
IET Image Processing, 3(1): 1-9

 1

REAL-TIME IMPLEME�TATIO� OF ORDER-STATISTICS

BASED DIRECTIO�AL FILTERS

M. Emre Celebi

ecelebi@lsus.edu

Department of Computer Science, Louisiana State University in Shreveport

One University Place, Shreveport, LA 71115, USA (P: 318-795-4281; F: 318-795-2419)

ABSTRACT

Vector filters based on order-statistics have proved successful in removing impulsive noise from color

images while preserving edges and fine image details. Among these filters, the ones that involve the cosine

distance function (directional filters) have particularly high computational requirements, which limits their

use in time critical applications. In this paper, we introduce two methods to speed up these filters.

Experiments on a diverse set of color images show that the proposed methods provide substantial

computational gains without significant loss of accuracy.

Keywords: color image processing, impulsive noise removal, vector order-statistics, directional filter

I. I�TRODUCTIO�

Color images are often contaminated with noise, which is introduced during acquisition or transmission. In

particular, the introduction of impulsive noise into an image not only lowers its perceptual quality, but also

makes subsequent tasks such as edge detection and segmentation more difficult. Therefore, the removal of

such noise is often an essential preprocessing step in many color image processing applications.

IET Image Processing, 3(1): 1-9

 2

Numerous filters have been proposed for the removal of impulsive noise from color images [1][2][3].

Among these, nonlinear filters have proved successful in removing the noise while preserving the edges

and fine details. The early approaches to nonlinear filtering of color images often involved the application

of a scalar filter to each color channel independently. However, since separate processing ignores the

inherent correlation between the color channels, these methods often introduce color artifacts to which the

human visual system is very sensitive. Therefore, vector filtering techniques that treat the color image as a

vector field and process color pixels as vectors are more appropriate. An important class of nonlinear vector

filters is the one based on robust order-statistics with the vector median filter (VMF) [4], the basic vector

directional filter (BVDF) [5], and the directional-distance filter (DDF) [6] being the most widely known

examples. These filters involve reduced ordering [7] of a set of input vectors within a window to determine

the output vector. The ordering is often achieved using a combination of two functions: Minkowski

distance and cosine distance. The VMF and its derivatives use the former, whereas the VDF family (the

BVDF and its derivatives) use the latter. The DDF family uses a combination of the two functions. In this

paper, we refer to the filters that use the cosine distance function, i.e. the members of VDF and DDF

families, as directional filters.

Several researchers have noted the high computational requirements of order-statistics based vector filters;

however, relatively few studies have focused on alleviating this problem. Chaudhuri et al. [8] proposed an

approximate L2 (Euclidean) metric, which is calculated as a linear combination of the L1 (City-block) and

L∞ (Chessboard) metrics. Barni et al. [9] proposed a more accurate approximation for the L2 metric, which

is calculated as a weighted L1 metric. Note that the utility of these approximations is limited to the VMF

family. In a recent study [3], we compared 48 order-statistics based vector filters and concluded that some

of the most effective filters are based on the cosine distance function. In fact, one of these filters, namely

the adaptive center weighted directional distance filter (ACWDDF) [10], was shown to be the most

effective filter. It was also shown that the directional filters are significantly slower than those based only

on the Minkowski distance.

IET Image Processing, 3(1): 1-9

 3

In this paper, we introduce techniques to speed up the order-statistics based directional filters. Experiments

on a diverse set of color images show that presented methods achieve substantial computational gains

without significant loss of accuracy. The rest of the paper is organized as follows. Section II introduces the

notation and describes the techniques to speed up the cosine distance function. Section III presents the

experimental results. Finally, Section IV gives the conclusions.

