the t-th clock cycle, each register produces one output bit, denoted

⋆ The second author is supported by Hasler Foundation www.haslerfoundation.ch

under project number 2005.



Register Length

R1 22
R2 23
R3 25
R4 26
R5 27
R6 28
R7 29
R8 31

Table 1. Length of non-linear registers in Achterbahn

respectively by y1(t), . . . , y8(t). Then, the t-th output bit z(t) of the stream
cipher Achterbahn is produced by the filtering function F as

z(t) = F (y1(t), y2(t), y3(t), y4(t), y5(t), y6(t), y7(t), y8(t))

= y1(t) ⊕ y2(t) ⊕ y3(t) ⊕ y4(t) ⊕

y5(t)y7(t) ⊕ y6(t)y7(t) ⊕ y6(t)y8(t) ⊕ y5(t)y6(t)y7(t) ⊕ y6(t)y7(t)y8(t).

We can observe that F is a sparse polynomial of degree 3. There are only 3 mono-
mials of degree 2 and 2 monomials of degree 3. In the full version of Achterbahn,
the input of F is not directly the output of each register, but a key-dependent
combination of several consecutive outputs1. In the reduced version of Achter-
bahn, the input of F is directly the output of each register.

Each register is clocked similarily to a Linear Feedback Shift Register (LFSR),
except that the feedback bit is not a linear function, but a polynomial of degree
4. Details of this clocking are not relevant in our attack. We refer to the original
description of Achterbahn for more details [5].

2.2 Initialization

The internal state of Achterbahn is initialized from a secret key K of size 80 bits
and from an initialization vector IV of length 80 bits.

First, the state of each register is loaded with a certain number of key bits
(this number depends on the register length). Then, the rest of the key, followed
by the IV, is introduced sequentially in each register. More precisely, this in-
troduction consists simply in XORing the auxiliary input to the feedback bit
during the register update. At some point, one bit in the register is forced to 1
to prevent the all-zero state. Before the encryption starts, several extra clockings
are applied for diffusion purpose.

1 The number of consecutive outputs involved in this linear combination varies from
6 for R1 to 10 for R8.



2.3 Evolutions of Achterbahn

In September 2005, some preliminary cryptanalysis results were announced on
the eSTREAM website [6]. These results allow to break the reduced version of
Achterbahn with 256 computation steps and the full version with complexity of
273 computation steps.

After the publication of these results, the designers of Achterbahn proposed
to modify the output filter F of Achterbahn in order to strengthen the cipher [4].
This is a natural idea, given the nature of the published attacks. The first sugges-
tion, that we will refer to as Achterbahn-v2 in this paper, uses a new combining
function F ′ instead of F , where

F ′(y1(t), . . . , y8(t)) = F (y1(t), . . . , y8(t)) ⊕ y5(t)y6(t) ⊕ y5(t)y8(t) ⊕ y7(t)y8(t).

Another alternative suggested in [4] is to replace F by F ′′ defined as

F ′′(y1(t), . . . , y8(t)) = y1(t) ⊕ y2(t) ⊕ y3(t) ⊕
∑

4≤i<j≤8

yi(t)yj(t) ⊕

∑

4≤i<j<k≤8

yi(t)yj(t)yk(t) ⊕
∑

4≤i<j<k<l≤8

yi(t)yj(t)yk(t)yl(t).

We refer to Achterbahn-v3 for the cipher instantiated with F ′′.

3 Weaknesses of Achterbahn’s design

3.1 General observations about the design

Combination of several small Linear Feedback Shift Registers (LFSR) is a well-
known method for building stream ciphers. The output of the registers are gen-
erally combined with a function F , in order to produce one keystream bit (see
Figure 1). A popular example is the algorithm E0 [1], which is used in the Blue-
tooth technology2. Unfortunately such constructions have some problems, that

...
LFSR number n

keystream bit

F

LFSR number 1

Fig. 1. Stream Cipher built by Combination of LFSR’s

originate from the linearity of the LFSR’s. For instance, correlation attacks [8,

2 E0 has the particularity that the function F uses a small auxiliary memory.



9] exploit linear approximations of the function F to attack the whole stream
cipher. Another method is algebraic attacks [2] that take advantage of low degree
polynomial equations satisfied by F .

