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Abstract: Veto is a prerogative to unilaterally overrule a decision. A private veto protocol consists of a number of participants who
wish to decide whether or not to veto a particular motion without revealing the individual opinions. Essentially all participants jointly
perform a multi-party computation (MPC) on a boolean-OR function where an input of "1" represents veto and "0" represents
not veto. In 2006, Hao and Zieliński presented a two round veto protocol named Anonymous Veto network (AV-net), which is
exceptionally efficient in terms of the number of rounds, computation and bandwidth usage. However, AV-net has two generic
issues: 1) a participant who has submitted a veto can find out whether she is the only one who vetoed; 2) the last participant who
submits her input can pre-compute the boolean-OR result before submission, and may amend her input based on that knowledge.
These two issues generally apply to any multi-round veto protocol where participants commit their input in the last round. In this
paper, we propose a novel solution to address both issues within two rounds, which are the best possible round efficiency for a
veto protocol. Our new private veto protocol, called PriVeto, has similar system complexities to AV-net, but it binds participants to
their inputs in the very first round, eliminating the possibility of runtime changes to any of the inputs. At the end of the protocol,
participants are strictly limited to learning nothing more than the output of the boolean-OR function and their own inputs.

1 Introduction

In 1988, David Chaum first proposed a dining cryptographers (DC)
problem [9]. Three cryptographers sit at a table to have dinner
together. At the time of payment, they are informed by the waiter that
someone, who may either be NSA or one of the cryptographers, has
already paid for the dinner. The cryptographers respect each other’s
right in making a private payment but they want to find out if NSA
paid. Essentially they want to securely compute a boolean-OR func-
tion with the input “1” representing ‘I paid’ and “0” representing
‘I did not pay’. If the output of the boolean-OR function is “0”, it
means that NSA must have paid (since no cryptographer has paid);
otherwise, NSA has not paid.

To securely find the result, the three cryptographers executed a
two-stage protocol called Dining Cryptographers network (DC-net),
proposed by Chaum [9]. In the first stage, the three cryptographers
establish a pairwise shared secret bit between each other, e.g., by
tossing a coin secretly behind a menu. In the second stage, each cryp-
tographer announces a bit which is the XOR of his shared secret bits
with the other cryptographers if he did not pay, or the opposite value
if he paid. After the two stages, everyone, including any third party
observers, can calculate the XOR of all announced bits: if the result
is “0”, it means NSA has paid for the dinner; and otherwise, NSA
has not paid. While the original protocol is described for three par-
ticipants, it can be easily generalized to accommodate any number
of participants more than three.

The aim of the DC-net protocol is to allow multiple parties to
securely compute a boolean-OR function, but it has a “collision”
problem whereby when an even number of participants use “1” in
their inputs, the protocol will falsely return “0”. This problem is
acknowledged in Chaum’s paper [9] as one major limitation of DC-
net. Chaum proposed to resolve this problem by “retransmission”,
but details of the retransmission mechanism are not specified in [9].
Follow-up works by other researchers propose to address this prob-
lem by setting up “traps” to probabilistically detect the collision and
disruption [5, 15, 25], but they tend to make the DC-net system much
more complex. There are also other limitations of DC-net, such as
the requirement of pairwise shared keys between participants, which
leads to a O(n2) system complexity for n participants.

To address the limitations of DC-net, Hao and Zieliński [19]
proposed an alternative solution called Anonymous Veto network
(AV-net). In some sense, AV-net can be seen as a translation of DC-
net from a non-cryptographic setting to a cryptographic one. The
construction of AV-net echoes a similar idea in DC-net by com-
bining shared secrets in a particular way to achieve a cancellation
effect. The major difference between the two is that DC-net only
involves sending boolean values, while AV-net is built on public-
key cryptography, and it utilizes established cryptographic primitives
(e.g., zero-knowledge proofs) to enforce every participant to hon-
estly follow the protocol specification. AV-net only requires 2 rounds
of broadcast, which is the best possible round efficiency for a veto
protocol. It is also exceptionally efficient in terms of the computa-
tion and the bandwidth usage. The system complexity is O(n), as
opposed to O(n2) in DC-net. Among the veto protocols proposed in
the literature [7, 17, 21], AV-net is the most efficient in every of the
following aspects: the number of rounds, computation, bandwidth
and system complexity.

However, the AV-net protocol has two generic issues. First, a par-
ticipant who has submitted “1” as the input can find the boolean-OR
of other participants’ inputs. In other words, if a participant vetoes,
she can find out if she is the only one who has vetoed or not. Sec-
ond, the last participant who submitted her input can pre-compute
the result of the boolean-OR function, and hence may amend her
input accordingly. The latter problem can be alleviated by introduc-
ing an intermediate round in which all participants first commit to
their inputs, thus eliminating the scope of any runtime change to the
value of the input in the subsequent round. However, this remedy
increases the round complexity of the protocol to 3 rounds.

In this paper we address these issues by proposing a new private
veto protocol called “PriVeto”. Same as AV-net, the proposed proto-
col has only two rounds. It binds participants to their inputs in the
very first round in a way that no participant will be able to find the
boolean-OR of all the inputs until the second round ends. The cipher-
text generated by a participant in the second round depends upon
the ciphertexts generated by other participants in the first round. By
then all the ciphertexts coming from the first round of the protocol
have already been committed (e.g., published on a public bulletin
board), which eliminates the possibility of amendment by any par-
ticipant. Our protocol strictly limits each participant to learn nothing
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more than the output of the boolean-OR function and their own pri-
vate inputs. The privacy of each individual input is guaranteed even
under the extreme case that all other participants collude against a
single victim (i.e., a full-collusion attack). By contract, in AV-net, in
the extreme scenario of full-collusion, the privacy of the individual
input can no longer be guaranteed.

The rest of the paper is organized as follows. Section 2 discusses
approaches that have been proposed for securely computing the
boolean-OR function. Section 3 describes our proposed approach
for anonymous veto. Section 4 presents the security proofs of the
proposed protocol. Section 5 presents the system complexity of the
protocol. Finally, Section 6 concludes the paper.

2 Related Work

2.1 Multiparty computation

The DC-net problem can be seen as a secure multi-party computation
(MPC) problem for computing a boolean-OR function while pre-
serving the privacy of each individual input. A general MPC problem
is to compute a function f(x1, x2, . . . , xn), on secret inputs xi pro-
vided by n participants respectively. At the end of the protocol, each
participant would learn the output of the function f over all the secret
inputs, but they do not learn anything more than the output and their
own inputs.