II. PROPOSED METHODS

Consider an M x � RGB image X that represents a two-dimensional array of three-component vectors

1 2 3(,) [(,), (,), (,)]x r c x r c x r c x r c= occupying the spatial location (r,c), with the row and column indices

Mr ,...,2,1= and 1,2,...,c �= , respectively. In pixel x(r,c), the xk(r,c) values denote the red (k = 1), green

(k = 2), and blue (k = 3) component. In order to isolate small image regions, each of which can be treated as

stationary, an n n× supporting window W(r,c) centered on pixel x(r,c) is used. The window slides over

the entire image X and the procedure replaces the input vector x(r, c) with the output vector y(r,c) =

F(W(r,c)) of a filter function F(.) that operates over the samples inside W(r,c). Repeating the procedure for

each pair (r,c), with Mr ,...,2,1= and 1,2,...,c �= , produces output vectors y(r,c) of the M x � filtered

image Y. For notational simplicity, the vectors inside W(r,c) are re-indexed as (,) { : 1,2,..., }xiW r c i n= = , as

commonly seen in the related literature [1][2][3]. Thus, in the vector
1 2 3[, ,]xi i i ix x x= with components xik,

the i and k indices denote the block location and color channel, respectively.

The VMF family orders the input vectors in a window according to their relative magnitude differences

using the Minkowski distance function. For example, the output of the VMF, the most well-known member

of its class, is given by the lowest ranked input vector:

(,) 1

1/
3

1

(,) argmin (,)

(,)

i

n

p i j
W r c j

p
p

p i j ik jk

k

r c L

L x x

∈ =

=

=

= −

∑

∑

x

y x x

x x

(1)

where Lp denotes the Minkowski distance.

IET Image Processing, 3(1): 1-9

 4

The VDF family operates on the direction of the color vectors with the aim of eliminating vectors with

atypical directions. The input vectors in a window are ordered according to their angular differences using

the cosine distance function. For example, the output of the BVDF, the most well-known member of its

class, is the input vector in the window whose direction is the maximum likelihood estimate of the input

vector directions [11]:

(,) 1

3

1

(,) argmin (,)

(,) acos

i

n

i j
W r c j

ik jk

k
i j

i j

r c A

x x

A

∈ =

=

=

 =

∑

∑

x

y x x

x x
x x

(2)

where A(xi, xj) denotes the angle between the two vectors xi and xj, and ⋅ is the L2 norm.

The DDF family combines the VMF and VDF families by simultaneously minimizing their ordering

functions. The output of the DDF, the most well-known member of its class, is given by:

(,) 1 1

(,) argmin (,) (,)
x

y x x x x
i

n n

i j p i j
W r c j j

r c A L
∈ = =

= ⋅

∑ ∑
(3)

As mentioned in Section I, the VDF and DDF family members have much higher computational

requirements than the VMF family members. This is due to the computationally expensive cosine distance

function A(�,�) used in (2) and (3). For example, on a typical 1024 x 1024 image, the VMF takes about 1.39

seconds, while the BVDF and DDF take approximately 27.9 and 28.5 seconds
♣
, respectively. In the

following subsections, we introduce techniques to speed up the directional filters, i.e. the members of the

VDF and DDF families.

2.1 Method 1

This method involves approximating the inverse cosine (ACOS) function in A(�,�) using a minimax

polynomial [12] of degree q:

♣
 Programming language: C, Compiler: gcc 3.4.4, CPU: Intel Pentium D 2.66Ghz

IET Image Processing, 3(1): 1-9

 5

0 1([,]) { : [,] , , 0,1, }
q

q q iP a b a a z a z z a b a i q= + + + ∈ ∈ =… ℝ … (4)

The ACOS function takes arguments from the interval [0,1]. Unfortunately, approximating ACOS over this

interval is not easy because of its behavior near 1 (see Fig. 1a).

Figure 1. (a) ACOS function in the interval [0,1] (b) ASI� function in the interval [0,0.5]

This can be circumvented using a numerically more stable identity for z ≥ 0.5:

()acos() 2 asin 0.5(1)z z= ⋅ − (5)

where the inverse sine (ASI�) function receives its arguments from the interval [0,0.5] (see Fig. 1b).

Instead of plugging the value of 0.5(1)z− into a minimax approximation for the ASI� function and then

multiplying the result by 2, two multiplication operations can be avoided if the following function is

approximated:

()
1

acos() 2 asin / 2

z

z

τ

τ

= −

= ⋅

(6)

where the argument τ falls into the interval [0,1 2] .

Table 1 lists the coefficients of the minimax polynomials of various degrees for the approximation of the

ASI� and ACOS functions. Since both functions exhibit strong linearity in their respective intervals, they

can be accurately approximated by polynomials, as indicated by the small error values (ε) in the table.