Criteria that should be satisfied by the boolean function F , in order to
counter such attacks have been widely studied. However there appears to be
limitations that cannot easily be removed. To improve the designs, it is often
suggested to replace linear registers by nonlinear registers. This idea is the bot-
tomline of Achterbahn’s design.

3.2 Linear Complexity of Achterbahn

If the linear registers of Figure 1 are replaced by nonlinear registers, one may
expect to counter many problems arising from the linearity of LFSR’s. A usual
tool to analyze such constructions is the linear complexity. For a binary se-
quence, it is defined as the length of the shortest LFSR that could generate the
sequence.

For a LFSR of length n bits, the linear complexity of its output sequence
is L = n, provided its feedback polynomial is properly chosen. For a nonlinear
register, it is not always easy to compute the linear complexity of its output
sequence, but clearly it cannot exceed its period. In the case of Achterbahn, the
keystream bit b is computed by

b = F (y1, . . . , y8).

Then, it is well-known that the linear complexity of the keystream sequence is
at most

L = F (L1, . . . , L8),

where Li denotes the linear complexity of each single register and F is now seen
as a polynomial on the integers, with its coefficients ∈ {0, 1}. This observation
shows that it would be insecure to combine the small nonlinear regis-

ters using a linear function. Indeed, in this case, the linear complexity L of
Achterbahn would be bounded by 8 × 231 since 31 is the length of the largest
register.

For Achterbahn, F is not linear, but its algebraic degree is 3. The origi-
nal paper [5] does not contain an exact proof of the linear complexity of the 8
nonlinear registers, but it is reasonable to assume that Li ≃ 2ni where ni de-
notes the length of register Ri. With this assumption, the linear complexity of
Achterbahn’s outputs is :

L ≤ 228 × 229 × 231 = 288.

If we apply the Berlekamp-Massey algorithm [7], we can expect to distinguish
this sequence if we analyze 289 known output bits. Since the running time of
Berlekamp-Massey is about L2, this attack is way above the complexity of a
brute-force attack.



3.3 Ideas for improvement

These observations about the linear complexity were taken into account by the
designers of Achterbahn (see page 20 of [5]). However, we should also consider
that several refinements are possible :

– The output function is sparse. Indeed z(t) is computed by a simple filter,
which is almost linear. For instance, when y6(t) = 0, only one nonlinear
term remains. If y5(t) is also equal to 0, the output function becomes purely
linear.

– Each single register has a small period. This is unavoidable due to the
small size of each register (31 bits for the largest one, R8).

– Each register is autonomous. Therefore when we guess its initial state, we
know its content at all stages of the encryption.

Our idea is to guess the initial state of two registers (R5 and R6). Then we
select particular positions in the output sequence, for which

y5 = y6 = 0.

All nonlinear terms in F cancel out, so the linear complexity of this subsequence
is much smaller than for the whole Achterbahn. Finally, we test if several parity

checks, resulting from the low linear complexity are satisfied or not. Hence, we
can determine when the initial guess on R5 and R6 is correct.

Several tricks are needed in order for the attack to work properly. In partic-
ular, it is important to find low-weight parity checks. The details of this attack
are given in the next section. Attacks in the same vein can also be mounted in
the case of Achterbahn-v2 and Achterbahn-v3.

4 Cryptanalysis of Reduced Achterbahn

4.1 Preliminary

Our starting point is to observe that when y5(t) = 0 and y6(t) = 0, the output
function becomes purely linear, so

z(t) = l(t) = y1(t) ⊕ y2(t) ⊕ y3(t) ⊕ y4(t).

Although its period is rather large, l(t) has a very low linear complexity L
as pointed out in Section 3.2. Indeed, L is bounded by

L ≤ 2n1 + 2n2 + 2n3 + 2n4 ≃ 226.

