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Abstract: Image segmentation has many applications which range from machine learning to
medical diagnosis. In this paper, we propose a framework for the segmentation of images based
on super-pixels and algorithms for community identification in graphs. The super-pixel pre-
segmentation step reduces the number of nodes in the graph, rendering the method the ability
to process large images. Moreover, community detection algorithms provide more accurate seg-
mentation than traditional approaches, such as those based on spectral graph partition. We also
compare our method with two algorithms: a) the graph-based approach by Felzenszwalb and Hut-
tenlocher and b) the contour-based method by Arbelaez. Results have shown that our method
provides more precise segmentation and is faster than both of them.

1. Introduction

Segmentation is one of the most important subjects in image analysis [1, 2, 3, 4]. The goal of seg-
mentation is to locate objects and boundaries (e.g. lines and curves) in images according to colour
or texture. This task has several practical applications, such as medical diagnosis, machine vision,
content-based image retrieval, industrial inspection, materials science experiments, astronomical
observations and security screening [5, 6]. Since terabytes of images are generated from such ap-
plications, the extraction of quantitative information only makes sense if performed automatically,
which makes image segmentation indispensable.

Algorithms for image segmentation can be grouped according to some underlying approaches,
such as image threshold, hybrid linkage region growth, spatial clustering, Markov random fields
and neural networks [2, 3]. Many surveys on image segmentation methods have been published
(e.g. [1, 3]). All of these methods are strictly related to the concept of cluster identification in
machine learning [7], whose purpose is to assign a label to every object (or pixel, in the case of
images) such that similar objects have the same label. Thus, methods developed for data clustering
have been largely applied to image segmentation [8].

Recently, data clustering has been addressed by concepts and methods of complex networks
theory [9, 10, 11]. Complex networks are non-trivial graph, presenting very irregular structure [12]
and modular organization [13]. Complex networks are made up of elements connected according
to a defined type of interaction. For instance, the Internet is formed by routers linked by cables
and optical fibres; our brain is formed by a set of neurons connected by synapses; society consists
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of people linked by social relationships; and protein networks are made up of proteins connected
by physical interactions [14]. Most real-world networks are structured into communities, i.e. sets
of nodes densely connected to each other, but sparsely connected with nodes in other groups [12].
The identification of communities can be viewed as a data clustering problem, since methods for
network partition require no prior knowledge about number of communities and number of nodes
in each community [15, 12, 13, 11]. Methods implemented for community identification can be
taken into account in data clustering when the dataset is structured as graph [10, 11]. In this
case, a data set is mapped as a network and communities obtained, each representing a cluster [9,
10]. Community identification algorithms have provided very accurate results in data clustering,
overcoming traditional methods (e.g. [15, 9, 10, 13]).

Looking at the identification of objects in an image as a data clustering issue, community iden-
tification algorithms can also be used to segment images. However, this approach has a practical
limitation. Most community identification algorithms scale with the network size [15]. For in-
stance, one of the fastest approaches based on greedy optimization runs in O(N log2N), where N
is the number of nodes [16]. An image of size N ×N is mapped as a graph with N2 nodes, since
each node represents a pixel. Therefore, in practice, community identification algorithms can deal
only with small images.

To overcome this limitation we consider the super-pixel approach to compact images and reduce
the number of nodes in the respective network. Each node in the network represents a group
of pixels (i.e. a super-pixel), as opposed to a single pixel. That reduces the network size and
enables the segmentation of large images. Thus, methods for community identification can be
applied and the object identified as communities in the network. We perform a statistical analysis
over 120,000 segmented images to define the best parameters in the super-pixel and community
detection methods. An adaptive approach for computing the threshold value employed in the
community detection is also introduced here. We verify experimentally that our method is more
accurate and faster than two other approaches: i) the also graph-based algorithm by Felzenszwalb
and Huttenlocher [17] and ii) Arbelaez’s contour-based method [18].