IET Image Processing, 3(1): 1-9

 6

Table 1. Minimax polynomials for the ASI� and ACOS functions

 q ε a0 a1 a2 a3 a4
A

S

I

N

2 1.830987519e-03 1.829125e-03 1.371117 1.480266e-01

3 1.358426903e-04 -1.358425e-04 1.419488 -3.090315e-02 1.666491e-01

4 2.097813673e-05 2.097797e-05 1.412840 1.429881e-02 6.704361e-02 6.909677e-02
A

C

O

S

2 9.154936808e-04 1.569882 -9.695260e-01 -1.480266e-01

3 6.792158693e-05 1.570864 -1.003730 3.090318e-02 -2.356775e-01

4 1.048948667e-05 1.570786 -9.990285e-01 -1.429899e-02 -9.481335e-02 -1.381942e-01

2.2 Method 2

This method involves the substitution of the function A(�,�) with a computationally cheaper function B(�,�):

()
1/

1 2 3

1 2 3 1 2 3 1 2 3

(,) (,)

[, ,] , ,

x x x x

x

pp p p

i j p i j i j i j i j

i i i
i i i i

i i i i i i i i i

B L r r g g b b

x x x
r g b

x x x x x x x x x

′ ′= = − + − + −

′ = = + + + + + +

(7)

Here, B(�,�) is a Minkowski distance function in the chromaticity coordinate space (rgb) [1].

III. EXPERIME�TAL RESULTS

In this section, we evaluate the performance of the proposed methods on a set of test images commonly

used in the color image filtering literature. Figure 2 shows representative images from this set. In the

experiments, the filtering window was set to 3 x 3 and whenever the Minkowski distance is involved the

L2-norm was used as commonly seen in the related literature [1][2][3].

IET Image Processing, 3(1): 1-9

 7

a) Airplane b) Flowerbee

c) Fractal d) Lenna

e) Parrots f) Peppers

Figure 2. Representative images from the test set

IET Image Processing, 3(1): 1-9

 8

The corruption in the test images was simulated by the widely used correlated impulsive noise model [13]:

{ }
{ }
{ }
{ } ()

1 2 3 1

1 2 3 2

1 2 3 3

1 2 3 1 2 3

with probability 1 ,

, , with probability ,

, , with probability ,

, , with probability ,

, , with probability 1 ()

o

x

o or

oo r

o o r

r r r

ϕ

ϕ ϕ

ϕ ϕ

ϕ ϕ

ϕ ϕ ϕ ϕ

 −

⋅

= ⋅
 ⋅
 − + + ⋅

(8)

where { }1 2 3, ,o o o o= and { }1 2 3
x , x ,xx = represent the original and noisy color vectors, respectively,

{ }1 2 3
, ,r r r r= is a random vector that represents the impulsive noise, ϕ is the sample corruption probability,

and φ1, φ2, and φ3 are the corruption probabilities for the red, green, and blue channels, respectively. In the

simulations, the channel corruption probabilities were set to 0.25.

Filtering performance was evaluated using three effectiveness and one efficiency criteria. The effectiveness

criteria were the mean absolute error (MAE) [1], peak signal-to-noise ratio (PS�R) [1], and normalized

color distance (�CD)
♠

 [1], which correspond, respectively, to signal detail preservation, noise suppression,

and color-information preservation. Note that for the MAE and �CD measures lower values are better,

whereas for the PS�R higher values are better. The efficiency of a filter was measured by the execution

time in seconds
♦
.

3.1 Experiment 1

Tables 2-3 show the filtering results for the original BVDF (denoted by BVDF), method 1 (denoted by

BVDFminimax), and method 2 (denoted by BVDFrgb). It can be seen that, in terms of filtering effectiveness,

the BVDFminimax and BVDFrgb consistently performed similar to the BVDF. In fact, in some cases, they

performed slightly better than the BVDF. With respect to the execution speed, on the average, the

BVDFminimax and BVDFrgb were respectively 13.74 and 31.50 times faster than the BVDF.

♠

 In the tables, the �CD values are multiplied by 1000.
♦
 The results are the average of 10 runs.