By definition, l can be generated by a LFSR of length L, so it will satisfy
some parity checks involving L consecutive bits at most. Actually, it can be
demonstrated that sparse parity checks are satisfied, which will prove to be
crucial in the rest of our attack.



4.2 Construction of Sparse Parity Checks

We denote by Ti the period of register Ri. From [5], we can see that

T1 = 222 − 1,

T2 = 223 − 1,

T3 = 225 − 1,

T4 = 226 − 1.

Let

ll(t) = l(t) ⊕ l(t + T1).

Because the period of the first register is T1, this expression does not contain
any term in y1. Similarly, define

lll(t) = ll(t) ⊕ ll(t + T2),

llll(t) = lll(t) ⊕ lll(t + T3).

Here llll(t) contains no term in y2 or y3, so it is a combination of bits coming
from the register R4 only. Thus it satisfies

llll(t) = llll(t + T4).

In other terms, we have the following relation on the bits l(i),

0 = l(t) + l(t + T1) + l(t + T2) + l(t + T3) + l(t + T4)

+ l(t + T1 + T2) + l(t + T1 + T3) + l(t + T1 + T4)

+ l(t + T2 + T3) + l(t + T2 + T4) + l(t + T3 + T4)

+ l(t + T1 + T2 + T3) + l(t + T1 + T2 + T4) + l(t + T1 + T3 + T4)

+ l(t + T2 + T3 + T4) + l(t + T1 + T2 + T3 + T4).

This is the basic parity check on l(t) that we will use in our attack. We can
observe that it is the XOR of 16 different bits from the sequence l(i). They all
belong to a time interval of length

Tmax = T1 + T2 + T3 + T4 = 113246204 ≃ 226.75.

Such parity checks are satisfied by the keystream sequence, under certain con-
straints on the outputs of the registers R5 and R6 (several bits y5(i) and y6(i)
must be equal to 0).

We split the attack in two phases. First, we precompute particular states
of R5 and R6 for which z(t) = l(t). Then we look at a given keystream sequence
and test when the parity check is satisfied. This information is used to identify

one of the precomputed states of R5 and R6.



4.3 Precomputation

The goal of the precomputation step is to identify particular state values of R5

and R6 for which the parity checks will be satisfied. For that, we need y5(t) and
y6(t) to be both equal to 0 for the 16 positions that appear in the previous parity
check. Consider the case of register R5 first. We are looking for states of R5 at
time t such that the corresponding outputs satisfy :

y5(t) = 0,

y5(t + T1) = 0,

y5(t + T2) = 0,

y5(t + T3) = 0,

y5(t + T4) = 0,

y5(t + T1 + T2) = 0,

y5(t + T1 + T3) = 0,

y5(t + T1 + T4) = 0,

y5(t + T2 + T3) = 0,

y5(t + T2 + T4) = 0,

y5(t + T3 + T4) = 0,

y5(t + T1 + T2 + T3) = 0,

y5(t + T1 + T2 + T4) = 0,

y5(t + T1 + T3 + T4) = 0,

y5(t + T2 + T3 + T4) = 0,

y5(t + T1 + T2 + T3 + T4) = 0.

If we enumerate the 227 possible states of R5 and clock the register Tmax times,
we can find all states that satisfy the above equations3. The expected number
of solutions is

227 × 2−16 = 211,

since there are 16 binary constraints to satisfy simultaneously. The complexity
of this stage is about 227 × Tmax = 253.75. It is possible to do it more efficiently
if we store the whole sequence of outputs from R5, but this step will prove not
to be the bottleneck of our attack. Similarly, we can find 212 states of R6 that
satisfy the same 16 constraints. The corresponding time complexity is 254.75. To
summarize, we can enumerate

212 × 211 = 223

favorable states for the registers R5 and R6. We store these 223 states in an
auxiliary table.

3 We could envisage degenerated registers, for which these equations can never occur
simultaneously. However, this is not the case in Achterbahn, and such degenerations
would probably lead to other types of attacks.