The first general protocol for the secure two-party computation
was proposed by Yao [26]. The Fairplay [22] system presents an
implementation of Yaos protocol. This system generates the circuits
by representing the computed functions of each participating party as
high level languages (Secure Function Definition Language (SFDL)
and Secure Hardware Definition Language (SHDL)). A number of
methods have been proposed [3, 4, 10, 14] to generalize Yao’s two-
party computation method to multi-party computation (MPC). The
MPC protocols of Goldreich et al. [14] and Assaf et al. [3] are
based on boolean circuits that represent the function. In theory, the
general MPC solutions can work with an arbitrary polynomial-time
computable function assuming that the majority of the players are
honest [10]. However, general MPC techniques are rather ineffi-
cient for computing specific functions such as boolean-OR [20].
Furthermore, they typically require pairwise secrete authenticated
channels between players in addition to a public authenticated chan-
nel. The establishment of pairwise secure channels is complex to
realize in practice [19]. For these reasons, researchers normally pro-
pose specific MPC solutions to efficiently solve specific problems,
e.g., e-voting [18], secure network statistics aggregation [1, 2, 8, 16],
secure function computation [12] and secure auctions [23] etc.

2.2 Review of AV-net

There have already been a number of protocols proposed to perform
secure multi-party computation on a boolean-OR function [7, 9, 17,
19, 21]. Among these solutions, AV-net, due to Hao and Zieliński in
2006 [19], is known to be the most efficient in terms of the number
of rounds, computation and bandwidth.

AV-net does not require any pairwise secret and authenticated
channels. It only assumes an authenticated public channel, which is
typically implemented by a public bulletin board [17] where partici-
pants publish data with a digital signature to prove authenticity. Let
G denote a finite cyclic group of prime order p in which the Decision
Diffie-Hellman (DDH) problem is intractable. Let g be a generator
in G. Assume there are n participants. The protocol proceeds in two
rounds. (All computations are modular, and we omit the modulus for
simplicity.)

Round 1: Every participant Pi chooses a random secret xi ∈R Zp

and publishes Ai = gxi and a zero-knowledge proof (Schnorr signa-
ture [24]) for proving the knowledge of xi. When this round finishes,
each participant Pi computes

Bi =

i−1∏
j=1

Aj/

n∏
j=i+1

Aj

We can also represent the above as Bi = gyi where yi =∑i−1
j=1 xj −

∑n
j=i+1 xj .

Round 2: Every participant Pi publishes Ci = Bci
i , where ci is

either xi for the input “1” or a random value ri ∈R Zp for the input
“0”, together with a zero-knowledge proof (Schnorr signature [24])
to prove the knowledge of ci.

After Round 2, every participant computes
∏

i Ci. If no one
vetoes, we have

∏
i Ci = 1; otherwise we have

∏
i Ci ̸= 1. Note

that when no one vetoes, all the random factors xi vanish because∑
i xiyi = 0 [19].
Although AV-net is exceptionally efficient, it has two generic

issues. The first issue, as highlighted in the original AV-net
paper [19], is that a participant Pi who has sent the veto message
(“1”) in the second round will be able to find out if she is the only
one who vetoed at the end of the second round. To learn this, she just
needs to substitute her input in Round 2 with “0” and re-calculate
the boolean-OR function. Note that she can do this non-interactively
without the cooperation from other participants. Thus she can learn
the boolean-OR of all other inputs, which is equivalent to know-
ing if she is the only one who has submitted a veto. As only the
vetoer can learn this extra-bit information, we call this the vetoer’s
advantage. The second issue is that the participant who sends data
at last in Round 2 can pre-compute the boolean-OR, thus knowing
the outcome before others, and she might alter her input based on
that knowledge. We call this the last player’s advantage. It seems
inevitable that the participant who sends data at last will learn the
result before others, but the run-time change of the input should be
prevented.

These two issues are generally applicable to other veto pro-
tocols [7, 17, 21] where participants send the input in the last
round. The last player’s advantage can be alleviated by requiring
all participants to commit their input first, so they cannot change
it later, however that will require an additional round of sending
commitments.

3 The PriVeto Scheme

In this section, we present a novel solution to address both issues in
AV-net without increasing the number of rounds. Our new protocol
is called PriVeto. For any integer n ≥ 1, we define [n] to be the set
{1, 2, . . . , n}.

3.1 Setup

Let there be n participants identified as V1, V2, . . . , Vn. Let idi,
i ∈ [n], denote the unique identities of the participants. Each partici-
pant Vi; i ∈ [n] has a secret input bit vi ∈ {0, 1}. The n participants
want to securely compute the value of T =

∨n
i=1 vi. Our protocol

uses a finite multiplicative group G of p elements, p being a prime
number. The Decisional Diffie Hellman problem is assumed to be
intractable in G. Let g and g̃ be two random generators of G, whose
discrete logarithm relationship is unknown. Let, Hash1, Hash2 :
{0, 1}∗ → Zp be two secure one-way hash functions. Hence, the
setup function takes as input the security parameter λ and generates
the following system parameters.

(G, p, g, g̃, Hash1, Hash2)← Setup(1λ)

We assume there is an authenticated public channel, which can be
realized by a public bulletin board as in [7, 17, 19, 21]. The bul-
letin board is readable to all, and writable only to authenticated
participants with a digital signature to prove the data authenticity.
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3.2 Protocol

The PriVeto protocol works in two rounds as below:

Round 1: Each participant Vi : i ∈ [n] chooses ai, zi ∈R Zp and
publishes on the bulletin board Zi = gzi , ϕi = gaizi . Vi also com-
putes πi and π∗

i where πi is a non-interactive zero-knowledge
(NIZK) proof [24] to prove the knowledge of zi = logg Zi, and π∗

i
is a NIZK proof [11] to prove the knowledge of ai = logZi

ϕi. That
is

πi = NIZK
[
zi : g, Zi = gzi

]
and

π∗
i = NIZK

[
ai : g, Zi = gzi , ϕ = gaizi

]
Every participant Vi : i ∈ [n] posts these 2 NIZK proofs on the bul-
letin board. Vi also posts an intermediate ballot bi computed as
follows:

bi =

{
gai if vi = 0

gaigi if vi = 1

Here, gi = g̃ri where ri = Hash1(idi||Zi||ϕi). Hence, both ri
and gi can be computed by anyone after fetching all the three
inputs (i.e. idi, Zi, ϕi) from the bulletin board. The participant Vi
also computes NIZK proof π̃i of the fact that bi is either gai

or gaigi. This is an OR proof of two statements with the first
statement being loggbi = logZi

ϕi and the second statement being
loggbi/gi = logZi

ϕi (see Appendix for a detailed construction of
this NIZK proof). We express π̃i as follows.

NIZK
[
ai, zi : g, gi, Zi = gzi , ϕi = gaizi , bi ∈ {gai , gaigi}

]
Each participant Vi : i ∈ [n] posts bi and π̃i on the bulletin board.