IET Image Processing, 3(1): 1-9

 9

Table 2. BVDF filtering results at 10% noise level

 Airplane (512 x 512 pixels) Flowerbee (480 x 480 pixels)

Filter MAE PSNR NCD TIME MAE PSNR NCD TIME

none 6.400 17.865 82.798 0.000 6.338 18.204 89.361 0.000

BVDF 3.273 31.506 24.648 10.544 2.801 31.327 20.092 8.923

BVDFminimax 3.278 31.508 24.682 0.694 2.810 31.322 20.144 0.608

BVDFrgb 3.276 31.496 24.669 0.306 2.814 31.294 20.207 0.267

 Fractal (640 x 480 pixels) Lenna (512 x 512 pixels)

none 6.361 17.141 102.837 0.000 6.369 18.195 102.593 0.000

BVDF 5.554 24.100 77.814 9.094 3.929 31.747 44.508 10.583

BVDFminimax 5.565 24.096 77.939 0.821 3.929 31.747 44.511 0.697

BVDFrgb 5.577 24.071 78.168 0.344 3.933 31.732 44.586 0.302

 Parrots (1536 x 768 pixels) Peppers (512 x 480 pixels)

none 6.348 18.123 117.100 0.000 6.371 17.964 95.057 0.000

BVDF 0.916 38.993 7.378 50.495 2.263 32.538 18.876 9.498

BVDFminimax 0.969 39.054 7.708 4.147 2.277 32.391 19.035 0.658

BVDFrgb 0.921 38.925 7.414 1.786 2.271 32.571 18.983 0.294

Table 3. BVDF filtering results at 15% noise level

 Airplane (512 x 512 pixels) Flowerbee (480 x 480 pixels)

Filter MAE PSNR NCD TIME MAE PSNR NCD TIME

none 9.553 16.131 123.414 0.000 9.537 16.418 134.211 0.000

BVDF 3.439 30.878 25.961 10.481 3.047 30.639 22.121 8.863

BVDFminimax 3.445 30.876 25.997 0.694 3.054 30.637 22.163 0.608

BVDFrgb 3.443 30.862 25.978 0.309 3.057 30.626 22.223 0.267

 Fractal (640 x 480 pixels) Lenna (512 x 512 pixels)

none 9.560 15.373 153.478 0.000 9.560 16.429 153.113 0.000

BVDF 5.726 23.756 80.657 9.025 4.090 31.264 46.161 10.491

BVDFminimax 5.741 23.741 80.874 0.824 4.090 31.264 46.164 0.703

BVDFrgb 5.767 23.690 81.175 0.350 4.093 31.248 46.215 0.309

 Parrots (1536 x 768 pixels) Peppers (512 x 480 pixels)

none 9.514 16.363 175.817 0.000 9.576 16.199 142.114 0.000

BVDF 1.003 37.935 8.198 51.074 2.510 30.976 21.469 9.398

BVDFminimax 1.058 37.975 8.542 4.159 2.531 30.732 21.755 0.658

BVDFrgb 1.010 37.715 8.247 1.789 2.511 31.113 21.455 0.288

Note that the presented techniques benefit other directional filters including the adaptive nearest neighbor

filter [14], hybrid directional filters [15], fuzzy VDFs [16], generalized VDF [17], adaptive BVDF [18],

fuzzy hybrid filters [19], entropy filters [20], adaptive center weighted filters [10], and sigma vector filters

[21].

IET Image Processing, 3(1): 1-9

 10

3.2 Experiment 2

In order to further demonstrate the usefulness of the presented techniques, we evaluated their performance

on a more recent filter, namely the ACWDDF. The formulation of this filter is given below:

[]

[]

2

1

(,) (,)
(,) , 1, 1

() (,)

2 2
() , 1,

1

(1) / 2

x

y y x y x
y

x

y x x

k k

k

i

DDF d p dCWDDF CWDDF
k

d

n

j p i jCWVMF
W j

j

if A L T
r c d

otherwise

argmin w k L

n k for j d
w k k d

otherwise

d n

λ

λ λ

+

=

∈ =

⋅ >

= ∈ −

= ⋅

− + =

= ∈

= +

∑

∑

(9)

where d is the index of the center pixel in W, k is the smoothing parameter, ()jw k is the weight of pixel xj

at smoothing level k, λ is a parameter that determines the initial smoothing level, T is the switching

threshold, yDDF
 and y kCWVMF

 are the outputs of the DDF and center weighted VMF in W, respectively. The

λ and T parameters were set to the author [10] recommended values of 2 and 10.8, respectively.

