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Abstract

Kerberos is a widely-deployed network authentication protocol that is being considered for standard-
ization. Many works have analyzed its security, identifying flaws and often suggesting fixes, thus helping
the protocol’s evolution. Several recent results present successful formal-methods-based verification of
a significant portion of the current version 5, and some even imply security in the computational setting.
For these results to be meaningful, encryption in Kerberos should satisfy strong cryptographic security
notions. However, neither currently deployed as part of Kerberos encryption schemes nor their proposed
revisions are known to provably satisfy such notions. We take a close look at Kerberos’ encryption and
confirm that most of the options in the current version provably provide privacy and authenticity, some
with slight modification that we suggest. Our results complement the formal-methods-based analysis of
Kerberos that justifies its current design.

1 Introduction

1.1 Motivation

Kerberos is a trusted-third-party network authentication protocol. It allows a client to authenticate herself to
multiple services, e.g. file servers and printers, with a single login. Kerberos has become widely deployed
since its origination as MIT’s project Athena in 1988. It has been adopted by many big universities and
corporations, is part of all major computing platforms such as Windows (starting from Windows 2000),
Linux and Mac OS, and is a draft standard at IETF [29].

Security of Kerberos has been analyzed in many works, e.g. [16, 28, 6, 5, 26, 20, 30]. Most commonly
analyses identify certain limitations or flaws in the deployed versions of Kerberos and sometimes propose
fixes. This leads to the evolution of the protocol, when a new version patches the known vulnerabilities of
the previous versions. The current version Kerberos v.5 is already being revised and extended [23, 25, 24].

What is certainly desirable for the upcoming standard is to provide some guarantees that the protocol
does not only resist some specific known attacks, but withstands a very large class of possible attacks, un-
der some accepted assumptions. Modern techniques in cryptography (computational approach) and formal
methods (symbolic approach) make it possible, however formally analyzing such a complex protocol is not
an easy task.

∗A preliminary shortened version of this paper appears in IEEE Security & Privacy 2007 Proceedings.
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Several recent works contributed in this direction. Butler et al. [17, 18] have analyzed the significant
portions of the current version of Kerberos and its extensions in the symbolic approach (i.e. Dolev-Yao
model [19]) and have formally verified that the design of Kerberos’ current version meets the desired goals
for the most parts. However, a known limitation of such analyses is high level of abstraction. A significant
advance has been made by a recent work by Backes et al. [1] in that it is the only work providing symbolic
analysis that also guarantees security in the computational setting, which is the well-accepted strongest
model of security. Their results use the computational-soundness model due to Backes et al. [4, 3, 2].
However, for their results to hold the cryptographic primitives used in the protocol need to satisfy strong
notions of security (in the computational setting). Namely, the encryption scheme utilized by the protocol
needs to provide privacy against chosen-ciphertext attacks (be IND-CCA secure) and also authenticity and
integrity of ciphertexts (be INT-CTXT secure) [2, 1].

However, it is not known whether encryption1 in Kerberos is IND-CCA and INT-CTXT secure. Certain
known vulnerabilities indicate that encryption in version 4 did not satisfy these notions [30]. While encryp-
tion in the current version 5 is designed to resist known attacks it is not clear whether it provably resists all
attacks of the class, and if yes – under which assumptions. Provable security has become a de-facto standard
approach in modern cryptographic research. Cryptographers design plenty of cryptographic schemes for a
vast range of possible applications, and usually provide rigorous proofs of security for their constructions.
It is somewhat surprising that the schemes that are actually used in deployed protocols remain unanalyzed
from the provable-security perspective. Our work aims at closing this gap.

1.2 Contributions

We take a close look at the encryption schemes used in Kerberos v.5 (according to its specifications [25, 24])
in order to prove them secure, in the IND-CCA and INT-CTXT sense, assuming the underlying building
blocks (e.g. a block cipher) are secure.

GENERAL PROFILE. We first look at the encryption scheme description in the current version 5 specification
(cf Section 6 in [25].) We will refer to it as “General profile”. Fix a block cipher with input-output length n
and a key for it. A message M is first padded so that its length is multiple of n. Next a random n-bit string
conf is chosen. Then a checksum, i.e. a hash function is applied to the string conf ‖ 0n ‖M . Let us call
the checksum’s output σ. Finally, the block cipher in the CBC mode with fixed initial vector IV = 0n is
applied to the string conf ‖ σ ‖M . Decryption is defined accordingly. The recommended options are DES
as the block cipher and MD4 or MD5 as hash functions, which is not a very good choice for known reasons.
DES is an outdated standard since its key and block sizes are too small given modern computing power,
and collisions have been found in MD4 and MD5 [27]. But what we show is that even if one assumes the
“more secure” component options such as a secure block cipher in a secure encryption mode and a secure
hash function, the construction is not secure in general. That is, there exist attacks on the scheme composed
of certain secure components that show that it does not provide integrity of ciphertexts. We note that these
attacks do not apply if the particular encryption scheme recommended in [25] is used. Nevertheless the
attacks show a weakness in the design.

MODIFIED GENERAL PROFILE. We propose simple, easy to implement modifications that are sufficient
for security of the design of the General profile. Namely, we show that if a message authentication code
(MAC) that is a pseudorandom function (PRF), is used as a checksum in place of the hash PRF. In particular,
AES that is assumed to be a PRF and HMAC [8] that is proven to be a PRF [7] assuming the underlying
compression hash function is a PRF, are good candidates for a block cipher and MAC respectively.

1We will also refer to encryption schemes whose goal is to provide privacy and authenticity as authenticated encryption.
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SIMPLIFIED PROFILE. Next we look at recently-proposed revisions to the encryption design in Kerberos
aka. Simplified profile (cf. Section 5 in [25] and [24]). This encryption scheme, that did not catch up with
implementations yet, recommends to use AES or Triple-DES as a block cipher and HMAC [8] as a MAC,
in the following manner. The message is first encoded such that the necessary padding is appended and a
random confounder is pre-pended. The block cipher in CBC mode or a variant of CBC mode with ciphertext-
stealing both with fixed all-zero-bit IV and HMAC are applied to the encoded message independently to
yield two parts of the resulting ciphertext. Decryption is defined accordingly. We prove that this method
yields an encryption scheme that is IND-CCA and INT-CTXT secure under the assumption that the block
cipher and the MAC are PRF. This confirms soundness of the design of the Simplified profile, that, unlike
General profile, is secure in general. AES is believed to be a PRF, Triple DES was shown to be a PRF in the
ideal cipher model [15] and HMAC was proven to be a PRF [7] assuming the underlying compression hash
function is a PRF, therefore they are the right choices of instantiations for the Simplified profile.

While our results are not as unexpected or “catchy” as some results discovering a flaw or implementing
an attack on a practical protocol, they are far from being less important. Having provable security guarantees
is an invaluable benefit for any cryptographic design, especially a widely deployed protocol. Our results
together with the formal-methods-based results in the symbolic setting constitute strong provable-security
support for the design of Kerberos.