Round 2: Each participant Vi : i ∈ [n] copies the intermediate bal-
lot Zj , ϕj , πj , π

∗
j , bj for all j ∈ [n] from the bulletin board. Then

she computes

ãj = Hash2(idj ||Zj ||ϕj ||πj ||π∗
j ||bj), ∀j ∈ [n]

Each participant Vi : i ∈ [n] computes a final ballot Bi as follows:

Bi = B̃
(ai+ãi)
i

Here B̃i =
∏i−1

j=1 g
ãj bj/

∏n
j=i+1 g

ãj bj . Vi also computes a NIZK
proof Πi of wellformedness of Bi. This NIZK proof proves that
Bi is indeed equal to (B̃i)

ai+ãi , given the value of B̃i,gai and ãi.
Essentially, this is an equality proof that logB̃i

Bi/B̃
ãi
i = logZi

ϕi

(see Appendix for more details on the construction of this NIZK
proof). Vi posts Bi and Πi on the bulletin board.

Once, every participant has posted the ballot in the second round
anyone can compute T̃ =

∏n
i=1 Bi. Let us assume âi = ai + ãi. It

is easy to see that

T̃ = g
∑n

i=1
∑i−1

j=1
âiâj−

∑n
i=1

∑n
j=i+1 âiâj

n∏
i=1

(

i−1∏
j=1

g
vj
j /

n∏
j=i+1

g
vj
j )

âi

It can be proved that
∑n

i=1

∑i−1
j=1 âiâj −

∑n
i=1

∑n
j=i+1 âiâj =

0. Readers are referred to [19] for a proof of the above fact. Now,
T̃ =

∏n
i=1(

∏i−1
j=1 g

vj
j /

∏n
j=i+1 g

vj
j )âi . If vi = 0, ∀i ∈ [n], then

T̃ = 1. Let us assume that vk = 1 for some k ∈ [n]. As such,

T̃ = g

∑n
j=k+1 âj−

∑k−1
j=1 âj

k ∗A. Here

A =
∏

i∈[n]\{k}
(gvii )

∑n
j=i+1 âj−

∑i−1
j=1 âj

Note, that gk is independent of A and g

∑n
j=k+1 âj−

∑k−1
j=1 âj

k is
random. Hence, T̃ is a random element in G (and is not 1 with

overwhelming probability). Thus we get:

T̃

{
= 1, with probability 1, if T =

∨n
i=1 vi = 0

̸= 1, with overwhelming probability, if T =
∨n

i=1 vi = 1

This way everyone can find T , the boolean-OR of all n input bits by
computing T̃ =

∏n
i=1 Bi.

4 Analysis

4.1 Completeness of the Scheme

We show that our 2-round PriVeto protocol is correct, that is it
correctly computes the boolean-OR of all input bits. It is worth
noticing that when vi = 0, for all i ∈ [n], then T̃ =

∏n
i=1 Bi =

g
∑n

i=1 âi
∑i−1

j=1 âj−
∑n

i=1 âi

∑n
j=i+1 âj = 1. Now, we need to show

that if there exists at least one k ∈ [n], such that vk = 1, then
T̂ will be random. For this purpose, let us assume vk = 1 for

some k ∈ [n]. Hence, T̂ =
∏n

i=1 Bi = g

∑n
j=k+1 âj−

∑k−1
j=1 âj

k ∗∏
i∈[n]\{k}(g

vi
i )

∑n
j=i+1 âj−

∑i−1
j=1 âj . Our algorithm will output∨n

i=1 vi = 1 if and only if T̃ ̸= 1. So, for the scheme to
be correct, we need to show that T̃ ̸= 1 with overwhelming
probability. We know that, gi = g̃ri , ∀i ∈ [n]. Therefore, T̃ =

g̃rk(
∑n

j=k+1 âj−
∑k−1

j=1 âj) ∗
∏

i∈[n]\{k} g̃
rivi(

∑n
j=i+1 âj−

∑i−1
j=1 âj).

If T̃ = 1, then
rk(

∑n
j=k+1 âj −

∑k−1
j=1 âj) +

∑
i∈[n]\{k} rivi(

∑n
j=i+1 âj −∑i−1

j=1 âj) = 0. So, rk = −
∑

i∈[n]\{k} rivi(
∑n

j=i+1 âj−
∑i−1

j=1 âj)

(
∑n

j=k+1 âj−
∑k−1

j=1 âj)
.

That is,

Hash1(idk||Zk||ϕk) = −
∑

i∈[n]\{k} rivi(
∑n

j=i+1 âj −
∑i−1

j=1 âj)

(
∑n

j=k+1 âj −
∑k−1

j=1 âj)

Here, âi = ai + ãi = ai +Hash2(idi||Zi||ϕi||πi||π∗
i ||bi).

Since, Hash1(·) is a secure hash function,

Pr

[
Hash1(idk||Zk||ϕk) = −

∑
i∈[n]\{k} rivi(

∑n
j=i+1 âj−

∑i−1
j=1 âj)

(
∑n

j=k+1 âj−
∑k−1

j=1 âj)

]
≤ negl(λ). That is,

Pr

[
Hash1(idk||Zk||ϕk) ̸= −

∑
i∈[n]\{k} rivi(

∑n
j=i+1 âj−

∑i−1
j=1 âj)

(
∑n

j=k+1 âj−
∑k−1

j=1 âj)

]
≥ 1− negl(λ).

Hence, Pr
[
T̃ ̸= 1

]
≥ 1− negl(λ). Hence, we get:

Pr

[
T̃ = 1

∣∣∣∣∣
n∨

i=1

vi = 0

]
= 1

Pr

[
T̃ ̸= 1

∣∣∣∣∣
n∨

i=1

vi = 1

]
≥ 1− negl(λ)

Thus, the scheme is correct.

4.2 Security assumptions

Assumption 1. Given g, ga, gb and a challenge Ω ∈ {gab, R},
where R

$← G, it is hard to find whether Ω = gab or Ω = R.
This assumption is known as the Decisional Diffie-Hellman (DDH)
assumption.

Assumption 2. Given g, gb, gab and a challenge Ω ∈ {ga, R},
where R

$← G, it is hard to find whether Ω = ga or Ω = R.

Lemma 1. Assumption 1 implies assumption 2.
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Proof: We shall show that if there exists an adversary A against
assumption 2, then the same can be used to construct another adver-
sary A′ against assumption 1. The adversary A′ works as follows:
It receives as input g, ga, gb and a challenge Ω ∈ {gab, R}. It sends
(g, gb,Ω, ga) to A. Note that, if Ω = gab, then the tuple will be of
the form (g, gb, gab, ga). Else the tuple will be (g, gb, gcb, R) where
c = logg(Ω)/b. Now, ifA can distinguish between them,A′ will be
able to identify Ω. □

Assumption 3. Given g, gb, gab, gc, gca and a challenge Ω ∈
{ga, R}, it is hard to find whether Ω = ga or Ω = R.

Lemma 2. Assumption 2 implies assumption 3.