As mentioned in Section I, this filter was shown to be the most effective filter among 48 filters [3]. It was

also shown that the ACWDDF is among the slowest (it ranked 41st). Therefore, this filter would benefit the

most from the techniques presented in Section II.

The results of the first experiment showed that the characteristics of the function A(�,�) can be captured

very accurately using the function B(�,�). This brings a question to mind: do functions A(�,�) and B(�,�) have

a linear relationship? In order to test this, we generated 10
8
 random vector pairs in the RGB color space and

calculated the distance between each pair using A(�,�) and B(�,�). We then calculated the best fitting line

using the generalized least-squares method [22]:

(,) 1.436437 (,) 0.027664x x x xi j i jA B≅ ⋅ + (10)

The error of fit was 0.005715ε = . Based on the small error value it can be concluded that the relationship

between A(�,�) and B(�,�) is in fact almost linear.

IET Image Processing, 3(1): 1-9

 11

In the first experiment, we did not make use of (10) since in the formulation of BVDF, i.e. (2), all that is

needed is an ordering function that behaves like A(�,�). Since A(�,�) and B(�,�) have a highly linear

relationship, the former function can be replaced with the latter without a significant loss of accuracy.

However, in this experiment, we did not use B(�,�) in its original form, i.e. (7). Instead, we plugged the

distance values obtained using B(�,�) into (10) to obtain an accurate approximation of A(�,�).

Tables 4-5 show the filtering results for the original ACWDDF (denoted by ACWDDF), method 1 (denoted

by ACWDDFminimax), and method 2 (denoted by ACWDDFrgb). As in the first experiment, in terms of

filtering effectiveness, the ACWDDFminimax consistently performed very similar to the ACWDDF. On the

other hand, except for a few cases, the ACWDDFrgb performed significantly better than the others. This

might be due to the higher numerical stability of B(�,�) when compared to A(�,�). With respect to the

execution speed, on the average, the ACWDDFminimax and ACWDDFrgb were respectively 6.67 and 13.49

times faster than the ACWDDF.

Table 4. ACWDDF filtering results at 10% noise level

 Airplane (512 x 512 pixels) Flowerbee (480 x 480 pixels)

Filter MAE PSNR NCD TIME MAE PSNR NCD TIME

none 6.400 17.865 82.798 0.000 6.338 18.204 89.361 0.000

ACWDDF 0.646 35.005 6.673 11.302 0.441 38.615 4.049 9.577

ACWDDF minimax 0.646 35.003 6.680 1.564 0.441 38.615 4.048 1.341

ACWDDFrgb 0.587 35.955 5.896 0.775 0.439 38.807 3.883 0.669

 Fractal (640 x 480 pixels) Lenna (512 x 512 pixels)

none 6.361 17.141 102.837 0.000 6.369 18.195 102.593 0.000

ACWDDF 1.002 30.831 19.021 9.884 0.544 38.483 6.986 11.347

ACWDDF minimax 1.002 30.843 19.014 1.761 0.544 38.478 6.989 1.597

ACWDDFrgb 1.065 31.027 20.187 0.875 0.536 38.801 6.734 0.773

 Parrots (1536 x 768 pixels) Peppers (512 x 480 pixels)

none 6.348 18.123 117.100 0.000 6.371 17.964 95.057 0.000

ACWDDF 0.156 42.415 1.749 54.805 0.428 35.447 5.017 10.158

ACWDDF minimax 0.156 42.414 1.749 8.956 0.428 35.461 5.014 1.430

ACWDDFrgb 0.138 45.101 1.550 4.514 0.340 40.785 3.490 0.717

IET Image Processing, 3(1): 1-9

 12

Table 5. ACWDDF filtering results at 15% noise level

 Airplane (512 x 512 pixels) Flowerbee (480 x 480 pixels)