In addition, for each favorable state, we clock R5 and R6 until we reach
another favorable state. In the auxiliary table, we store the distance from each
favorable state to the next one. This information will be useful in the next
section. In average, we need 232 clockings per favorable state, resulting in a time
complexity of 223 × 232 = 255 steps.

4.4 Identification

We suppose that we are given a certain sequence of 240 keystream bits. To
simplify what follows, we start by computing the parity checks on the keystream
bits,

pc(t) = z(t) + z(t + T1) + z(t + T2) + z(t + T3) + z(t + T4)

+ z(t + T1 + T2) + z(t + T1 + T3) + z(t + T1 + T4)

+ z(t + T2 + T3) + z(t + T2 + T4) + z(t + T3 + T4)

+ z(t + T1 + T2 + T3) + z(t + T1 + T2 + T4) + z(t + T1 + T3 + T4)

+ z(t + T2 + T3 + T4) + z(t + T1 + T2 + T3 + T4),

for t = 0 . . . 240 − Tmax.
It is very likely that R5 and R6 are in a favorable state, for at least one of

the first 232 positions in the sequence. We call t0 such a position. Then we must
have pc(t0) = 0. This is only one bit of information, which is not sufficient to
identify a favorable state.

Therefore, we enumerate all positions t0 from 0 to 232 and all the 223 fa-
vorable states. Suppose we have pc(t0) = 0 (otherwise we discard immediately
the candidate). Then we use the auxiliary table to search for the next favorable
state. Suppose the table says it will occur at the position t1 > t0. Then we jump
to the position t1 in the keystream sequence and check if pc(t1) = 0. If it is not
the case, we discard this candidate. Otherwise, we iterate the process.

Since we have 240 keystream bits and the distance between two favorable
states is about 232, we might be able to iterate up to 28 = 256 times the process
with success. This is sufficient to identify a favorable state, while a false alarm
is very unlikely.

With our ”early abort” strategy, we need to test only an average of 2 parity
checks for each of the 232 × 223 = 255 candidates. So the time complexity of this
phase is about 256 steps.

4.5 Retrieving the key

We have identified the value of the state of R5 and R6 at a certain position t0
in the output sequence. We would like to retrieve the key from this information,
so a natural idea is to backtrack the updating of these registers. This is easy to
do until we reach the initial state, since the update is invertible.

Next, we want to backtrack the initialization process of Achterbahn. During
the extra clockings for diffusion and during the IV introduction, there is no diffi-
culty to backtrack, since we can always predict the feedback bit. Unfortunately,
we can no longer backtrack during the phase where the key was introduced.



Then, our idea is to perform a meet-in-the-middle attack. We split the
key in two halves of 40 bits each. On the one hand, we guess the first 40 bits
from the key and predict the state of R5 and R6 after the introduction of these
40 bits. On the other hand, we guess the last 40 bits from the key and backtrack
the introduction of these bits from the known state of R5 and R6. We search for
a match between the two lists of 240 elements4.

We should observe 240×240×2−55 ≃ 225 matches since the lengthes of R5 and
R6 sum up to 55 bits. Each of them provides a key candidate, which is easy to
test by producing several keystream bits. To summarize, from one known state
of R5 and R6, we can retrieve the secret key with time and memory complexity
of 240.

4.6 Analysis

Both the precomputation and the identification phase of our attack have a time
complexity of about 256 steps. In addition, we need to store about 240 (parity
checks of) keystream bits and an auxiliary table of size 223 after the precompu-
tation phase.

The key recovery phase can be achieved using different trade-offs between
time and memory. It is possible to do it with time and memory of 240. But a
more reasonable trade-off could be with time 250 and memory 230.

4.7 Cryptanalysis of full Achterbahn

If we want to attack the full Achterbahn, we must take into account the key-
dependent linear combination used to compute the outputs of each register. This
additional feature preserves the period of each registers, as well as the properties
of the function F , so the observations on parity checks are unchanged. However,
when looking for the favorable states of R5 and R6, we must guess in addition
the 8 + 9 = 17 key-dependent taps.