Proof: We show that if there exists an adversary A against assump-
tion 3, it could be used to construct another adversary A′ against
assumption 2. A′ receives as input g, gb, gab and a challenge Ω ∈
{ga, R}. It chooses random x ∈ Zp and computes gc = (gb)x and
gca = (gab)x. Then A′ sends g, gb, gab, gc, gca and Ω to A. If A
can identify the correct value of Ω, then so can A′. □

Assumption 4. Given m, d ∈ Zp, g, g
b, gab, gc, gac and a chal-

lenge Ω ∈ {ga, ga(gc/g1/d)m}, it is hard to find whether Ω = ga

or Ω = ga(gc/g1/d)m.

Lemma 3. Assumption 3 implies assumption 4.

Proof: According to assumption 3, (m, d, g, gb, gab, gc, gac, ga)
c
≈

(m, d, g, gb, gab, gc, gac, R)
c
≈ (m, d, g, gb, gab, gc, gac,

R ∗ (gc/g1/d)m)
c
≈ (m, d, g, gb, gab, gc, gac, ga(gc/g1/d)m) □

4.3 Security analysis of the PriVeto scheme

4.3.1 The security model: Now, we show that our scheme
is secure against a PPT adversary who can compromise all but
one participant. If the scheme can protect the privacy of the sole
uncompromised participant under full collusion scenario, then the
scheme could be called secure. We show that if the Decisional
Diffie Hellman assumption holds in the group G, the scheme will
be secure. In order for proving our security claim, we choose the
following security model. In this model, there are two entities: the
challenger and the adversary who together enact the full collu-
sion scenario. The setup function generates the public parameters
(G, p, g, g̃, n). The challenger creates one participant with a random
id k ∈ [n]. The adversary creates n− 1 participants with ids in the
set [n] \ {k}. The adversary controls these n− 1 colluding partici-
pants. The challenger chooses random Zk, ϕk ∈ G, and generates(
or simulates) the NIZK proofs πk = NIZK [zk : g, Zk = gzk ]
and π∗

k = NIZK
[
ak : g, Zk, ϕi = Zak

k

]
. The challenger sends

G, p, g, g̃, n, Zk, ϕk, πk, π
∗
k to the adversary. The challenger replies

to all queries to the hash oracles H̃ and H made by the adversary.
The adversary outputs ai, zi, πi, π

∗
i . Since, πi and π∗

i are proofs
of knowledge of zi, and ai, the adversary has to invoke the prover
algorithm with these two witnesses (ai, zi) in order to generate πi
and π∗

i . The challenger can get to learn these values when the prover
algorithm is called by the adversary, and can match them with the
values of Zi and ϕi sent to the challenger by the adversary. If any
of the NIZK proofs returned by the adversary is not properly gen-
erated, the challenger aborts, and the adversary fails. The adversary
also returns a set of inputs {vi : i ∈ [n] \ {k}} which represent the
inputs of the n− 1 colluding participants. It can be observed that
if all the n− 1 inputs of the colluding participants are 0, the out-
put of our protocol (boolean OR of all inputs) will be equal to the
input of the honest participant controlled by the challenger. Thus,
in this model we add a condition to make it mandatory for at least
one colluding participant to have a 1-bit as input. Note that, the
adversary may choose the inputs of other colluding participants as
she wishes. Thus, there is no upper bound to the value of κ = |{i :
i ∈ [n] \ {k}, vi = 1}|. So, κ ∈ [n− 1]. Since, κ ≥ 1, there must

ExpDDHV
D (λ)

(G, p, g)← Setup(λ)
ĝ ∈R G
d←R Zp

a, z ←R Zp

m← Zp

Z ← gz , ϕ← gaz

π ← NIZK[z : g, Z = gz ]
π∗ ← NIZK[a : g, Z, ϕ = Za]
B ← ĝa

c0 ← ga

c1 ← ga(ĝ/g1/d)m

e
$← {0, 1}

e′ ← D(G, p, q, g, Z, ϕ, ce, ĝ, B, d,m, π, π∗)
return(e = e′)

Fig. 1: Description of the security experiment ExpDDHV
D (λ).

be at least one i ∈ [n] \ {k}, satisfying vi = 1. We assume that it
is α. If there is no such α ∈ [n] \ {k}, such that vα = 1, then the
challenger aborts and the adversary fails. Else, the challenger com-
putes c0 and c1 which are the intermediate ballots corresponding to
the two cases vk = 0, and vk = 1 respectively. Then the challenger
randomly selects a bit e ∈ {0, 1}, and sets the intermediate ballot
bk = ce. The challenger computes the final ballot Bk, and generates
(or simulates) the NIZK proofs of well-formednesses of the inter-
mediate and the final ballot, and sends the intermediate and the final
ballot along with the NIZK proofs to the adversary. The adversary
wins if she can distinguish between the two cases: e = 0 and e = 1.

4.3.2 Security experiments: Figure 2 describe the security
experiment ExpPOBA

B (λ). This security experiment characterize
the full-collusion scenario, where the adversary has colluded with
n− 1 participants with the intention to learn the private input of the
sole honest participant Vk for some k ∈ [n]. bi : i ∈ [n] \ {k} repre-
sent the intermediate ballots of each of the compromised participant.
ce is the intermediate ballot of the honest participant Vk. Bk is the
final ballot of Vk. The adversary’s job is to identify e. We define the
advantage of the adversary B as below;

AdvPOBA
B (λ) = 2 ∗ P [ExpPOBA

B (λ) = 1]− 1

In Figure 1, we present ExpDDHV
D (λ). This is the security

game that emulates an attack against the Decisional Diffie Hellman
assumption. The adversary D receives as input d,m ∈ Zp, ĝ, Z =
gz , ϕ = gaz , B = ĝa, π, π∗ a challenge ce, e ∈ {0, 1}, where c0 =

ga and c1 = ga(ĝ/g1/d)m. π and π∗ are two NIZK proofs that
prove that the prover knows the values of logg Z and logZ ϕ respec-
tively. The NIZK proofs do not provide any useful information other
than what they are intended to prove. The DDH adversary D has
to find e. Since the NIZK proof systems used in the experiment are
secure, we may define the advantage of the adversary D as below:

AdvDDHV
D (λ) = 2 ∗ P [ExpDDHV

D (λ) = 1]− 1

From the discussion in section 4.2, we can say that if the DDH
assumption holds in G, then

AdvDDHV
D (λ) ≤ negl(λ)

We now present a series of games below.