This paper is organized as follows: Section 2 reviews previous investigations related to our im-
age segmentation approach. Concepts of super-pixels, community detection in graphs and segmen-
tation evaluation are discussed in Section 3. The methodology is presented in Section 4. Results
and discussion are in Section 5, where a thorough analysis of parameter values is provided and
comparison with the above-mentioned image segmentation methods is presented. Finally, conclu-
sions are addressed in Section 6.

2. Related work

To perform graph–based image segmentation, pixels are represented as nodes and pairs of pixels
are connected according to the similarity between their features. An image of size N ×N can be
mapped onto a graph with N2 nodes. For large values of N , which is the case of most real size
images [19], both computational cost and memory constraints can be a crucial drawback.

Many graph-based methods can be used for image segmentation [20, 21, 22, 23, 17]. Some of
these approaches find a set of edges whose removal disconnects the graph, creating isolated groups
of vertices (called components) [20, 21, 22, 23]. These methods are based on the optimization
of a cost function. A cost function is the total weight of the removed edges with an additional
value that penalizes the creation of small components. Wu and Leahy [20] considered a minimum
cut criterion, which seeks to partition a graph into k subgraphs by minimizing the sum of the
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edge weights. The minimum criterion favours the creation of small components by additional
parameters [21, 22, 23]. Cox et al. [21] considered the dimension of the components to balance
the partitioning (ratio cut). Wang and Siskind [23] used the number of cut edges (minimum mean
cut). Shi and Malik [22] presented a method, called normalized cut, which considers the sum of
the node degrees of each partition to balance the partitioning. The high computational cost of
these approaches makes them unattractive to applications that involve large images. In addition,
such graph partition algorithms do not provide the most accurate results, since recent methods for
community identification revealed to be more accurate than classical methods, such as those based
on spectral bisection [15, 12].

Felzenszwalb and Huttenlocher [17] suggested an approach for image segmentation derived
from a pairwise region comparison. The method defines a criterion to evaluate whether there exist
an edge between two regions based on a greedy strategy and uses a graph representation of the
image to obtain the final segmentation. Three parameters are required: i) the minimum component
size, ii) the Gaussian smoothing factor and iii) a threshold value that controls the similarity between
pixels. The method is almost linear-time in the number of graph edges and can be employed for
the segmentation of large images. Since it falls into the same category as our proposed approach,
we also compare our framework with this algorithm in Section 5.

3. Concepts

The techniques presented in this paper combines algorithms for communities identification in
graphs and the super-pixels approach to segment large images. A brief overview of the concepts
that underpin our method is provided as follows.

3.1. Super-pixels

Super-pixel is a region-based image segmentation approach to over-segment the image by grouping
pixels that belong to the same object [24, 25, 26, 27, 28]. In this paper, we will consider super-
pixels extraction techniques that start with a regular grid of arbitrary size placed over an image. By
means of an iterative process, the edges of such grid eventually converge to the actual boundaries of
objects (see Fig. 1). Recent papers [26, 28] have proposed techniques based on k-means clustering
algorithm, that provide accurate results and low computational cost — O(N), where N is the
number of pixels. These techniques are presented below.

3.1.1. Speeded-up turbo pixels: Cigla and Alatan [26] suggested an efficient method for
super-pixel extraction, called speeded-up turbo pixels (SUTP), which yields quasi-uniform super-
pixels. The method is efficient in terms of computational costs, compactness of segments and
over-segmentation errors [26]. The following pseudo-code describes the SUTP algorithm:

1. Initially, a regular grid divides the image into rectangular regions, or segments (Fig. 1(a)).

2. Pixels at the over-segmented boundaries are tested and assigned to new segments by mini-
mizing a cost function, defined as:

Cx,y(i) = λ1|I(x, y)− Ii|+ λ2|(x− Ci
x)

2 + (y − Ci
y)

2| (1)

where Ii is the mean intensity of the i-th segment, x and y are the coordinates of the pixel
tested among different segments, Ci

x and Ci
y are the centroids of the i-th segment and λ1 and

3



λ2 correspond to the intensity weigth similarity and convexity constraints, respectively. The
first term ensures that pixels of similar colours are merged, whereas the second enables super-
pixels to have more uniform and convex shapes (rigidity). The higher the λ2, the stiffer the
super-pixel border will be. The lower, the more flexible. A similar behaviour applies to λ1,
regarding the importance given to colour during segmentation. Once all the boundary pixels
have been tested, super-pixel mean intensity and centre positions are updated, yielding new
super-pixels.