Depending on our guess on these key-dependent taps, we obtain a different
set of favorable states. Therefore we must repeat 217 times the second phase of
our attack, and the whole complexity for attacking the full Achterbahn is about
273 computation steps.

5 Another Cryptanalysis of Achterbahn

In this section, we propose another attack technique against Achterbahn, based
on approximating its output function by a linear expression.

4 One bit is forced to 1 in each register to avoid the “all zero” state. The update is
therefore not invertible, but we can easily guess the value of the erased bit, which
has a negligible impact on the time complexity.



5.1 Linear approximations of the output function

Reconsider Achterbahn’s output function given in Section 2,

z(t) = F (y1(t), y2(t), y3(t), y4(t), y5(t), y6(t), y7(t), y8(t))

= y1(t) ⊕ y2(t) ⊕ y3(t) ⊕ y4(t) ⊕

y5(t)y7(t) ⊕ y6(t)y7(t) ⊕ y6(t)y8(t) ⊕ y5(t)y6(t)y7(t) ⊕ y6(t)y7(t)y8(t).

We use the notation l(t) = y1(t)⊕ y2(t)⊕ y3(t)⊕ y4(t) to refer to the linear part
of F . it is easy to observe that F verifies the following linear approximations,

z(t) = l(t) ⊕ y5(t) with probability 10/16,

z(t) = l(t) ⊕ y6(t) with probability 12/16,

z(t) = l(t) ⊕ y7(t) with probability 12/16,

z(t) = l(t) ⊕ y8(t) with probability 10/16.

In particular, we focus on the second approximation,

z(t) = l(t) ⊕ y6(t), (1)

with probability 12

16
= 0.75 = 0.5 (1 + 0.5). Therefore the bias of this linear

approximation is ε = 0.5.

5.2 Using the sparse parity checks

Similarly to Section 4.2, we can construct parity checks satisfied by the sequence
of bits l(t) ⊕ y6(t). Such a parity check will involve 32 keystream bits (instead
of 16 like in Section 4.2) distant from at most

Tmax = T1 + T2 + T3 + T4 + T6 = 381681659 ≃ 228.51

positions. This parity check is not directly satisfied by the output sequence of
Achterbahn since l(t) ⊕ y6(t) is only an approximation of the output function.
However we can sum up 32 times the linear approximation (1) over different
values of t, which has the effect of multiplying the biases. Therefore, the parity
check is satisfied by the sequence z(t) with probability

0.5
(

1 + ε32
)

= 0.5

(

1 +
1

232

)

.

Therefore if we consider a sequence of 264 output bits and evaluate all the parity
checks, we will detect this bias. This allows to distinguish Achterbahn’s outputs
from truly random sequences. In addition, this attack is not affected if we add
key-dependent taps to each register, so its complexity is the same for the reduced
and for the full Achterbahn.



5.3 Guessing one register

A natural extension of the previous distinguishing attack consists in guessing the
initial content of register R1 (there are 223 candidates). Then, we can eliminate
the term y1(t) in the previous linear approximation. Consequently, the weight
of the parity check drops from 32 to 16, bringing the bias from 2−32 to 2−16.

For the correct guess, we detect a bias by looking at 232 keystream bits,
while there is no bias for incorrect guesses. Once the correct guess has been
identified, it is straightforward to repeat the process to target other registers.
To summarize, this attack costs about 255 computation steps and requires 232

keystream bits. For the full Achterbahn, the number of guesses for R1 is 229

instead of 223 increasing the complexity of the key recovery from 255 to 261.