Game 1: This game is the experiment ExpPOBA
B (λ) of Figure 2.
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Game 2: This game same is the experiment EXpPOBB
B′ (λ) of

Figure 3. The advantage of the adversary B′ is defined as below:

AdvPOBB
B′ (λ) = 2 ∗ P [ExpPOBB

B′ (λ) = 1]− 1

The difference between Game 1 and Game 2 is that in Game 2,
we substitute the two hash functions viz. Hash1 and Hash2 by
two random functions RO1 and RO2 respectively. The difference
between the advantages of the adversaries in game 1 and 2 is neg-
ligible if the two hash functions are secure. That is if Hash1 and
Hash2 are secure,∣∣∣AdvPOBA

B (λ)−AdvPOBB
B′ (λ)

∣∣∣ ≤ negl(λ)

Game 3: This game same as the experiment EXpPOBC
A (λ) of

Figure 4. The advantage of the adversary A is defined as below:

AdvPOBC
A (λ) = 2 ∗ P [ExpPOBC

A (λ) = 1]− 1

The difference between game 3 and game 2 is that in game 3, the
query-format to the second oracle H is of the form idi, ai, zi, πi, π

∗
i

as opposed to its format game 2 in which the query-input is of the
form idi, g

zi , gaizi , πi, π
∗
i . Note that when the adversary of game

2 makes a query of the form idi, g
zi , gaizi , πi, π

∗
i , she has to know

the values of ai and zi, as otherwise computing πi and π∗
i would

amount to breaking the security of the non-interactive zero knowl-
edge proof system used to compute πi or π∗

i which are proofs of
knowledge [11, 24]. Hence, the difference between the distinguish-
ing advantages of an adversary in game 2 and game 3 is negligible,
that is, ∣∣∣AdvPOBB

B′ (λ)−AdvPOBC
A (λ)

∣∣∣ ≤ negl(λ)

From the above discussion, we can infer that∣∣∣AdvPOBA
B (λ)−AdvPOBC

A (λ)
∣∣∣ ≤ negl(λ)

That is:

AdvPOBA
B (λ) ≤ AdvPOBC

A (λ) + negl(λ)

4.3.3 Security proof: Now, we shall show that our PriVeto pro-
tocol is secure against full collusion. For this purpose, we first state
and prove the following theorem.

Theorem 1. AdvPOBC
A (λ) ≤ poly(λ) ∗AdvDDHV

D (λ).

Proof: We show that if there exists an adversary A against
the POBC experiment, then it could be used to construct the
DDHV adversary D. D receives as input d,m, g, ĝ, Z = gz , ϕ =
gaz , π, π∗, cb ∈ {ga, ga(ĝ/g1/d)m} and B = ĝa. π and π∗ are the
two NIZK proofs that prove that the values of a and z are known
to the prover. D now simulates EXPPOBC

A (λ) with the help ofA.
D answers A’s queries to the oracles H̃ and H. Let Q be the max-
imum number of queries A makes to the oracle H̃,H. Obviously,
Q ∈ poly(λ).

Step 1: D computes g̃ = ĝ/g1/d.D selects v̂1, v̂2, . . . , v̂k−1, v̂k+1,
. . . , v̂n randomly such that v̂i = 1 holds at least for one value
of i ∈ [n] \ {k}. D implicitly sets Zk = gzk = Z = gz and ϕk =
gakzk = ϕ = gaz . Then D sends G, p, g, g̃, Zk, ϕk, π, π

∗ to A.
A outputs the values of α ∈ [n] \ {k} (ai, zi) : i ∈ [n] \ {k} and
vi : i ∈ [n] \ {k, α}. It should be noted that vα = 1. During this
process, A may also make queries to both the oracles H̃ and H.
These queries are answered by D as follows:

• If the query is to the oracle H̃ and the query input can be parsed as
idi, Ẑi, ϕ̂i, for some i ∈ [n] \ {k}, then sample a random mi ∈ Zp

and return it. Register (idi, Ẑi, ϕ̂i,mi) in the log L̂i.
• If the query is to the oracle H̃ and input can be parsed as
idk, Zk, ϕk, and return m.
• Else if the query is to the oracle H̃ return a random element from
Zp.

All queries to the oracleH can be answered by D as follows:

• If the query is to the oracle H, and the input can be
parsed as idi, ai, zi, πi, π

∗
i , bi for some i ∈ [n] \ {k}, bi ∈

{gai , gai g̃H̃(idi,g
zi ,gaizi )}(where H̃(idi, g

zi , gaizi ) has already
been queried by A) and if there exists a j ∈ [n] \ {k} such that
no query of the formH(idj , aj , zj , πj , π∗

j , bj) has ever been made,
then return a random ãi ∈ Zp. Register idi, ai, zi, πi, π∗

i , bi, ãi on
the log Li.
• Else, if the query is to the oracle H, and the input can
be parsed as idi, ai, zi, πi, π

∗
i , bi for some i ∈ [n] \ {k}, bi ∈

{gai , gai g̃H̃(idi,g
zi ,gaizi )}(where H̃(idi, g

zi , gaizi ) has already
been queried by A) and for all j ∈ [n] \ {k}, the log Lj contains
at least one entry of the form idj , aj , zj , πj , π

∗
j , bj , âj , then for all

j ∈ [n] \ {k, i} select an entry idj , aj , zj , πj , π
∗
j , bj , ãj from each

log Lj and compute

X =

{
−U1 − ai +

F
d if i < k

U2 − ai − F
d if i > k

Here,

U1 =

i−1∑
j=1

(aj + ãj) +

k−1∑
j=i+1

(aj + ãj)−
n∑

j=k+1

(aj + ãj)

U2 =

k−1∑
j=1

(aj + ãj)−
i−1∑

j=k+1

(aj + ãj)−
n∑

j=i+1

(aj + ãj)

and

F =

k−1∑
j=1

H̃(idj , g
zj , gajzj ) ∗ v̂j −

n∑
j=k+1

H̃(idj , g
zj , gajzj ) ∗ v̂j

Sample a random R ∈R Zp. Return ãi, where:

ãi =

{
X with probability 1/Q

R with probability 1− 1/Q

Enter idi, ai, zi, πi, π∗
i , bi, âi on the log Li.

• Else return a random element from Zp.

Step 2: Now, A outputs the index α and (ai, zi, vi) for all i ∈
[n] \ {k}, where vα = 1. Now, if there exists j ∈ [n] \ {k} such
that v̂j ̸= vj , D aborts.

Step 3: Else D computes the intermediate ballot bi for all i ∈
[n] \ {k} by invoking its internal oracleO with inputs idi, ai, zi, vi.
If for all i ∈ [n] \ {k}, satisfying vi = 1 there is an entry
(idi, ai, zi, πi, π

∗
i , bi, ãi) in Li such that mi = H̃(idi, g

zi , gaizi)

has been queried, then if
∑k−1

j=1 mjvj −
∑n

j=k+1 mjvj ̸= d ∗
(
∑k−1

j=1 (aj + ãj)−
∑n

j=k+1(aj + ãj)) abort.