Filter MAE PSNR NCD TIME MAE PSNR NCD TIME

none 9.553 16.131 123.414 0.000 9.537 16.418 134.211 0.000

ACWDDF 1.029 32.691 11.044 11.280 0.688 35.905 6.520 9.516

ACWDDF minimax 1.030 32.688 11.052 1.586 0.687 35.906 6.522 1.359

ACWDDFrgb 0.951 33.347 9.940 0.773 0.677 36.235 6.190 0.672

 Fractal (640 x 480 pixels) Lenna (512 x 512 pixels)

None 9.560 15.373 153.478 0.000 9.560 16.429 153.113 0.000

ACWDDF 1.325 29.381 24.604 9.842 0.853 35.656 11.137 11.266

ACWDDF minimax 1.326 29.374 24.618 1.778 0.853 35.656 11.137 1.611

ACWDDFrgb 1.334 30.023 24.774 0.875 0.835 35.995 10.693 0.775

 Parrots (1536 x 768 pixels) Peppers (512 x 480 pixels)

None 9.514 16.363 175.817 0.000 9.576 16.199 142.114 0.000

ACWDDF 0.260 39.169 3.108 55.483 0.688 33.158 8.258 10.067

ACWDDF minimax 0.260 39.151 3.112 9.113 0.688 33.158 8.258 1.450

ACWDDFrgb 0.231 41.112 2.758 4.548 0.564 36.759 6.085 0.720

Figure 3 shows the filtering results for close-up parts of the lenna and parrots images. As expected, for

both the BVDF and ACWDDF filters, methods 1 and 2 gave as good or better results when compared to the

original ACOS implementations.

Note that the speed up that can be obtained by the use of the presented techniques in a particular filter

depends on the contribution of A(�,�) to the total filtering time. In the BVDF, A(�,�) is the dominant factor in

the computational time, whereas in the ACWDDF it has less influence on the total time. This is the reason

why the computational gains were so different between the two experiments. Nevertheless, the results

demonstrate that with the proposed modifications even the slowest directional filters can perform in real-

time.

a) 10% noisy (MAE: 6.368681; PSNR: 18.194622) b) BVDF (MAE: 3.929005; PSNR: 31.746791)

IET Image Processing, 3(1): 1-9

 13

c) BVDFminimax (MAE: 3.929145; PSNR: 31.746964) d) BVDFrgb (MAE: 3.932565; PSNR: 31.732303)

e) 10% noisy (MAE: 6.348155; PSNR: 18.123017) f) ACWDDF (MAE: 0.156042; PSNR: 42.415066)

g) ACWDDFminimax (MAE: 0.156066; PSNR: 42.414146) h) ACWDDFrgb (MAE: 0.138122; PSNR: 45.100753)

Figure 3. Filtering results for the lenna and parrots images corrupted with 10% noise

IV. CO�CLUSIO�S

In this paper, we presented two methods to speed up order-statistics based directional filters. Experiments

on a diverse set of color images showed that these methods can provide excellent accuracy and high

computational gains. The presented approximation methods have applications that go beyond color image

filtering including computer graphics and computational geometry.

IET Image Processing, 3(1): 1-9

 14

The implementations of the filters described in this paper will be made publicly available as part of the

Fourier image processing and analysis library, which can be downloaded from

http://sourceforge.net/projects/fourier-ipal

ACK�OWLEDGME�TS

This work was supported by a grant from the Louisiana Board of Regents (LEQSF2008-11-RD-A-12). The

author is grateful to the anonymous reviewers for their valuable comments and suggestions and to Dr. Peter

Alfeld (Department of Mathematics, The University of Utah) for providing the fractal image.

REFERE�CES

[1] Plataniotis, K.N., and Venetsanopoulos, A.N.: ‘Color Image Processing and Applications’ (Springer-Verlag, 2000)

[2] Lukac, R., and Plataniotis, K.N.: ‘A Taxonomy of Color Image Filtering and Enhancement Solutions’, in Hawkes,

P.W. (Ed.): ‘Advances in Imaging & Electron Physics Volume 140’ (Academic Press, 2006), pp. 187-264

[3] Celebi, M.E., Kingravi, H.A., and Aslandogan, Y.A.: ‘Nonlinear Vector Filtering for Impulsive Noise Removal

from Color Images’, J. Electronic Imaging, 2007, 16, (3), 21 pages

[4] Astola, J., Haavisto, P., and Neuvo, Y.: ‘Vector Median Filters’, Proc. of the IEEE, 1990, 78, (4), pp. 678-689