3. This iterative process stops when the number of interchanged pixels has reached a given
threshold. At this stage, super-pixels are said to have converged, i.e. the initial regular grid
cells become irregular and their borders match the object boundaries in the image, as shown
in Fig. 1(c).

(a) (b) (c)

Fig. 1. Super-pixels computation: (a) initial regular grid; (b) grid after three iterations and (c)
final grid after ten iterations.

Parameters λ1 and λ2 have been extensively analysed here. As colour should be highly weighted
during segmentation, λ1 is always set to 1. We consider λ2 � λ1 to get super pixels well adjusted
to the actual contours found in images.

3.1.2. Simple linear iterative clustering: Achanta et al. [27, 28] introduced an iterative algo-
rithm for super-pixels extraction of colour images based on CIELAB colour model. Like SUTP,
this simple linear iterative clustering (SLIC) approach is based on the k-means algorithm, but it
employs a more efficient search space which implies a reduced computational cost. The SLIC
approach is described as follows:

1. An input image with N pixels is partitioned into k rectangular regions whose dimensions

may vary slightly, i.e. super-pixels of expected dimensions S×S, where S =
√

N
k

. A cluster
center, i.e. a 5-dimensional vector Cj = {Lj, aj, bj, xj, yj} represents each super-pixel j. Lj ,
aj and bj are the mean values of the three CIELAB components of super-pixel j. The lightness
L ranges from 0 (black) to 100 (white) and a and b are the green–red and blue–yellow colour
components, respectively. The centroid of super-pixel j is given by (xj, yj).

2. At each iteration, each pixel i is associated with the super-pixel with the closest centres, given
that the search area of such super-pixel includes i. The size of this search area is 2S × 2S.
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Then, new cluster centres are computed by taken the mean value of vector Cj , considering all
pixels in super-pixel j. This process corresponds to the minimization of function D, defined
as

D =

√
d2c +

(
ds
S

)2

m2, (2)

where dc is the distance in the colour space,

dc =
√

(lj − li)2 + (aj − ai)2 + (bj − bi)2, (3)

and ds is the spatial distance, i.e.

ds =
√

(xj − xi)2 + (yj − yi)2. (4)

Achanta et al. suggested that accurate super-pixels can be obtained with at most 10 itera-
tions [27].
Parameter m (1 ≤ m ≤ 20) of Eq. 2 controls the super-pixels compactness. The higher
the value of m, the greater the emphasis on spatial proximity and the more compact the
cluster [27].

3. Finally, isolated pixel groups can arise after the iterative process. These groups should be
associated with the largest super-pixel in their neighbourhood.

3.2. Images as complex networks

Images can be represented as graphs (or complex networks), in which pairs of pixels are connected
according a similarity function. The most common functions to quantify the similarity between
pixels are based on Euclidean, Manhattan or Gaussian distances (e.g. [17]). Such functions gener-
ally take into account two parameters, namely threshold (t) and radius (R). Parameter t determines
the number of connections in the graph. Pixels i and j are connected if the strength of their sim-
ilarity (connection weight) is lower than or equal to t. Additionally, radius R delimits a circular
region which encompasses all pixels that can be connected to each other.

In this paper, nodes in the graphs are super-pixels, instead of pixels. Many colour–, shape–
or texture–based features or descriptors can be computed from super-pixels. We have tried his-
tograms, Local Binary Patterns (LBP) and statistical moments. However, best performance was
achieved with a 3-dimensional descriptor formed by the components of the CIELAB colour space
(the mean CIELAB value of all pixels belonging to a super-pixel). This simple descriptor was not
only faster to compute, but also more discriminant than texture–based counterparts. We employ
the Euclidean distance to compute the similarity between two super-pixels. Super-pixels will be
connected if similarity is bellow or equal a certain threshold, which can be defined by the adaptive
approach proposed here (Section 4.2).