Step 4: Else if for all i ∈ [n] \ {k}, satisfying vi = 1, there is an
entry (idi, ai, zi, πi, π

∗
i , bi, ãi) in Li, and there exists at least one
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ExpPOBA
B (λ)

(G, p, g, g̃, n)← Setup(λ)
ak, zk ∈ Zp

({(ai, zi, πi, π∗
i ) : i ∈ [n] \ {k}}, α, {vi : i ∈ [n] \ {k, α}}, vα = 1, aux)←

BH̃,H(G, p, g, g̃, gzk , gakzk , πk, π
∗
k)

bi ← OH̃ (idi, ai, zi, vi) : i ∈ [n] \ {k}
c0 ← OH̃ (idk, ak, zk, 0)

c1 ← OH̃ (idk, ak, zk, 1)
ãi ← H(idi, Zi, ϕi, πi, π

∗
i , bi) : ∀i ∈ [n] \ {k}

e
$← {0, 1}

ãk ← H(idk, Zk, ϕk, πk, π
∗
k, ce)

Bk ←
(∏k−1

j=1 gãj bj/
∏n

j=k+1 g
ãj bj

)ak+ãk

e′ ← BH̃,H(aux, ce, Bk, π̃k,Πk)
return(e = e′)

OH̃(idi, ai, zi, vi)

mi ← H̃(idi||gzi ||gaizi)

return gai g̃mivi

H̃(idi, g
zi , gaizi)

return Hash1(idi||gzi ||gaizi)

H(idi, gzi , gaizi , πi, π
∗
i , bi)

return Hash2(idi||gzi ||gaizi ||πi||π∗
i ||bi)

e

Fig. 2: Description of the security experiment ExpPOBA
B (λ).

j ∈ [n] \ {k}, satisfying vj = 1 and H̃(idi, g
zi , gaizi) has not yet

been queried, then let

S = {j : vj = 1, H̃(idj , g
zj , gajzj ) has not been queried }

Choose a random t ∈ S For all i ∈ S \ {t}, choose random mi ∈
Zp and set mi = H̃(idi, g

zi , gaizi). Let u =
∑

i<k(ai + ãi)−∑
i>k(ai + ãi) and α =

∑
i<k,i ̸=max H̃(idi, g

zi , gaizi) ∗ vi −∑
i>k,i ̸=max H̃(idi, g

zi , gaizi) ∗ vi. Set,

mt =

{
−α+ du if t < k

α− du if t > k

Return mt = H̃(idt, g
zt , gatzt).

Step 5: Else if there exists i ∈ [n] \ {k} such thatH(idi, ai, zi, πi,
π∗
i , bi) has not been queried, let

S = {j : j ∈ [n] \ {k};H(idi, ai, zi, πi, π∗
i , bi) has not been queried}

Select l ∈R S. For all i ∈ S \ {l}, choose random ãi ∈ Zp and set
ãi = H(idi, ai, zi, πi, π∗

i , bi). Now, if l < k compute

U1 =

i−1∑
j=1

(aj + ãj) +

k−1∑
j=l+1

(aj + ãj)−
n∑

j=k+1

(aj + ãj)

and if l > k, compute

U2 =

k−1∑
j=1

(aj + ãj)−
l−1∑

j=k+1

(aj + ãj)−
n∑

j=l+1

(aj + ãj)

Also let,

F =

k−1∑
j=1

H̃(idj , g
zj , gajzj ) ∗ vj −

n∑
j=k+1

H̃(idj , g
zj , gajzj ) ∗ vj

Compute ãl as;

ãl =

{
−U1 − al +

F
d if i < k

U2 − al − F
d if i > k

Set ãl = H(idl, al, zl, πl, π∗
l , bl).

Step 6: : If D has not already aborted, the following relation holds:

d
(∑k−1

i=1 (ai + ãi)−
∑n

i=k+1(ai + ãi)
)
=∑k−1

i=1 H̃(idi, g
zi , gaizi) ∗ vi −

∑n
i=k+1 H̃(idi, g

zi , gaizi) ∗ vi.

That is∏k−1
i=1 gãi ∗ bi/

∏n
i=k+1 g

ãi ∗ bi =
(g1/dg̃)d(

∑k−1
i=1 (ai+ãi)−

∑n
i=k+1(ai+ãi)) =

(ĝ)d(
∑k−1

i=1 (ai+ãi)−
∑n

i=k+1(ai+ãi)) =

(B1/a)d(
∑k−1

i=1 (ai+ãi)−
∑n

i=k+1(ai+ãi)).

Here, ãi = H(idi, ai, zi, πi, π∗
i , bi). D sets

Bk = Bd(
∑k−1

i=1 (ai+ãi)−
∑n

i=k+1(ai+ãi)) ∗ ĝµ =

(ĝa)d(
∑k−1

i=1 (ai+ãi)−
∑n

i=k+1(ai+ãi)) ∗ ĝµ.
Here, µ = d

(∑k−1
i=1 (ai + ãi)−

∑n
i=k+1(ai + ãi)

)
ãk.
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ExpPOBB
B′ (λ)

(G, p, g, g̃, n)← Setup(λ)
ak, zk ∈ Zp

({(ai, zi) : i ∈ [n] \ {k}}, α, {vi : i ∈ [n] \ {k, α}}, vα = 1, aux)←
B′H̃,H(G, p, g, g̃, gzk , gakzk , πk, π

∗
k)

bi ← OH̃ (idi, ai, zi, vi) : i ∈ [n] \ {k}
c0 ← OH̃ (idk, ak, zk, 0)

c1 ← OH̃ (idk, ak, zk, 1)
ãi ← H(idi, Zi, ϕi, πi, π

∗
i , bi) : ∀i ∈ [n] \ {k}

e
$← {0, 1}

ãk ← H(idk, Zk, ϕk, πk, π
∗
k, ce)

Bk ←
(∏k−1

j=1 gãj bj/
∏n

j=k+1 g
ãj bj

)ak+ãk

e′ ← B′H̃,H(aux, ce, Bk, π̃k,Πk)
return(e = e′)

OH̃(idi, ai, zi, πi, π
∗
i , vi)

mi ← H̃(idi||gzi ||gaizi)

return gai g̃mivi

H̃(idi, g
zi , gaizi)

returnRO1(idi||gzi ||gaizi)

H(idi, gzi , gaizi , πi, π
∗
i , bi)

returnRO2(idi||gzi ||gaizi ||πi||π∗
i ||bi)

Fig. 3: Description of the security experiment ExpPOBB
B′ (λ).

Now, invoke A again with all these parameters. It will return
a bit b. If b = 0 then D outputs e = 0, else D outputs e = 1.
Alternatively, if D aborts, return a random bit.

Let us calculate the success probability of D.
P [ExpDDHV

D (λ) = 1] = P [ExpDDHV
D (λ) = 1|D aborts during

the game ] ∗ P [D aborts during the game ] +
P [ExpDDHV

D (λ) = 1|D does not abort during the game ] ∗
P [D does not abort during the game ]. Let,

Ψ = Pr[D aborts during the simulation of ExpPOBC
A (λ)]

Thus, P [ExpDDHV
D (λ) = 1] = P [ExpDDHV

D (λ) = 1|D aborts
during the game ] ∗Ψ+ P [ExpDDHV

D (λ) = 1|D does not abort
during the game ](1−Ψ). If D does not abort during the game,
then it returns whatever A returns, hence, P [ExpDDHV

D (λ) =
1|D does not abort during the game ] ≥ P [ExpPOBC

A (λ) = 1] =
AdvPOBC

A (λ)+1
2 . If D aborts in the game, D returns a random bit.