1.3 Related work

Bellare and Namprempre [12] study various ways to securely compose secure (IND-CPA) encryption and
secure (unforgeable against chosen-message attacks or UF-CMA) message authentication code (MAC)
schemes. They show that the only one out of three most straight-forward composition methods, Encrypt-
then-MAC, is secure in general, i.e. always yields an IND-CCA and INT-CTXT encryption scheme. At the
same time certain secure components can yield a scheme constructed via Encrypt-and-MAC or MAC-then-
Encrypt paradigm that is not IND-CCA or not INT-CTXT. If Kerberos’ design had utilized the Encrypt-then-
MAC composition method with secure encryption and MAC schemes, we would have nothing to prove here.
But for some reasons Kerberos uses some variations of Encrypt-and-MAC or MAC-then-Encrypt methods
that also rely on the properties of the encodings of the message, i.e. of pre-processing of the message before
encryption and MAC are applied.

Bellare et al. [11] analyze security of encryption in another widely deployed protocol, Secure Shell aka.
SSH. They suggest several modifications to the SSH encryption to fix certain flaws and prove that the result-
ing scheme provably provides privacy against chosen-ciphertext attacks and integrity of ciphertexts. They
also provide general results about security of stateful encryption schemes composed according to Encode-
then-Encrypt-and-MAC paradigm assuming certain security properties of the base encoding, encryption and
MAC schemes. The encryption scheme proposed for the revision of Kerberos v.5 (cf. Simplified profile in
[25]) conforms to the Encode-then-Encrypt-and-MAC method. However, the security results from [11] do
not directly imply strong security notions of the Simplified profile in Kerberos. First, the general results
from [11] do not guarantee a strong notion of integrity of ciphertexts (they only consider a weaker notion of
integrity of plaintexts). Second, the result of [11] require IND-CPA secure base encryption scheme but as
we mentioned above the base encryption in Kerberos is CBC with fixed IV and is not IND-CPA secure.

Krawczyk [22] shows that that the MAC-then-Encrypt composition method yields a secure authenticated
encryption scheme if the underlying MAC is UF-CMA and the encryption scheme uses a PRF block cipher
in CBC with random IV mode. We cannot use this result to prove security of the Modified general profile
because the latter uses the CBC mode with zero IV and moreover, it uses a particular encoding scheme
so that that confounder (that basically plays the role of random IV for CBC) is also being MACed and
encrypted. Proving this scheme requires special care.
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Accordingly, we need to analyze the authenticated encryption schemes in Kerberos from scratch.

1.4 Outline

After defining some notation we recall the relevant cryptographic primitives and their security definitions.
Next we outline the designs of authentication schemes in the General and Simplified profile authenticated
encryption schemes of Kerberos’ specification, and the modification to the General profile we propose. We
follow with detailed security analysis of the schemes and conclude with the summary.

2 Preliminaries

2.1 Notation

We denote by {0, 1}∗ the set of all binary strings of finite length. If X is a string then |X| denotes its length
in bits. If X, Y are strings then X ‖Y denotes the concatenation of X and Y . For an integer k and a bit b, bk

denotes the string consisting of k consecutive “b” bits. For a string X whose length is multiple of n bits for
some integer n, X[i] denotes its ith block, meaning X = X[1]|| . . . ||X[l] where l = |X|/n and |X[i]| = n

for all i = 1, . . . , l. If S is a set then X
$← S denotes that X is selected uniformly at random from S.

If A is a randomized algorithm, then the notation X
$← A denotes that X is assigned the outcome of the

experiment of running A, possibly on some inputs. If A is deterministic, we drop the dollar sign above the
arrow.

2.2 Cryptographic Primitives and their Security

SYMMETRIC ENCRYPTION.

Definition 2.1 [Symmetric encryption scheme] A symmetric encryption scheme SE = (K, E , D) with
associated message space MsgSp is defined by three algorithms:

• The randomized key generation algorithm K returns a secret key K.

• The (possibly) randomized or stateful encryption algorithm E takes input the secret key K and a plain-
text M ∈ MsgSp and returns a ciphertext.

• The deterministic decryption algorithm D takes the secret key K and a ciphertext C to return the
corresponding plaintext or a special symbol ⊥ indicating that the ciphertext was invalid.

The consistency condition requires that DK(EK(M)) = M for all K that can be output by K and all
M ∈ MsgSp.

We now recall cryptographic security notions for encryption. The following definition [9] is for data
privacy (confidentiality). It formalizes the requirement that even though an adversary knows some partial
information about the data, no additional information is leaked.

Definition 2.2 [IND-CPA, IND-CCA] Let SE = (K, E ,D) be an encryption scheme. For atk ∈ {cpa, cca},
adversary A and a bit b define the experiments Expind-atk-b

SE (A) as follows. In all experiments first the secret
key K is generated byK. Let LR be the oracle that on input M0,M1, b returns Mb. The adversary A is given
access to left-right encryption oracle EK(LR(·, ·, b)) that A can query on any pair of messages in MsgSp
and of of equal length. In Expind-cca-b

SE (A) the adversary is also given the decryption oracle DK(·) that it
can query on any ciphertext that was not returned by the other oracle. The adversary’s goal is to output a
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bit d as its guess of the challenge bit b, and the experiment returns d as well. The ind-atk-advantage of a
adversary A is defined as:

Advind-atk
SE (A) = Pr

[
Expind-atk-1

SE (A) = 1
]
− Pr

[
Expind-atk-0

SE,A (A) = 1
]
.

The scheme SE is said to be indistinguishable against chosen-plaintext attack or IND-CPA (resp. chosen-
ciphertext attack or IND-CCA) if for every adversary A with reasonable resources its ind-cpa (resp. ind-cca)
advantage is small2.

It is easy to see that IND-CCA security is a stronger notion that implies IND-CPA security.
The following definition [12, 13] is for authenticity and integrity of encryption. It formalizes the re-

quirement that no adversary should be able to compute a new ciphertext which the receiver will deem valid.

Definition 2.3 [INT-CTXT] Let SE = (K, E , D) be an encryption scheme. The encryption scheme is said
to provide authenticity or ciphertext integrity (or be INT-CTXT secure) if any adversary A with reasonable
resources can be successful in the following experiment only with small probability, called the int-ctxt-
advantage of A, Advint-ctxt

SE (A). In the experiment first the random key K is generated byK. The adversary
has access to the encryption oracle EK(·). It is successful if it can output a valid ciphertext C (i.e. DK(C) 6=
⊥) that was never returned by the encryption oracle.

It has been shown [12] that if an encryption scheme is IND-CPA and INT-CTXT then it is also IND-CCA.

Theorem 2.4 [[12], Theorem 3.2] Let SE be an encryption scheme. If it is IND-CPA and INT-CTXT
secure, then it is also IND-CCA secure. Concretely, for any adversary A attacking IND-CCA security of SE
there exist adversaries B,C attacking the scheme’s IND-CPA and IND-CCA security respectively such that

Advind-cca
SE (A) ≤ Advind-cpa

SE (B) + 2Advint-ctxt
SE (C) .

Furthermore, the resources of B and C are same as those of A.

To achieve INT-CTXT security encryption scheme often utilize message authentication codes (MACs), that
we define below.

MESSAGE AUTHENTICATION CODE (MAC).

Definition 2.5 [MAC] A message authentication code (MAC) MAC = (K, T ) with associated message
space MsgSp is defined by two algorithms:

• The randomized key generation algorithm K returns a a secret key K .

• The deterministic3 mac aka. tagging algorithm T takes input the secret key K and a plaintext M to
return a mac aka. tag for M .

For a message-tag pair (M,σ), we say σ is a valid tag for M if σ = σ′ where σ′ ← TK(M).