3.3. Community identification in graphs

Most complex networks present community structure (modular organization) [14, 13]. Commu-
nities can be defined as groups of nodes that are more densely linked to each other than to the
rest of the network [29]. The identification of communities in networks can be understood as the
clustering task in data mining [10, 11].
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The number of communities and their sizes are generally unknown [12]. To quantify the quality
of a particular division of the network, Newman proposed a measure called modularity. For a
network partitioned into m communities, a matrix E, c× c is defined and its elements eij represent
the fraction of connections between communities i and j. Modularity Q is calculated as

Q =
∑
i

[eii − (
∑
j

eij)
2] = TrE − ||E2||, (5)

where 0 ≤ Q < 1. In practice, networks with well defined modular structure exhibit 0.3 ≤ Q ≤
0.7 [12].

3.3.1. Fast greedy algorithm: Fast greedy is a hierarchical agglomerative algorithm for com-
munity detection based on the maximization of the modularity measure [16]. It improves on the
algorithm proposed by Newman [30] which uses a greedy optimization procedure. The algorithm
starts with each vertex representing an isolated community. The method repeatedly joins com-
munities into pairs by choosing, at each step, the merging that results in the largest increase (or
smallest decrease) of Q. The best division corresponds to the partition that resulted in the highest
value of Q.

The computational cost of the algorithm proposed by Newman [30] isO((M+N)N) orO(N2)
for sparse graphs, where N is the number of nodes and M is the number of edges. Due to efficient
data structures, the computational cost drops to O(Md(logN)) [16], where d corresponds to the
depth of the dendrogram that describes the hierarchical structure of the network. For sparse and
hierarchical networks, M ∼ N and d ∼ logN . Therefore, the fast greedy runs in O(N log2N).

3.4. Evaluation of image segmentation

The metric proposed by Arbelaez et al. [31] is usually employed to quantify the similarity between
two segmented images, which is based on the number of pixels in the intersections of the regions
that form each image. The overlap between regions R and R′ is defined as

O(R,R′) =
|R ∩R′|
|R ∪R′|

. (6)

The covering of a segmentation S by a segmentation S ′ is calculated by

C(S, S ′) =
1

N

∑
R∈S

|R|max
R′∈S′
{O(R,R′)}, (7)

where N denotes the total number of pixels in the image. Function max(·) returns the maximum
value of the overlap between regions R and R′. Note that this formulation does not satisfy the
axiom of symmetry, C(S, S ′) 6= C(S ′, S).

To overcome this limitation, we use a metric called Adjustable Object-oriented Measure (AOM),
proposed by Cuadros Linares et al. [32] to quantify the similarity between two segmented images.
Consider two segmented images S and S ′ composed of n and n′ regions, respectively. Matrix M
of size n× n′ is defined as

Mij = |Ri ∩R′
j|, (8)

where R ∈ S and R′ ∈ S ′.
Intersection I between two segmented images S and S ′ is calculated by
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I(S, S ′) =
1

N

min(n,n′)∑
k=1

max
k

(M)penalty(k), (9)

where N is the number of pixels in the image and maxk(M) returns the k-th largest element of
M and the function penalty(·) gives the corresponding over-segmentation penalty values for all k
largest intersections in M . Over-segmentation occurs when a region Ri has a number s (s ≥ 2) of
corresponding regions R′ (Ri ∩R′

j > 0). Then, the penalty is computed as:

penalty(k) =

{
1
αs
, if αs ≥ 1

1, otherwise
, (10)

in which α ∈ [0, 1] is a parameter to indicate the over-segmentation penalty and s is the number
of regions R′ corresponding to the region Ri, where Ri ∩ R′

j > 0. AOM satisfies the following
properties:

1. 0 6 I(S, S ′) 6 1.