6 The case of Achterbahn-v2

6.1 Time-Memory Trade-Off

We reconsider the attack described in Section 4 in order to break the reduced
version of Achterbahn-v2. Because of the linear complexity arguments, one can
still construct the sparse parity checks satisfied by the linear part l(t) (F and
F ′ have both the same linear part). The criteria chosen by the designers is that
it is no longer possible to cancel out the nonlinear part

nl(t) = z(t) ⊕ l(t) (2)

by guessing 2 registers only, like for the “basic” Achterbahn. However, nl(t)
depends only on the initial state of the registers R5, R6, R7 and R8, which rep-
resents 27 + 28 + 29 + 31 = 115 unknown bits. So we can apply the usual
time-memory-data trade-off for stream ciphers :

– Precomputation step : Pick at random 257.5 initial states for the registers
R5, R6, R7 and R8 Then evaluate the parity check of Section 4.2 on the
sequence of nl(t) bits. We do this for 115 parity checks and we store the
resulting vector of 115 bits in a table. Finally, the 257.5 entries of this table
are sorted according to the stored value.

– Identification step : Analyze a sequence of 257.5 keystream bits and for
each encountered position, evaluate the first 115 parity checks.

The parity check evaluated on the z(t) bits is equal to the parity check evaluated
on the nl(t) bits, since it cancels out on the l(t) bits (see relation (2)). Therefore,
when we find a match, we learn the state of R5, R6, R7 and R8 during the
encryption process. It turns out that a match is indeed expected here, due to
the birthday paradox.

Besides, it is clear that the state of the 4 remaining registers, R1, R2, R3 and
R4 as well as the secret key could be further retrieved, with an analysis similar
to the one described in Section 4. We estimate the cost of this attack to 257.5 in
time and data complexity.



There is a technical detail to mention. Evaluating each parity check (in
the precomputation step) requires to handle some nl(t) bits which are located
Tmax ≃ 226.75 positions apart. To deal with this, we suggest to first compute
the contribution of each separate register to the parity checks, for each possible
state. This requires about Tmax × 231 ≃ 257.75 steps for the longest register, i.e.,
R8. Then for each of the 257.5 candidates, evaluating the 115 parity checks just
requires several table look-ups and several XOR’s. Arguably, the basic step in
our attack costs about as much as testing one key in an exhaustive search.

This attack applies to the “reduced” Achterbahn-v2. Considering the case of
the “full” Achterbahn-v2, we observe that each register has an “extra” entropy of
8, 9 or 10 bits, due to the secret feed-forward. This sums up to 36 new unknowns.
An exhaustive search over these unknowns is impossible, since it would bring the
complexity above exhaustive search. Hence, we propose an alternative strategy
in order to break the full Achterbahn-v2.

6.2 Breaking the full Achterbahn-v2

We propose a different extension of the attack of Section 4. The modification is
that we target positions where y5(t) = y6(t) = 1 instead of 0. For these selected
positions,

F ′(y1(t), . . . , y8(t)) = y1(t) ⊕ y2(t) ⊕ y3(t) ⊕ y4(t) ⊕ y7(t) = λ(t)

So F ′ is reduced to a linear term λ(t) with 5 terms (instead of 4 terms like l(t))
We view the bit y1(t)⊕y2(t) as the output of a single register with period T1 ·T2,
so again we can write sparse parity checks of weight 16, involving terms located

Tmax = T1 · T2 + T3 + T4 + T7 ≃ 245

positions apart. Tmax is now much larger than previously, but as already pointed
out in Section 4.3 the precomputation of “favorable” states for the register R5 (or
for R6) can be done without clocking it Tmax times (T5 clockings are sufficient,
taking into account its periodicity). Similarily, the increase of Tmax does not
change the time complexity of the identification step described in Section 4.4.

To summarize, the full Achterbahn-v2 can be attacked with the same com-
plexity as the attack against the full Achterbahn described in Section 4.7, except
that the data complexity is increased to Tmax = 245+240 ≃ 245 known keystream
bits.