The following security definition [10] requires that no adversary can forge a valid tag for a new message.
2Here and further in the paper we call the resources of an algorithm (or adversary) “reasonable” if it runs for some reasonable

amount of time (e.g. up to 10 years or makes 260 basic operations in some fixed model of computation), and does reasonable
number of oracle queries of reasonable length. We call the value of an advantage “small” if it is very close to 0 (e.g. 2−20.)

3A MAC does not have to be deterministic. But most practical schemes are, and in this paper we consider only detrministic
MACs.

5



Definition 2.6 [UF-CMA] LetMAC = (K, T ) be a MAC scheme. It is called unforgeable against chosen-
message attacks or UF-CMA secure if any adversary A with reasonable resources can be successful in the
following experiment only with small probability, called the uf-cma-advantage of A, Advuf-cma

MAC (A). In the
experiment first the random key K is generated by K. The adversary has access to the tagging oracle TK(·).
It is successful if it can output a message-tag pair (M,σ) such that M ∈ MsgSp, σ is a valid tag for M
under K, and M was not queried to the tagging oracle.

Another (stronger) security definition requires that the output of the MAC is indistinguishable from a random
string.

Definition 2.7 [PRF] LetMAC = (K, T ) be a MAC scheme. Let R be the set of all functions with the
same domain and range as T . The MAC is called pseudorandom function or PRF secure if any adversary
A with reasonable resources and access to an oracle that it can query on messages in MsgSp has small
prf-advantage defined as

Advprf
MAC(A) = Pr

[
K

$← K : ATK(·) = 1
]
− Pr

[
g

$← R : Ag(·) = 1
]

.

It is known that any MAC that is PRF is also UF-CMA.

Theorem 2.8 [[14], Section 6]MAC = (Km, T ) be a message authentication code. Then for any adver-
sary F attacking UF-CMA security ofMAC that runs in time t and asks q queries, totaling µ n-bit blocks
there exists an adversary G attacking PRF security ofMAC such that

Advuf-cma
MAC (F ) ≤ Advprf

MAC(G) .

Furthermore, G uses the same resources as F .

HASH FUNCTION.

Definition 2.9 [Hash function] A hash function HF = (K,H) consists of two algorithms. The key gener-
ation algorithm K outputs a key K4. The hash algorithm H on inputs K and M ∈ {0, 1} outputs the hash
value H .

Definition 2.10 [Collision-resistance] A hash function HF = (K,H) is called collision-resistant if ev-
ery adversary with reasonable resources who is given a random K output by K can output two messages
M1,M2 ∈ {0, 1} such thatHK(M1) = HK(M2), M1 6= M2 only with small probability.

ENCODING SCHEME. An encoding scheme is an unkeyed invertible transformation that is used to extend
the message with some associated data such as padding, a counter or random nonce, etc.

Definition 2.11 [Encoding scheme] An encoding scheme EC = (Enc,Dec) with associated message
space MsgSp is defined by two algorithms. The (possibly) randomized or stateful encoding algorithm
Enc takes a message M ∈ MsgSp and outputs a pair of messages (Me,Mt). The deterministic decoding
algorithm takes Me and returns a pair (M,Mt) or (⊥,⊥) on error.

For any message M , let (Me,Mt)
$← Enc(M) and (M ′,M ′

t) ← Dec(Me) then, the consistency
condition requires that M = M ′ and Mt = M ′

t .

The following is from [13, 11].
4Our results can also be applied to keyless hash functions.
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Definition 2.12 [Coll-CPA] Let EC = (Enc,Dec) be an encoding scheme. It is called collision-resistant
against chosen-plaintext attacks or Coll-CPA if every adversary A with reasonable resources has only small
success probability , called the coll-cpa-advantage of A, Advcoll-cpa

EC (A) in the following experiment. The
adversary has access to the encoding oracle Enc(·) and it is considered successful if it ever gets two replies
containing Mt and M ′

t such that Mt = M ′
t .

PSUEDORANDOM FUNCTION FAMILY. A family of functions is a map E : {0, 1}k × {0, 1}m → {0, 1}n,
where we regard {0, 1}k as the keyspace for the function family in that a key K ∈ {0, 1}k induces a particular
function from this family, which we denote by EK(·).

Definition 2.13 [PRF] Let E : {0, 1}k × {0, 1}m → {0, 1}n be a function family. Let R be the set of
all functions from {0, 1}m to {0, 1}n. E is called pseudorandom function or PRF secure if any adversary
A with reasonable resources and access to an oracle that it can query on messages in MsgSp has small
prf-advantage defined as

Advprf
E (A) = Pr

[
K

$← {0, 1}k : AEK(·) = 1
]
− Pr

[
g

$← R : Ag(·) = 1
]

.

3 Analysis of Encryption in Kerberos v.5

3.1 General Profile

We first look at the encryption scheme specified in [25]. This document describes several options, but we
note that all the choices conform to a general composition method that we outline below (the design is
further generalized in [21]).

Construction 3.1 [Encode-then-MAC-then-Encrypt] Let SE = (Ke, E ,D), EC = (Enc,Dec),MAC =
(Km, T ) be an encryption scheme, an encoding scheme and a checksum (i.e. MAC or hash function). The
message space of the corresponding Encode-then-MAC-then-Encrypt scheme SE ′ = (K′, E ′,D′) is that of
is EC and the rest of the algorithms are defined as follows.

• K′ runs Ke,Km and returns their outputs Ke ‖Km.

• E ′ on inputs Ke ‖ Km and M first gets the encodings via (Me,Mt)
$← Enc(M). It then computes

σ ← TKm(Mt), parses Me as Mel‖Mer and returns C
$← EKe(Mel ‖ σ ‖Mer).

• D′ on inputs Ke ‖Km and C computes Me ←Mel ‖Mer, σ from (Mel ‖σ ‖Mer)← DKe(C), decodes
(M,Mt)← Dec(Me), computes σ′ ← TKm(Mt) and returns M if σ = σ′, and ⊥ otherwise.

Above we assume that the outputs of the encoding scheme are compatible with inputs to E , T .
The next construction specifies in more detail how Kerberos’ encryption operates. Figure 1 illustrates

the design.

Construction 3.2 [Authenicated encryption in Kerberos. General profile] Let E : {0, 1}k ×{0, 1}n →
{0, 1}n be a block cipher. Let SE = (Ke, E ,D) be the CBC encryption mode (cf. e.g. [9] for the formal
description) with IV fixed to be a string of n zeros5. LetMAC = (Km, T ) describe a hash function with

5The Kerberos’ specification also allows the stateful update of the IV , i.e. the IV is assigned to be the last block of the previous
ciphertext. Our analyses applies to this case as well. But since this option is not commonly used, we do not consider it in detail.
We note however, that [25] does not specify how the state and IV are updated when the receiver gets an invalid ciphertext. The
only reasonable resolution preventing malicious attacks disrupting the future communication may be to issue an error message and
reset the IV to 0n.
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Figure 1: Encryption in Kerberos v.5. General profile.

output of length l bits, which is keyless or whose key is public. Let EC = (Enc,Dec) be an encoding
scheme such that Enc with MsgSp = {0, 1}∗ on input M pads it to make the length of l + |M | multiple of

n bits (so that decoding is unambiguous), picks a random confounder of n bits conf
$← {0, 1}n, computes

Me ← conf ‖M and Mt ← conf ‖ 0n ‖M and returns (Me,Mt). Dec on input Me parses it as conf‖M ,
computes Mt ← conf‖0l‖M and returns (M,Mt). Then Construction 3.1 describes the authenticated
encryption called General profile6.