Therefore, P [ExpDDHV
D (λ) = 1|D aborts during the game ] = 1

2 .

So, P [ExpDDHV
D (λ) = 1] ≥ AdvPOBC

A (λ)+1
2 (1−Ψ) + Ψ

2 . From

this we get, AdvDDHV
D (λ)+1

2 ≥ AdvPOBC
A (λ)+1

2 (1−Ψ) + Ψ
2 .

Thus, we can write:

AdvDDHV
D (λ) ≥ AdvPOBC

A (λ)(1−Ψ)

Let, A denote the event thatD does not abort in step 2 and B denote
the event thatD does not abort in step 3. Hence, Ψ = 1− P [A ∩B].
So, 1−Ψ = P [A ∩B] = P [A]P [B|A]. In step 2, D aborts only if
v̂i ̸= vi for any i ∈ [n] \ {k}. Since, v̂is are chosen randomly by
D with the condition that v̂i = 1 for at least one i ∈ [n] \ {k}, the
probability P [A] = P [v̂i = vi : ∀i ∈ [n] \ {k}] = 1

2n−1−1
.

Now, let us calculate the probability P [B|A] that D does not
abort in step 3, given D does not abort in step 2. This happens

only If for all i ∈ [n] \ {k}, satisfying vi = 1, there is an entry
(idi, ai, zi, πi, π

∗
i , bi, ãi) in Li such that ri = H̃(idi, g

zi , gaizi)

and
∏k−1

j=1 gaj+ãj g̃rjvj/
∏n

j=k+1 g
aj+ãj g̃rjvj =

(g1/d ∗ g̃)d(
∑k−1

j=1 (aj+ãj)−
∑n

j=k+1(aj+ãj)). We try to find the
probability that A queries H(idi, ai, zi, πi, π∗

i , bi) for all i ∈ [n] \
{k}, and

∏k−1
j=1 gaj+ãj g̃rjvj/

∏n
j=k+1 g

aj+ãj g̃rjvj = (g1/d ∗
g̃)d(

∑k−1
j=1 (aj+ãj)−

∑n
j=k+1(aj+ãj)) holds. The event B|A happens

when there exists j ∈ [n] \ {k} such that in step 1, D replies to the
query H(idi, ai, zi, πi, π∗

i , bi) with ãi, for all i ∈ [n] \ {k, j} and
for the queryH(idj , aj , zj , πj , π∗

j , bj) it returns ãj , where

ãj =

{
A1 if j < k

A2 if j > k

Here, A1 = −aj − (
∑

i<k,i ̸=j(ai +H(idi, ai, zi, πi, π
∗
i , bi))−∑

i>k,i ̸=j(ai +H(idi, ai, zi, πi, π
∗
i , bi))) +∑k−1

i=1 H̃(idi,g
zi ,gaizi )∗vi−

∑n
i=k+1 H̃(idi,g

zi ,gaizi )∗vi
d and

A2 = −aj + (
∑

i<k,i ̸=j(ai +H(idi, ai, zi, πi, π
∗
i , bi))−∑

i>k,i ̸=j(ai +H(idi, ai, zi, πi, π
∗
i , bi)))−∑k−1

i=1 H̃(idi,g
zi ,gaizi )∗vi−

∑n
i=k+1 H̃(idi,g

zi ,gaizi )∗vi
d

The probability Pr[B|A] ≥
∏

i∈[n]\{k,j}
1
li

Q = 1
Q

∏
i∈[n]\{k,j}

1
li

,
where li is the number of entries of the form (idi, ai, zi, πi, π

∗
i , bi, ãi)

in log Li whenH(idj , aj , zj , πj , π∗
j , bj) was queried.

Now, 1−Ψ = P [A]P [B|A] ≥ 1
2n−1−1

1
Q

∏
i∈[n]\{k,j}

1
li

.
Thus,

AdvPOBC
A (λ) ≤ (2n−1 − 1)Q ∗

∏
i∈[n]\{k,j}

li ∗AdvDDHV
D (λ)
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ExpPOBC
A (λ)

(G, p, q, g, g̃, n)← Setup(λ)
ak, zk ∈ Zp

({(ai, zi) : i ∈ [n] \ {k}}, α, {vi : i ∈ [n] \ {k, α}}, vα = 1, aux)←
BH̃,H(G, p, g, g̃, gzk , gakzk , πk, π

∗
k)

bi ← OH̃ (idi, ai, zi, vi) : i ∈ [n] \ {k}
c0 ← OH̃ (idk, ak, zk, 0)

c1 ← OH̃ (idk, ak, zk, 1)
ãi ← H(idi, ai, zi, πi, π∗

i , bi) : ∀i ∈ [n] \ {k}
e

$← {0, 1}
ãk ← H(idk, Zk, ϕk, πk, π

∗
k, ce)

Bk ←
(∏k−1

j=1 gãj bj/
∏n

j=k+1 g
ãj bj

)ak+ãk

e′ ← BH̃,H(aux, ce, Bk, π̃k,Πk)
return(e = e′)

OH̃(idi, ai, zi, πi, π
∗
i , vi)

mi ← H̃(idi||gzi ||gaizi)

return gai g̃mivi

H̃(idi, g
zi , gaizi)

returnRO1(idi||gzi ||gaizi)

H(idi, ai, zi, πi, π∗
i , bi)

returnRO2(idi||gzi ||gaizi ||πi||π∗
i ||bi)

Fig. 4: Description of the security experiment ExpPOBC
A (λ).

Now, n−2

√∏
i∈[n]\{k,j} li ≤

∑
i∈[n]\{k,j} li

n−2 . Since, the max-
imum number of oracle queries made by the adversary is Q,∑

i∈[n]\{k,j} li ≤ Q. So,
∏

i∈[n]\{k,j} li ≤
(

Q
n−2

)n−2
. Hence,

AdvPOBC
A (λ) ≤

(
2n−1 − 1

)
Q

(
Q

n− 2

)n−2

∗AdvDDHV
D (λ)

That is

AdvPOBC
A (λ) ≤ 2n−1 − 1

(n− 2)n−2
Qn−1 ∗AdvDDHV

D (λ)

Since, Q ∈ poly(λ), and n is constant,

AdvPOBC
A (λ) ≤ poly(λ) ∗AdvDDHV

D (λ)

Thus, the theorem holds. □

Note that, since, AdvPOBA
B (λ) ≤ AdvPOBC

A (λ) + negl(λ),
we have,

AdvPOBA
B (λ) ≤ poly(λ) ∗AdvDDHV

D (λ) + negl(λ)

We have shown in section 4.3.2 that, if the DDH assumption holds
in the algebraic group G, then AdvDDHV

D (λ) ≤ negl(λ) holds.
Therefore, our two round PriVeto protocol will be secure against full
collusion, if the DDH assumption holds in G.