[5] Trahanias, P.E., and Venetsanopoulos, A.N.: ‘Vector Directional Filters: A New Class of Multichannel Image

Processing Filters’, IEEE Trans. on Image Processing, 1992, 2, (4), pp. 528-534

[6] Karakos, D., and Trahanias, P.E.: ‘Generalized Multichannel Image Filtering Structures’, IEEE Trans. on Image

Processing, 1997, 6, (7), pp. 1038-1045

[7] Barnett, V.: ‘The Ordering of Multivariate Data’, J. Statistical Soc. America, 1976, A139, (3), pp. 318-355

[8] Chaudhuri, D., Murthy, C.A., and Chaudhuri, B.B.: ‘A Modified Metric to Compute Distance’, Pattern Recognition,

1992, 25, (7), pp. 667-677

[9] Barni, M., Buti, F., Bartolini, F., and Cappellini, V.: ‘A Quasi-Euclidean Norm to Speed up Vector Median

Filtering’, IEEE Trans. on Image Processing, 2000, 9, (10), pp. 1704-1709

IET Image Processing, 3(1): 1-9

 15

[10] Lukac, R.: ‘Adaptive Color Image Filtering Based on Center-Weighted Vector Directional Filters’,

Multidimensional Systems and Signal Processing, 2004, 15, (2), pp. 169-196

[11] Nikolaidis, N., and Pitas, I.: ‘Nonlinear Processing and Analysis of Angular Signals’, IEEE Trans. on Signal

Processing, 1998, 46, (12), pp. 3181-3194

[12] Cheney, E.W.: ‘Introduction to Approximation Theory’ (American Mathematical Society, 2000, 2nd edn.)

[13] Viero, T., Oistamo, K., and Neuvo, Y.: ‘Three-Dimensional Median-Related Filters for Color Image Sequence

Filtering’, IEEE Trans. on Circuits and Systems for Video Technology, 1994, 4, (2), pp. 129-142

[14] Plataniotis, K.N., Androutsos, D., Vinayagamoorthy, S., and Venetsanopoulos, A.N.: ‘A Nearest Neighbor

Multichannel Filter’, Electronics Letters, 1995, 31, (22), pp. 1910-1911

[15] Gabbouj, M., and Cheikh, F.A.: ‘Vector Median-Vector Directional Hybrid Filter for Color Image Restoration’,

Proc. of the EUSIPCO’96 Conf., Trieste, Italy, September 1996, pp. 879-882

[16] Plataniotis, K.N., Androutsos, D., and Venetsanopoulos, A.N.: ‘Fuzzy Adaptive Filters for Multichannel Image

Processing’, Signal Processing, 1996, 55, (1), pp 93-106

[17] Trahanias, P.E, Karakos, D., and Venetsanopoulos, A.N.: ‘Directional Processing of Color Images: Theory and

Experimental Results’, IEEE Trans. on Image Processing, 1996, 5, (6), pp. 868-880

[18] Lukac, R.: ‘Color Image Filtering by Vector Directional Order-Statistics’, Pattern Recognition and Image

Analysis, 2002, 12, (3), pp. 279-285

[19] Khriji, L., and Gabbouj, M.: ‘Adaptive Fuzzy Order Statistics-Rational Hybrid Filters for Color Image

Processing’, Fuzzy Sets and Systems, 2002, 128, (1), pp. 35-46

[20] Lukac, R., Smolka, B., Plataniotis, K.N., and Venetsanopoulos, A.N.: ‘Generalized Entropy Vector Filters’, Proc.

of the 4th EURASIP EC-VIP-MC, Video, Image Processing and Multimedia Communications Conf., Zagreb, Crotia, July

2003, pp. 239-244

[21] Lukac, R., Smolka, B., Plataniotis, K.N., and Venetsanopoulos, A.N.: ‘Vector Sigma Filters for Noise Detection

and Removal in Color Images’, J. Visual Communication & Image Representation, 2006, 17, (1), pp. 1-26

[22] Li, H.C.: ‘A Generalized Problem of Least Squares’ American Mathematical Monthly, 1984, 91, (2), pp. 135-137