SECURITY ANALYSIS OF GENERAL PROFILE. As we noted in the Introduction the recommended instantia-
tions with DES and MD4 or MD5 are not good choices. DES is an outdated standard since its key and block
sizes are too small given modern computing power, and collisions have been found in MD4 and MD5 [27].
But what our results show, is that using the “more secure” building blocks such as for example, AES and a
collision-resistant hash function will not necessarily solve the problem. The reason is that the Encode-then-
MAC-then-Encrypt composition method does not provide integrity in general, when it uses a hash function
as checksum, even if it uses a secure encryption option for the underlying encryption scheme.

Theorem 3.3 Let EC = (Enc,Dec) be the encoding scheme from Construction 3.2. There exists an
IND-CPA secure encryption scheme and a collision-resistant hash function so that the authenticated en-
cryption obtained via Encode-then-MAC-then-Encrypt (Construction 3.1) does not provide integrity (is not
INT-CTXT secure). Concretely, there exists an adversary I with reasonable resources with Advint-ctxt

SE ′ (I)
being 1.

The proof is in Section 4.1. In fact, the proof also shows that the general construction is insecure even when
a secure MAC is used (with the corresponding secret key being secret, of course), but in this case the attack
makes use of a rather artificial IND-CPA scheme. The attacks we provide are similar to those in [12, 22] that
show insecurity of general composition methods. We note that the attacks we provide in the proof does not
translate into an attack on any of the recommended options. It just shows a limitation in the general design.

MODIFIED GENARAL PROFILE. We now suggest simple, easy-to-implement modifications to the General
Profile construction, and show that they are sufficient to prove security of the scheme. Namely we suggest to

6Our analysis does not take into account stateful approaches for key derivation used in few options of General profile.
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use a secure MAC in place of the hash function and show that the resulting authenticated encryption scheme
is secure. Note that this does not contradict the above paragraph, because now we rely on a particular
encryption scheme the General profile uses, i.e. CBC with zero IV. We now define the construction and state
its security.

Construction 3.4 [Modified General profile] The construction is like Construction 3.2, except thatMAC =
(Km, T ) is a message authentication code.

Theorem 3.5 The authenticated encryption scheme described by the Modified General profile (Construction 3.4)
is INT-CTXT and IND-CCA secure if the underlying block cipher is a PRF and the underlying MAC is a
PRF.
Concretely, let SE , EC andMAC be an encryption scheme, an encoding scheme and a checksum respec-
tively. Let SE ′ be the authenticated encryption scheme associated to them by Modified General profile
(Construction 3.4). Then for any adversary I attacking INT-CTXT security of SE ′ that runs in time t and
asks q queries, totaling µ n-bit blocks there exists an adversary F attacking UF-CMA security of MAC
such that

Advint-ctxt
SE ′ (I) ≤ Advuf-cma

MAC (F ). (1)

Furthermore, F runs in time tF ≈ t and asks qF = q queries, totaling µF = (µ + 2q) n-bit blocks.
And for any adversary A attacking IND-CCA security of SE ′ that runs in time t and asks q queries, totaling
µ n-bit blocks there exist adversaries B,G attacking PRF security of E,MAC respectively, such that

Advind-cca
SE ′ (A) ≤ Advprf

E (B) + 4Advprf
MAC(G) +

µ2

2n
. (2)

Furthermore, B runs in time tB ≈ t and asks qB = (µ + 2q) queries, totaling µB = (µ + 2q) n-bit blocks;
G runs in time tG ≈ t and asks qG = q queries, totaling µG = (µ + 2q) n-bit blocks.

The proof is in Section 4.2. Note that INT-CTXT security of the scheme requires only UF-CMA security
of the MAC, while IND-CCA security relies on the MAC being a PRF. As we mentioned before, any PRF
MAC is also UF-CMA (cf. Section 6 [14]), so PRF security is a sufficient assumption.

AES is believed to be a PRF and HMAC was proven to be a PRF [7] assuming the underlying compres-
sion hash function is a PRF (cf. [7] for the definition of the latter). Hence they constitute good instantiations
for the above design.

3.2 Simplified Profile

Designers of Kerberos had the right intuition that the General profile’s design is not particularly strong and
proposed a new design that they call “Simplified profile” (cf. Section 5 in [25] and [24]). Again we start
with a more general composition method that outlines the design.

Construction 3.6 [Encode-then-Encrypt&MAC] Let SE = (Ke, E ,D),MAC = (Km, T ), EC = (Enc,Dec)
be an encryption scheme, a MAC and an encoding scheme such that the outputs of the encoding scheme are
compatible with message spaces to E , T . The message space of corresponding Encode-then-Encrypt&MAC
scheme SE ′ = (K′, E ′,D′) is that of EC and the algorithms are defined as follows.

• K′ runs Ke,Km and returns their outputs Ke ‖Km.

• E ′ on inputs Ke ‖ Km and M first gets the encodings via (Me,Mt)
$← Enc(M). It then computes

C
$← EKe(Me), σ ← TKm(Mt) and returns C ‖ σ.
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• D′ on inputs Ke ‖Km and C ‖ σ computes Me ← DKe(C), decodes (M,Mt)← Dec(Me), computes
σ′ ← TKm(Mt) and returns M if σ = σ′, and ⊥ otherwise.

The next construction defines the Simplified profile and Figure 2 depicts the design.

tagintermediate ciphertext

plaintext

plaintext

padconfounder

ciphertext

ENCRYPT MAC

ENCODE

Figure 2: Authenticated encryption in Kerberos v.5. Simplified profile.

Construction 3.7 [Authenicated encryption in Kerberos. Simplified profile] Let E : {0, 1}k×{0, 1}n →
{0, 1}n be a block cipher. Let SE = (Ke, E ,D) be the CBC encryption mode with IV = 0n. Let
MAC = (Km, T ) be a MAC, let EC = (Enc,Dec) be an encoding scheme such that Enc on input M pads
M to make its length multiple of n bits (while permitting unambiguous decoding), picks a random con-

founder of n bits conf
$← {0, 1}n, computes Me ← conf ‖M and Mt ← conf ‖M and returns (Me,Mt).

Dec on input Me parses it as conf‖M , computes Mt ← Me and returns (M,Mt). Then Construction 3.6
describes the Simplified profile of authenticated encryption in Kerberos.

The following theorem states that the Simplified profile provides strong security guarantees.

Theorem 3.8 The authenticated encryption scheme SE ′ described by the Simplified profile (Construction
3.7) is INT-CTXT and IND-CCA secure if the underlying block cipher E is a PRF and the underlying MAC
is a PRF.
Concretely, let SE , EC andMAC be an encryption scheme, an encoding scheme and a checksum respec-
tively. Let SE ′ be the authenticated encryption scheme associated to them by Simplified profile (Construction 3.7).
Then for any adversary I attacking INT-CTXT security of SE ′ that runs in time t and asks q queries, totaling
µ n-bit blocks there exists an adversary F attacking UF-CMA security ofMAC such that

Advint-ctxt
SE ′ (I) ≤ Advuf-cma

MAC (F ). (3)

Furthermore, F runs in time at most tF ≈ t and asks at most qF = q queries, totaling µF = (µ + q) n-bit
blocks.
And for any adversary A attacking IND-CCA security of SE ′ that runs in time t and asks q queries, totaling
µ n-bit blocks there exist adversaries B,G attacking PRF security of E,MAC respectively, such that

Advind-cca
SE ′ (A) ≤ Advprf

E (B) + 4Advprf
MAC(G) +

2q + µ2

2n
. (4)

Furthermore, B runs in time at most tB ≈ t and asks qB = (µ + q) queries, totaling µB = (µ + q) n-bit
blocks; G runs in time tG ≈ t and asks qG = q queries, totaling µG = (µ + q) n-bit blocks.
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The proof is in Section 4.3. Note that INT-CTXT security of the scheme requires only UF-CMA security
of the MAC, while IND-CCA security relies on the MAC being a PRF. As we mentioned before, any PRF
MAC is also UF-CMA (cf. Section 6 [14]), so PRF security is a sufficient assumption.