2. I(S, S ′) = 1, if S = S ′.

3. I(S, S ′) = I(S ′, S).

4. I(S, S ′) ≥ I(S, S ′′) & I(S, S ′′) ≥ I(S ′, S ′′) =⇒ I(S, S ′) ≥ I(S ′, S ′′).

4. Methodology

Fig. 2 depicts the proposed image segmentation framework. Initially, a simple or quadtree grid
covers the image. Next, the super-pixel algorithm by Cigla and Alatan [26] produces super-pixels
with irregular cells, whose borders match the boundary of objects in the image. We model the
image as a graph and assign each community to an object. Finally, we quantify the accuracy of
the segmentation with the method described in Section 3.4. Each of these tasks is detailed in the
following sub-sections.

4.1. Super-pixel extraction

We chose the algorithm by Cigla and Alatan [26] instead of SLIC [27, 28], since the latter is slower
than the former. SLIC analyses the entire region of a super-pixel to move the boundary position,
whereas the algorithm by Cigla and Alatan takes into account only the pixels along the bound-
aries [26]. Moreover, the algorithm by Cigla and Alatan enabled the transition from the original
regular grid to a quadtree-based approach, first proposed in this paper. As shown in Section 5,
the quadtree-based grid yields better results with shorter processing time than the regular grid for
images with large and uniform regions.

We modified the original algorithm so as to consider the colour model CIELAB in the con-
vergence Function 1 as opposed to pixel intensity. Hence, this convergence function takes into
account the three CIELAB components: L (lightness, which varies from 0 (black) to 100 (white));
a, representing colours from green to red and b, colours from blue to yellow.

Four distinct parameters must be dealt with: (i) the size of the initial squared grid (s), (ii) the
number of iterations (i), (iii) the colour weight λ1 and (iv) the rigidity weight λ2. Changes in pa-
rameters s and i can affect both speed and quality of the super-pixels produced (border matching).
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Super-pixels Graph

Original image Segmented
image

Graph generation

Community detection

Fig. 2. Image segmentation approach based on community identification combined with super-
pixels. Super-pixels are extracted from the original image and a graph is created. Community
detection algorithms provide the segmented image.

The bigger the initial super-pixel size s, the larger the number of iterations required for conver-
gence. However, as we experimentally described in a previous work [33], only 10 iterations are
necessary for a correct super-pixels convergence — in fact, only six iterations are enough for most
cases. We have also shown that parameter s, defined as 10× 10, produced the best results for both
speed and correct convergence. Following the discussion presented in Section 3.1.1, we set λ1 = 1
and λ2 = 0.1 in our experiments.

4.2. Graph generation

After the super-pixel extraction, we build a graph in which nodes represent super-pixels connected
according to the following weight function

Wi,j =
√

(Li − Lj)2 + (ai − aj)2 + (bi − bj)2, (11)

where i and j are two graph nodes (super-pixels) and L, a and b are the CIELAB channels as previ-
ously explained. The nonlinear relations between [L, a, b] aim to simulate the nonlinear behaviour
of the human eye. Also, uniform changes in perceived colours reflect in uniform changes of the
L, a and b components of CIELAB colour space. As a result, perceptual differences between two
colours can be approximated by considering each colour as a point in a three-dimensional space,
which can be conveniently measured with the Euclidean distance [34]. For that reason, we com-
pute the similarity between two super-pixels with the Euclidean distance (Equation 11) by taking
the mean [L, a, b] of all pixels belonging to a super-pixel. This is more accurate than using RGB
colour models.

A connection is considered only if Wi,j ≤ t, where t is a threshold parameter. To avoid an
arbitrary choice of t, we propose an adaptive thresholding approach. The threshold takes an initial
value which gradually increases while the node’s degree under evaluation is κi ≤ 0. After con-
necting the node i, and before evaluating node i+1, the threshold is again set to its original value.
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Fig. 3. Super-pixel neighborhood (yellow region) of radius R = 5.

This strategy prevents community detection algorithms from generating isolated nodes (κ = 0), or
a community with a single element. In image processing this is seen as an over-segmented image.
Both threshold and increment are initially assigned value 0.5. This process ends when no isolated
nodes are found in the graph or when threshold t = 40.