5 Efficiency Analysis

In this section, we analyze the computation and communication
efficiency of our scheme. Since, exponentiation is the costliest oper-
ation, we measure the computation cost in terms of the number
of exponentiations done by an entity. In Round 1, each participant
needs to do just 3 exponentiation operations to compute the Zi, ϕi
and the intermediate ballot. The NIZK proofs πi and π∗

i need one
exponentiation each. The NIZK proof π̃i requires 6 exponentiations,
making the total exponentiations needed by a single participant in
Round 1 equal to 11. In Round 2, the computation of the final ballot
would require 2 exponentiations and the associated NIZK proof Πi
would require 2 exponentiations. Thus, in Round 2, each participant
needs to do 4 exponentiations. Hence, the total number of exponen-
tiations that a participant is required to perform during the entire
protocol is 15. On the other hand, a verifier who wants to check all
the NIZK proofs would need to perform 17n exponentiations. Table
1 shows a break-down of the computation overhead on a participant
and a verifier.

Now, we calculate the communication overhead of the protocol.
Each participant Vi needs to post Zi, ϕi and bi in Round 1. The par-
ticipant also needs to post the two NIZK proofs πi and π∗

i of size 6
in total. Thus, in Round 1, each participant needs to transfer 9 items.
In Round 2, each participant needs to post only the final ballot Bi
and the NIZK proof Πi. The participant also needs to download all
arguments uploaded by all other participants in Round 1. Together,
they add up to 9n+ 5. The size of all NIZK proofs of all the n par-
ticipants is 18. Table 2 shows a break-down of the communication
overhead on a participant and a verifier.
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Round I Round II

Entity Public Parameters Intermediate Ballot NIZKP Public Parameters Final Ballot NIZKP Total

Participant 2 1 8 – 2 2 15

Verifier - - 12n - - 5n 17n

Table 1 The number of exponentiations in computational load. Here, n is the total number of participants.

Round I Round II

Entity Public Parameters Intermediate Ballot NIZKP Downloaded Parameters Final Ballot NIZKP Total

Participant 2 1 14 17(n− 1) 1 4 17n+ 5

Verifier 2n n 14n - n 4n 22n

Table 2 The number of group elements in the usage of communication bandwidth. Here, n is the total number of participants.

6 Conclusion

In this paper, we have proposed a novel two round veto protocol that
addresses the two major limitations of the original AV-net protocol.
Our scheme achieves the best possible round efficiency for a veto
protocol. In addition to that, it has the same asymptotic system com-
plexities as the AV-net protocol. We have proved that our scheme is
secure against full collusion in a random oracle model, assuming that
the Decisional Diffie-Hellman problem is intractable in the algebraic
group used in the scheme.
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Appendix

Non-Interactive Zero-Knowledge Proofs

Here we discuss the construction of the non-interactive proofs used
in our 2-round anonymous veto protocol. We shall use Fiat-Shamir
heuristic [13] for converting standard interactive zero knowledge
proofs into non-interactive ones. Such conversion requires a secure
cryptographic hash function, hence our proof is constructed in a
random oracle model. We tie every NIZK proof argument to the
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identity of the prover by making it mandatory to include the iden-
tity of the prover into the set of parameters that are fed as input to
the hash function in order to generate the random challenge. This
would effectively eliminate replay attacks [19]. The constructions of
these kinds of NIZK proofs can be found in [6, 11, 24].

πi = NIZK[zi : g, Zi = gzi ] : This NIZK proof proves the fact
that given g and Zi, the prover knows the value of zi = logg Zi.
The construction of this NIZK proof can be found in [24] and is
described in the following:
The prover selects r ∈R Zp and generates a commitment ϵ = gr .
Let the random challenge be ch. The prover generates a response
ρ = r − zi ∗ ch. The verification equation is as follows:

gρ
?
=

ϵ

Zch
i

The above NIZK proof requires one exponentiation for computation
and two exponentiations for verification. The arguments include a
commitment, a challenge and a response, making the total size equal
to 3.

π∗
i = NIZK[ai : g, Zi = gzi , ϕi = gaizi ] : This NIZK proof

proves the fact that given Zi and ϕi, the prover knows the value
of ai = logZi

ϕi. The construction of the NIZK proof is same as the
one above.

π̃i = NIZK [ai, zi : g, gi, Zi = gzi , ϕi = gaizi , bi ∈ {gai , gaigi}]
: This NIZK proof proves that given g, gi, Zi, ϕi, bi, either ϕ =
DHg(bi, Zi) or ϕ = DHg(bi/gi, Zi). The construction of this
NIZK proof can be found in [6, 11] and is described as follows:
Let us assume that bi = gai . The prover selects random
r1, ρ2, ch2 ∈R Zp and computes 4 commitments

ϵ11 = gr1 , ϵ12 = Zr1
i

and
ϵ21 = gρ2(bi/gi)

ch2 , ϵ22 = Zρ2

i (ϕi)
ch2

Let, the grand challenge of the NIZK proof be Ch. The prover
computes ch1 = ch− ch2. Also, the prover generates a response
ρ1 = r1 − ai ∗ ch1. The verification equations are as below.

• gρ1 ?
= ϵ11

b
ch1
i

• Zρ1

i
?
= ϵ12

ϕ
ch1
i

• gρ2 ?
= ϵ21

(bi/gi)ch2

• Zρ2

i
?
= ϵ22

ϕ
ch2
i

Now, we show how a similar NIZK proof can be generated when
bi = gaigi. This time the prover selects random r2, ρ1, ch1 ∈R Zp

and computes these 4 commitments

ϵ11 = gρ1bch1
i , ϵ12 = Zρ1

i ϕch1

and
ϵ21 = gr2 , ϵ22 = Zr2

i

Let, the grand challenge be ch. The prover computes ch2 = ch−
ch1. Also, the prover generates a response ρ2 = r2 − ai ∗ ch2. The
verification equations are as above.

This NIZK proof requires 6 exponentiations for computation and
8 exponentiations for verification. The arguments consist of 4 com-
mitments, 2 challenges and 2 responses, hence the size of the proof
is 8.

Πi = NIZK
[
ai, zi : g, ãi, Zi = gzi , ϕi = gaizi , B̃i, Bi = B̃ai+ãi

i

]
: This NIZK proof proves that given g, ãi, Zi = gzi , ϕi =

gaizi , B̃i, Bi = B̃ai+ãi
i . The construction of the proof is as below:

The prover selects random r ∈ Zp and generates two commitments:

ϵ1 = Zr
i , ϵ2 = B̃r

i

Let, the random challenge be ch. The prover generates a response
ρ = r − ch ∗ ai. The verification is given by

• Zρ
i

?
= ϵ1

ϕch
i

• B̃ρ
i

?
= ϵ2

(Bi/B̃
ãi
i )ch

This NIZK proof requires two exponentiations for computation
and 5 exponentiations for verifications. The size of the proof is 4.
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