AES is believed to be a PRF, Triple DES was shown to be a PRF in the ideal cipher model [15] and
HMAC was proven to be a PRF [7] assuming the underlying compression hash function is a PRF (cf. [7] for
the definition of the latter), therefore they are the right choices of instantiations for the Simplified profile.

4 Proofs

4.1 Proof of Theorem 3.3

We present two alternative proofs of insecurity of the General profile authenticated encryption. The first
proof considers the General profile that uses a natural encryption scheme and not-so-natural hash function
as checksum. The second proof considers the General profile that uses a special encryption scheme, but the
checksum can be instantiated with arbitrary secure MAC.

PROOF 1. Let E : {0, 1}k ×{0, 1}n → {0, 1}n be a block cipher and let SE = (K, E ,D) be the associated
stateful counter encryption scheme aka. CTR or XOR encryption mode (cf. [9]). Its key generation algo-
rithm just returns a random k-bit string K. The encryption algorithm E is stateful and maintains a counter
ctr that is initially 0. E takes K, current counter ctr and M (padded if necessary to length multiple of
n-bits), outputs ctr ‖ C[1] ‖ C[2] ‖ ... ‖ C[m], where m is the total number of blocks and for 1 ≤ i ≤ m,
C[i] ← Mi ⊕ EK(〈ctr + i〉). Here 〈i〉 denotes the n-bit representation of an integer i. Next E updates the
counter to ctr + m + 1. D takes K and ctr ‖ C[1] ‖ ... ‖ C[m] and outputs M [1] ‖ ... ‖M [m], where for
1 ≤ i ≤ m, M [i] ← C[i]⊕ EK(〈ctr + i〉). The CTR encryption mode is proven to be IND-CPA secure if
E is a PRF [9].

Let HF = (K,H) be a hash function which hashes messages in bits to l bits and is believed to be
collision resistant. Consider a modified hash function HF ′ = (K,H′), whereH′ on input K and M outputs
M0 ‖ H(K, M1...|M |−1)1...l−1, where M0 is the first bit of M , M1...|M |−1 is M minus first bit of M and
H(K, M)1...l−1 isH(K, M) minus the first bit ofH(K, M). We show that HF ′ is also a collision resistant
hash function.

Assume we have an adversary A who can find collisions in HF ′. We then construct an adversary B
who finds collisions in HF . B gives its own challenge key K to A and gets back two messages M,N . B
computes M ′ ← 0‖M , N ′ ← 0‖N and outputs M ′, N ′.

If H(K, M) = H(K, N) and M 6= N , then tt is easy to see that H′(K, M ′) = H′(K, N ′). This is
becauseH′(K, M ′) = 0‖H(K, M)1...l−1 andH′(K, N ′) = 0‖H(K, N)1...l−1.

B is almost as efficient as A. Hence if HF is collision resistant then so is HF ′.
We now present an adversary A which breaks the INT-CTXT security of the scheme described by

Construction 3.1 when it uses CTR encryption mode (in place of CBC) and modified hash function HF ′ as
SE andMAC respectively. A selects an arbitrary n-bit-long message M and queries it to the encryption
oracle. Let ctr‖C be the oracle’s reply. A then outputs the ciphertext ctr‖C ′ where C ′ is computed fro C
by flipping the first bit of the first and second blocks.

We claim that int-ctxt advantage of A is 1. This is justified as follows. Consider conf ‖σ‖M =
DK(ctr‖C). Here σ = H′(K, Mt) and Mt = conf ‖0l‖M . So, σ = (conf 0‖H(K, Mt1...|Mt|−1)1...l−1).
ctr‖C can be parsed as ctr‖C[1]‖C[2]‖D where C[1] and C[2] are first and second blocks of C, and
D is the remaining part of C. From the CTR description C[1] = conf ⊕ EK(〈ctr + 1〉) and C[2] =
(conf 0‖H(K, Mt1...|Mt|−1)1...n−1)⊕EK(〈ctr + 2〉). Let us denote the ciphertext blocks produced by flip-
ping the first bit of C[1] and C[2] by C ′[1] and C ′[2] respectively. So, we have C ′[1] = (conf 0‖conf 1...n−1)⊕
EK(〈ctr+1〉) and C ′[2] = (conf 0‖H(K, Mt1...|Mt|−1)1...n−1)⊕EK(〈ctr+2〉) Since C ′ = C ′[1]‖C ′[2]‖D,
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DKe(C ′) = (M ′
el‖σ′‖M ′

er), and M ′
el = (conf 0‖conf 1...n−1), M ′

er = M and σ′ = (conf 0‖H(K, Mt1...|Mt|−1)1...l−1).
Now notice that M ′

e = (M ′
el‖M ′

er) = (conf 0‖conf (1...n−1))‖M and M ′
t = (M ′

el‖0l‖M ′
er) = (conf 0‖conf 1...n−1)‖0l‖M .

It is clear Mt1...|Mt|−1 = M ′
t1...|M ′

t|−1 since, Mt and M ′
t differ only in first bit.

So, σ′ = (conf 0‖H(K, Mt1...|Mt|−1)1...l−1) = (conf 0‖H(K, M ′
t1...|M ′

t|−1)1...l−1) = H′(K, M ′
t). Thus,

(M ′
t , σ

′) is a valid message-tag pair. Hence, N‖C ′ is a valid ciphertext that was never returned by the
encryption oracle and so the int-ctxt advantage of A is 1. A makes one oracle query of length n bits and
performs two operations of bit-complementation.

PROOF 2. Let SE = (Ke, E ,D) be any IND-CPA secure encryption scheme. Consider a modified encryp-
tion scheme SE ′ = (Ke, E ′,D′) where E ′ on input K and M outputs 0‖EK(M) and D′ on input C outputs
DK(C1...|C|−1). It is easy to see that SE ′ is IND-CPA secure if SE is. Please refer to Proof of Proposition
3.4 of [12] for the detailed proof. LetMAC = (Km, T ) be any UF-CMA secure MAC.

We present an adversary A attacking INT-CTXT security of the scheme described by Construction 3.1
when it uses SE ′ andMAC as the encryption and MAC component schemes. A selects an arbitrary short
message M in the message space of the scheme. It queries this message to the encryption oracle and gets
back ciphertext C. A then flips the first bit of C and returns the resulting ciphertext C ′ = 1‖C1...|C|−1.

It is clear that C ′ 6= C and C ′ is a valid ciphertext because D′ ignores the first bit of ciphertext and
D′K(C ′) = DK(C) = M . Thus the int-ctxt advantage of A is 1. A makes only one oracle query of length
|M | and performs one bit-complementation.