7 The case of Achterbahn-v3

Achterbahn-v3 has a new output function F ′′ which is not as sparse as its pre-
decessors. However, F ′′ is approximable by a sparse linear function. Then the
attack proposed in Section 5 can be applied. First, we observe that

z(t) = F ′′(y1(t) . . . y8(t)) = y1(t) ⊕ y2(t) ⊕ y3(t) ⊕ y4(t),



with probability 9

16
= 0.5 · (1 + 1

8
). Then we apply the attack of Section 5 with

the register-guessing trick. We guess the initial state of register R1 (complexity
222), then we evaluate the parity check (of weight 8 since only 3 terms remain).
The resulting bias is

ε =

(

1

8

)8

= 2−24,

so 248 keystream bits are needed to detect the correct initial state of R1. The
time complexity of this attack is 222 × 248 = 270 for the reduced Achterbahn-v3.
For the full Achterbahn-v3, there is an auxiliary factor of 26 to take into account
for the secret feed-forward.

8 Conclusion

Type of Attack Technique Target Complexity Data

Key recovery (Sec. 4) Linear Complexity reduced Achterbahn 256 240

full Achterbahn 273 240

Distinguisher (Sec. 5) Linear Approx. reduced Achterbahn 264 264

full Achterbahn 264 264

Key recovery (Sec. 5) Linear Approx. reduced Achterbahn 255 232

full Achterbahn 261 232

Key recovery (Sec. 6) Time-Memory reduced Achterbahn-v2 257.5 257.5

Linear Complexity full Achterbahn-v2 273 245

Key recovery (Sec. 7) Linear Approx. reduced Achterbahn-v3 270 248

full Achterbahn-v3 276 248

Table 2. Summary of cryptanalysis results against Achterbahn

We proposed several attacks against Achterbahn and its modified versions.
Table 2 summarizes all these cryptanalysis results. In spite of the nonlinear
update, the fact that all registers are small and autonomous allows us to envisage
several new attacks. Our idea is first to observe that a linear output function
would give a low linear complexity and therefore an easily brekable cipher. Then
we suggest to approximate the output function by a linear expression, and we
build parity checks that the linearized version of Achterbahn should satisfy.

Following the publication of some preliminary results, the designers of Achter-
bahn suggested to modify the output filter. However, we pointed out that some
attacks of the same nature are still possible. It is interesting to notice that our



attacks are independent of the feedback of the nonlinear registers, so it illustrates
some problems of the design itself, rather than an unfortunate instantiation.

References

1. Bluetooth. Bluetooth Specification, November 2003. available at
http://www.bluetooth.org.

2. N. Courtois and W. Meier. Algebraic Attacks on Stream Ciphers with Linear Feed-
back. In E. Biham, editor, Advances in Cryptology – Eurocrypt’03, volume 2656 of
Lectures Notes in Computer Science, pages 345–359. Springer, 2003.

3. eSTREAM - The ECRYPT Stream Cipher Project
http://www.ecrypt.eu.org/stream/.

4. B. Gammel, R. Göttfert, and O. Kniffler. Improved Boolean Combining Functions
for Achterbahn. eSTREAM, ECRYPT Stream Cipher Project, Report 2005/072,
2005. http://www.ecrypt.eu.org/stream.

5. B. Gammel, R. Göttfert, and O. Kniffler. The Achterbahn Stream Ci-
pher. eSTREAM, ECRYPT Stream Cipher Project, Report 2005/002, 2005.
http://www.ecrypt.eu.org/stream.

6. T. Johansson, W. Meier, and F. Muller. Cryptanalysis of Achter-
bahn. eSTREAM, ECRYPT Stream Cipher Project, Report 2005/064, 2005.
http://www.ecrypt.eu.org/stream.

7. J. Massey. Shift-Register Synthesis and BCH Decoding. IEEE Transactions on

Information Theory, 15:122–127, 1969.
8. W. Meier and O. Staffelbach. Fast Correlations Attacks on Certain Stream Ciphers.

In Journal of Cryptology, pages 159–176. Springer, 1989.
9. T. Siegenthaler. Correlation-immunity of Nonlinear Combining Functions for Cryp-

tographic Applications. In IEEE Transactions on Information Theory, volume 30,
pages 776–780, 1984.