4.2 Proof of Theorem 3.5

INT-CTXT SECURITY. We justify Equation 1. We construct an adversary (a forger) F breaking the UF-
CMA security ofMAC. F first runs Ke to obtain a key Ke. For every query M that I makes, F computes

(Me,Mt)
$← Enc(M) and then queries Mt to its own oracle. Let us call the oracle’s reply σ. Next F

parses Me as Mel‖Mer and uses σ returned by its oracle to form Mel‖σ‖Mer. Then, it computes C ←
EKe(Mel‖σ‖Mer) and returns C to I . When I outputs a new ciphertext C ′, F computes M ′

el‖σ′‖M ′
er ←

DKe(C ′) and M ′
t ← Dec(M ′

e). Finally F returns (M ′
t , σ

′).
We now analyze F . If I is successful then C ′ is new. This means that M ′

el‖σ′‖M ′
er ← DKe(C ′) must

be new because C ′ is new and SE is deterministic, meaning either M ′
el‖M ′

er or σ′ must be new which is
equivalent to saying that either M ′

el‖0n‖M ′
er (M ′

t) or σ′ must be new. This gives rise to two cases. The first
case is when M ′

t is new (σ′ may or may not be new in this case). It is clear that in this case (M ′
t , σ

′) is a
valid new message-tag pair. Hence, F ’s output is a valid forgery.

The second case is when only σ′ is new and M ′
t is old, i.e. is one of the messages that was queried to

the tagging oracle. But then in this case σ′ is an invalid tag, as the corresponding valid and distinct tag was
returned as the answer to the corresponding query.

Hence, the uf-cma advantage of F is same as the int-ctxt advantage of I . F makes same number of
oracle queries as that of I . The total length of all the queries made by F exceeds that of I by only a fixed
number of bits which is number of queries times 2n, due to the use of encoding. The time complexity of F
is basically that of I .

Before accessing IND-CCA security of SE ′, let us claim its IND-CPA security.

IND-CPA SECURITY. We show that the composed encryption scheme SE ′ is IND-CPA secure if the under-
lying block cipher is a PRF and the underlying MAC is a PRF.

Theorem 4.1 E : {0, 1}k × {0, 1}n → {0, 1}n, SE = (Ke, E ,D), EC = (Enc,Dec),MAC = (Km, T )
be a block cipher, an encryption scheme, an encoding scheme and a checksum respectively. Let SE ′ =
(K′, E ′,D′) be the authenticated encryption scheme associated to them by Modified General profile (Construction 3.4).

12



Then for any adversary S attacking IND-CPA security of SE ′ that runs in time at most t and asks at most
q queries, totalling at most µ n-bit blocks there exist adversaries B and G attacking PRF security of E and
MAC such that

Advind-cpa
SE ′ (S) ≤ Advprf

E (B) + 2 ·Advprf
MAC(G) +

µ2

2n
.

Furthermore, B runs in time at most tB ≈ t and asks at most qB = (µ + 2q) queries, totalling at most
µB = (µ + 2q) n-bit blocks; G runs in time at most tG ≈ t and asks at most qG = q queries, totalling at
most µG = (µ + 2q) n-bit blocks.

Theorem 4.2 [[14], Section 4] E : {0, 1}k × {0, 1}n → {0, 1}n be a block cipher and let CBC$ be the
CBC encryption scheme with random IV (cf. [9]). Then for any adversary D attacking IND-CPA security
of CBC$ that runs in time at most t and asks at most q queries, totalling at most µ n-bit blocks there exists
an adversary B attacking PRF security of E such that

Advind-cpa
CBC$ (D) ≤ Advprf

E (B) +
µ2

2n
.

Furthermore, B runs in time at most tB ≈ t and asks at most qB = µ queries, totalling at most µB = µ
n-bit blocks.

Claim 4.3 Let SE = (Ke, E ,D), EC = (Enc,Dec), MAC = (Km, T ) be an encryption scheme, an
encoding scheme and a checksum respectively. Let SE ′ = (K′, E ′,D′) be the authenticated encryption
scheme associated to them by Modified General profile (Construction 3.4). Then given any adversary S
attacking IND-CPA security of SE ′ that runs in time at most t and asks at most q queries, totalling at most µ
n-bit blocks we can construct an adversary D attacking IND-CPA security of CBC encryption scheme with
random IV, CBC$ = (Ke, E$,D$) and adversary G attacking PRF security ofMAC such that

Advind-cpa
SE ′ (S) ≤ Advind-cpa

CBC$ (D) + 2 ·Advprf
MAC(G) .

Furthermore, D runs in time at most tD ≈ t and asks at most qD = q queries, totalling at most µD = (µ+2q)
n-bit blocks; G runs in time at most tG ≈ t and asks at most qG = q queries, totalling at most µG = (µ+2q)
n-bit blocks.

Theorem 4.2 and Claim 4.3 immediately imply Theorem 4.1.

Proof of Claim 4.3 Let S be an ind-cpa adversary that has oracle access to E ′K(LR(·, ·, b)), b ∈ {0, 1}.
Let x ∈ {0, 1, 2, 3, 4, 5}. We define the following experiments associated with S.

Experiment Expx

Run Ke,Km to obtain Ke,Km.
Run S replying to its oracle query (M,N) as follows.

(Me,Mt)
$← Enc(M); (Ne, Nt)

$← Enc(N); r
$← {0, 1}n.

Switch (x):
Case x = 0: σ ← TKm(Mt); C ← EKe(Mel‖σ‖Mer).
Case x = 1: C ← EKe(Mel‖r‖Mer).

Case x = 2: IV ‖C $← E$
Ke

(Mel‖r‖Mer).
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Case x = 3: IV ‖C $← E$
Ke

(Nel‖r‖Ner).
Case x = 4: C ← EKe(Nel‖r‖Ner).
Case x = 5: σ ← TKm(Nt); C ← EKe(Nel‖σ‖Ner).

Return C to S and until S halts and outputs a bit return that bit.

Let Px = Pr [ Expx = 1 ] denote the probability that Expx returns 1 for x ∈ {0, 1, 2, 3, 4, 5}. By the
definition of Advind-cpa

SE ′ (S), we have

Advind-cpa
SE ′ (S) = P5 − P0 = (P5 − P4) + (P4 − P3) + (P3 − P2) + (P2 − P1) + (P1 − P0). (5)

We now show that for S, Exp1 is indistinguishable from Exp2 and similarly, Exp3 is indistinguishable
from Exp4. In Exp1, (Mel‖r‖Mer) is encrypted using EKe(·) while in Exp2, (Mel‖r‖Mer) is encrypted
using E$

Ke
(·). To encrypt a message using CBC$, first block of the message is XORed with a random IV

(which is output as part of ciphertext) and then, rest of the steps are same as CBC with zero IV. Thus, when
(Mel‖r‖Mer) is encrypted using E$

Ke
(·) it is same as encrypting ((Mel ⊕ IV )‖r‖Mer) using EKe(·). But,

since Mel and IV are independent random numbers so to an adversary who doesn’t know these in advance,
Mel and (Mel ⊕ IV ) are indistinguishable. Hence, adversary S can’t distinguish between Exp1 and Exp2.
Same arguement applies to Exp3 and Exp4. Hence, (P4 − P3) = (P2 − P1) = 0. Thus, we have

Advind-cpa
SE ′ (S) = (P5 − P4) + (P3 − P2) + (P1 − P0). (6)

We state the following claims.

Claim 4.4 For Expx, x ∈ {2, 3} associated to adversary S attacking IND-CPA security of SE ′ that runs in
time at most t and asks at most q queries, totalling at most µ n-bit blocks we can construct an adversary D
attacking IND-CPA security of CBC encryption scheme with random IV, CBC$ = (Ke, E$,D$) such that

P3 − P2 ≤ Advind-cpa
CBC$ (D) .

Furthermore, D runs in time at most tD ≈ t and asks at most qD = q queries, totalling at most µD = (µ+2q)
n-bit blocks.

Claim 4.5 For Expx, x ∈ {0, 1, 4, 5} associated to adversary S attacking IND-CPA security of SE ′ that
runs in time at most t and asks at most q queries, totalling at most µ n-bit blocks we can construct an
adversary G attacking PRF security ofMAC such that

(P5 − P4) + (P1 − P0) ≤ 2 ·Advprf
MAC(G) .

Furthermore, G runs in time at most tG ≈ t and asks at most qG = q queries, totalling at most µG = (µ+2q)
n-bit blocks.

Equation 6 and above claims imply Claim 4.3.

Proof of Claim 4.4. We can construct an adversary D breaking the IND-CPA security of CBC$ using
adversary S.

For every message-pair query (M,N) that S makes, D first computes (Me,Mt)
$← Enc(M), (Ne, Nt)

$←
Enc(N) and r

$← {0, 1}n. Next, it parses Me and Ne as Mel‖Mer and Nel‖Ner and queries (Mel‖r‖Mer,
Nel‖r‖Ner) to its own oracle to get back IV ‖C, where IV is the first ciphertext block. D forwards C back
to S. When S halts and returns a bit, D halts and outputs that bit.
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We analyze D. It is clear that S’s view in the simulated experiment is the same as that in the actual
experiment Expx, x ∈ {2, 3}. So, the probability that D outputs 1 in Expind-cpa-b

CBC$,D , b ∈ {0, 1} is same as

the probability that S would output 1 in Expx, x ∈ {2, 3}. Hence, P3 − P2 ≤ Advind-cpa
CBC$ (D).

D makes same number of oracle queries as that of S. The total length of all the queries made by D
exceeds that of S by only a fixed number of bits which is number of queries times 2n, due to the use of
encoding. The time complexity of D is basically that of S.

Proof of Claim 4.5. We can construct adversaries G1 and G2 breaking the PRF security of MAC using
adversary S such that

(P5 − P4) + (P1 − P0) ≤ Advprf
MAC(G2) + Advprf

MAC(G1) .

G1 runs Ke to obtain a key Ke. For every message-pair query (M,N) that S makes, G1 first computes

(Me,Mt)
$← Enc(M). Then it quries Mt to its oracle. Let’s call the oracle’s reply tag. Next, it parses

Me as Mel‖Mer, forms Mel‖tag‖Mer and computes C ← EKe(Mel‖tag‖Mer). G1 forwards C back to S.
When S halts and returns a bit, G1 halts and outputs that bit.

We analyze G1. We claim that S’s view in the simulated experiment is the same as that in the actual
experiment Expx, x ∈ {0, 1}. When G1 is in the first experiment of Definition 2.7 then tag = TKm(Mt)
and so G1 simulates the exact same experiment as Exp0 and when, G1 is in the second experiment of
Definition 2.7 then tag is a random n-bit string so, G1 simulates the exact same experiment as Exp1.
Hence, (P0 − P1) ≤ Advprf

MAC(G1). But, as we know advantage is an absolute value so, we also have
(P1 − P0) ≤ Advprf

MAC(G1).
Adversary G2 can be constructed in a similar way where for every message-pair query (M,N), it does

the same things as G1, but for message N . So, we have (P5 − P4) ≤ Advprf
MAC(G2).

G1, G2 make same number of oracle queries as that of S. The total length of all the queries made by
G1, G2 exceed that of S by only a fixed number of bits which is number of queries times 2n, due to the use
of encoding. The time complexity of G1, G2 is basically that of S.

Putting G to be one of the adversaries G1, G2 with the largest prf-advantage we get

Advprf
MAC(G2) + Advprf

MAC(G1) ≤ 2 ·Advprf
MAC(G) .

Thus, Claim 4.5 follows.

IND-CCA SECURITY.

Theorem 4.6 [[12], Theorem 3.2] Let SE be an encryption scheme. If it is IND-CPA and INT-CTXT
secure, then it is also IND-CCA secure. Concretely, for any adversary A attacking IND-CCA security of SE
there exist adversaries B,C attacking the scheme’s IND-CPA and IND-CCA security respectively such that

Advind-cca
SE (A) ≤ Advind-cpa

SE (B) + 2Advint-ctxt
SE (C) .

Furthermore, the resources of B and C are same as those of A.

Theorem 4.7 [[14], Section 6]MAC = (Km, T ) be a message authentication code. Then for any adver-
sary F attacking UF-CMA security ofMAC that runs in time at most t and asks at most q queries, totalling
at most µ n-bit blocks there exists an adversary G attacking PRF security ofMAC such that

Advuf-cma
MAC (F ) ≤ Advprf

MAC(G) .

Furthermore, G uses the same resources as F .

Equation 1, Theorem 4.1, Theorem 4.6 and Theorem 4.7 imply Equation 2.
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4.3 Proof of Theorem 3.8

INT-CTXT SECURITY. We justify Equation 3.
Let I be some adversary attacking the INT-CTXT security of SE ′. We construct a forger F breaking the

UF-CMA security ofMAC. F first runs Ke to obtain a key Ke for E . It runs I and for every query M that

I makes, F does the following. It computes (Me,Mt)
$← Enc(M). It then queries Mt to its own oracle.

Let us call the oracle’s reply σ. It then computes C ← EKe(Me) and returns C‖σ to I . At some point I
outputs a ciphertext C ′‖σ′. F computes M ′

e ← DKe(C ′), M ′
t ← Dec(M ′

e) and returns (M ′
t , σ

′).
We now analyze F . If I is successful then C ′‖σ′ is new, meaning at least one part must be new. This

gives rise to two cases. The first case is when C ′ is new (σ′ may or may not be new in this case). Then we
claim that F ’s output is a valid forgery. Note that M ′

e ← DKe(C ′) must be new because C ′ is new and SE
is deterministic. M ′

t is new because it is equal to M ′
e. Thus, (M ′

t , σ
′) is a valid new message-tag pair.

The second case is when only σ′ is new and C ′ is old. But we show that in this case σ′ is invalid. For
the same reasons as explained above old C ′ implies that M ′

t is old, i.e. is one of the messages which was
queried to the tagging oracle. But then σ′ is an invalid tag, as the corresponding valid and distinct tag was
returned as the answer to the corresponding query.

Hence, the uf-cma advantage of F is same as the int-ctxt advantage of I . F makes same number of
oracle queries as that of I . The total length of all the queries made by F exceeds that of I by only a fixed
number of bits which is number of queries times n, due to the use of encoding. The time complexity of F is
basically that of I .

Before accessing IND-CCA security of SE ′, let us claim its IND-CPA security.

IND-CPA SECURITY. Theorem 7.1 from [11] states that an encryption scheme composed via the Encode-
then-Encrypt&MAC paradigm is IND-CPA if the base encoding scheme is Coll-CPA, the base MAC scheme
is a PRF and the base encryption scheme is IND-CPA:

Theorem 4.8 [[11], Theorem 7.1] Let SE = (Ke, E ,D), MAC = (Km, T ), EC = (Enc,Dec) be an
encryption scheme, a MAC and an encoding scheme such that the outputs of the encoding scheme are
compatible with message spaces to E , T . For any adversary S attacking IND-CPA security of the associated
authenticated encryption scheme SE ′ composed via Construction 3.6, there exist adversaries A attacking
IND-CPA security of SE , G attacking PRF security of MAC and C attacking Coll-CPA security of EC
such that

Advind-cpa
SE ′ (S) ≤ Advind-cpa

SE (A) + 2Advprf
MAC(G) + 2Advcoll-cpa

EC (C) (7)

and A,G and C use the same resources as S except that A’s and G’s inputs to their respective oracles may
be of different lengths than those of S (due to the encoding).

Claim 4.9 The encoding scheme EC in the Simplified profile is Coll-CPA, i.e. for adversary C making q
queries to its oracle

Advcoll-cpa
EC (C) ≤ q

2n
.

To justify the claim we note that Enc algorithm prepends a random n-bit confounder to the message, and
the only chance that the adversary can make any two encodings Mt,M

′
t collide is if the confounders happen

to be same. This can happen with probability at most q/2n.
We assume that the base MAC scheme is PRF. However, we cannot yet claim IND-CPA security of

the Simplified profile, because its base encryption scheme is CBC with fixed IV which is obviously not
IND-CPA. We note, however, that Theorem 7.1 in [11] also holds for the case when the encryption scheme,
whose encryption algorithm is applied to encoded message is IND-CPA. The details are as follows.
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Construction 4.10 Let E : {0, 1}k × {0, 1}m → {0, 1}n be a block cipher and let SE = (Ke, E ,D)
be the associated CBC encryption mode with IV = 0n, EC = (Enc,Dec) be the encoding scheme of
Construction 3.7. Then, SE ′′ = (Ke, E ′′,D′′) is defined as follows.

• E ′′ on inputs Ke and M first gets the encodings via (Me,Mt)
$← Enc(M). It then computes C

$←
EKe(Me), parses Me as conf‖M and returns conf‖C.

• D′′ on inputs Ke and conf‖C computes Me ← DKe(C), decodes (M,Mt) ← Dec(Me) and returns
M .

Claim 4.11 The scheme SE ′′ defined in Construction 4.10 is at least as secure as CBC encryption scheme
with random IV, CBC$ = (Ke, E$,D$). More precisely, for any adversary A attacking IND-CPA security of
SE ′′ that runs in time at most t and asks at most q queries, totaling at most µ n-bit blocks, there exists an
adversary D attacking IND-CPA security of CBC$ such that

Advind-cpa
SE ′′ (A) ≤ Advind-cpa

CBC$ (D) .

Furthermore, D runs in time at most tD ≈ t and ask at most qD = q queries, totaling µD = µ + q n-bit
blocks.

We construct an adversary D breaking the IND-CPA security of CBC$ using adversary A.
For every message-pair query (M,N) that A makes, D first computes (Me,Mt) ← Enc(M), parses

Me as conf‖M , pads N to multiple block lengths and computes Ne ← conf‖N . Then it queries (Me, Ne)
to its own oracle to get back IV ‖C, where IV is the first ciphertext block. D forwards (conf ⊕ IV )‖C
back to A. When A halts and returns a bit, D halts and outputs that bit.

We analyze D. We claim that A’s view in the simulated experiment is the same as that in the actual
experiment Expind-cpa-b

SE ′′ (A) which is clear from the way D computes ciphertext for A. So, the probability
that D outputs 1 in Expind-cpa-b

CBC$ (D), b ∈ {0, 1} is same as the probability that A would output 1 in
Expind-cpa-b

SE ′′ (A), b ∈ {0, 1}. Hence, Advind-cpa
SE ′′ (A) ≤ Advind-cpa

CBC$ (D).
D makes same number of oracle queries as that of A. The total length of all the queries made by D

exceeds that of A by only a fixed number of bits which is number of queries times n, due to the use of
encoding. The time complexity of D is basically that of A.

Claim 4.12 The scheme SE ′′ defined in Construction 4.10 is IND-CPA secure if the underlying block cipher
is a PRF. More precisely, for any adversary A attacking IND-CPA security of SE ′′ that runs in time at most
t and asks at most q queries, totaling at most µ n-bit blocks, there exists an adversary B attacking PRF
security of E such that

Advind-cpa
SE ′′ (A) ≤ Advprf

E (B) +
µ2

2n
.

Furthermore, B runs in time at most tB ≈ t and asks at most qB = (µ + q) queries, totaling at most
µB = (µ + q) n-bit blocks.

The proof follows from the Claim 4.11 and Theorem 4.2.
We now claim that Lemma 7.6 from [11] holds when the encryption scheme in question is SE ′′ defined

above. We provide the modifications to the construction of the adversary adversary A breaking the IND-
CPA security of the underlying encryption scheme SE ′′ = (Ke, E ′′,D′′) using adversary S (cf. the proof
Lemma 7.6, [11] for details). A first runs Km once to obtain a key Km. For every message-pair query
(M,N) that S makes, A uses that message-pair to query to its own oracle and gets back conf‖C. Now it
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pads N to multiple block length and computes Nt ← conf‖N , σN ← TKm(Nt). It then gives C‖σN to S.
When S halts and returns a bit, A halts and outputs that bit. The rest of the analysis of the proof Lemma 7.6
and Theorem 7.1 in [11] holds.

Equation 7, Claim 4.9 and Claim 4.12 imply the following.

Claim 4.13 The authenticated encryption scheme SE ′ described by the Simplified profile (Construction
3.7) is IND-CPA secure if the underlying block cipher E is a PRF and the underlying MAC is a PRF.
Concretely, for any adversary S attacking IND-CPA security of SE ′ that runs in time at most t and asks at
most q queries, totaling at most µ n-bit blocks there exist adversaries B,G attacking PRF security of E and
MAC respectively, such that

Advind-cpa
SE ′ (S) ≤ Advprf

E (B) + 2Advprf
MAC(G) +

2q + µ2

2n
.

Furthermore, B runs in time at most tB ≈ t and asks at most qB = (µ + q) queries, totaling at most
µB = (µ + q) n-bit blocks; G runs in time at most tG ≈ t and asks at most qG = q queries, totaling at most
µG = (µ + q) n-bit blocks.

IND-CCA SECURITY. Equation 3, Claim 4.13, Theorem 4.6 and Theorem 4.7 imply Equation 4.

5 Conclusions

We took a close look at two designs of authenticated encryption in Kerberos version 5 called General and
Simplified profiles. We show that General profile does not provide integrity even if it uses secure building
blocks such as a secure hash function and encryption scheme. While our attack does not apply for particular
instantiations of the General profile suggested in specifications, it shows a limitation of the design. We
suggest simple and easy-to-implement modifications an show that the resulting scheme provably provides
privacy and authenticity under standard assumptions. are IND-CCA and INT-CTXT secure if they utilize
secure building blocks. This justifies the assumption about security of encryption necessary for the recent
formal-methods-based symbolic analyses. Together these results provide strong security guarantees for
Kerberos, that we believe will help its standardization, and will emphasize importance of formal security
analysis of practical protocols.
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