Connections between super-pixels are also established only if they are within the same circular
region of radiusR. Fig. 3 shows a yellow region that encompasses all super-pixels within a distance
R = 5 from a given super-pixel. The choice of the value of R is important to avoid connections
between two super-pixels that are far apart.

4.3. Image segmentation

Following the graph construction, community detection algorithms are used to segment images.
We have considered the fast greedy method [16], since it yields accurate results with lower com-
putational cost in comparison with other methods [15]. Fast greedy has been implemented in the
igraph library [35]. Based on optimization, fast greedy does not ensure the best network division
(the algorithm to find the best network division is NP -complete), but the outcome is much better
than that provided by local methods, such as label propagation [33].

4.4. Quantitative segmentation evaluation

A ground truth image dataset was used for the quantitative evaluation of our automatic segmen-
tation method. The Berkeley University dataset [36] consists of 300 natural scene images, each
containing a variable number of manual segmentations performed by different subjects. The seg-
mentations of each image vary considerably due to the subjective nature of human perception
of image objects. We propose a quantitative approach to choose the reference segmented image
among all manual segmentations. For each original image in the dataset, we take all its n manual
segmented images and build a square matrix M , whose elements quantify the similarity between
the manual segmented images i and j, i.e. Mi,j = I(i, j) (see Eq. 9). The reference segmented
image are the one which yields the maximum value of

∑
jMij or

∑
iMij . This image can be un-

derstood as the most likely human segmentation and is a fair choice for the quantitative evaluation
of our methodology, since it is generally desired that segmentations agree with human perception.
Fig. 4 illustrates the reference image selection process.

Although fully automatic, the proposed method must handle six different parameters: four in
the super-pixel stage (the size of the initial squared grid (s), the number of iterations (i), the colour
weight λ1 and the rigidity weight λ2) and two during the graph generation process (threshold t and
radius R). We have already described in this paper how to set the best values for the four super-
pixels parameters so as to make the approach suitable for the segmentation of real large images.
In the next section, we show how we defined the best values for parameters t and R, used in the
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(a) Original (b) Reference

(c) (d) (e) (f)

(g) Reference (h) (i) (j)

Fig. 4. Proposed reference image selection approach. (a) Original image; (b) selected reference
image - same as (g) - according to Eq. 9; (c)-(j) manual segmentations generated by different users.

graph generation.

5. Results and discussion

The experiments provided in this section address the issues related with the parameters radius and
threshold. We ran experiments to show how changes in radius and threshold values affect seg-
mentation. The novel quadtree-based super-pixel is compared with the original implementation,
which describes how to attain segmentation at a reduced computational cost. We provide a quan-
titative evaluation of our technique with Berkeley ground truth dataset. Finally, we compare our
approach with Arbelaez’s image segmentation method based on contour detection [18] and with
Felzenszwalb and Huttenlocher’s [17], which is also based on graph concepts.

5.1. Using the quadtree approach to generate the initial super-pixel grid

The algorithm speeded-up turbo pixel (SUTP) computes super-pixels from a division of the image
into rectangular regions (segments) of the same size, as shown in Fig. 1. This approach does not
take advantage of large uniform regions, for which the existence of many super-pixels is irrelevant.
We propose a combined quadtree approach [37] to generate the initial grid, followed by the SUTP
algorithm. We call this method quadtree speeded-up turbo pixels (QSUTP). Figs. 5(b)–(d) and
6(b)–(d) are the results obtained with the proposed QSUTP for original Figs. 5(a) and 6(a), respec-
tively. The results obtained with the original SUTP are depicted in Figs. 5(e)–(g) and 6(e)–(g).
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We considered λ1 = 1, λ2 = 0.09 and radius= 5 for both large images, as well as the adaptive
thresholding approach, CIELAB colour model and the fast greedy community detection algorithm.
For Figs. 5 and 6, SUTP generates accurate partitions for both original and quadtree approaches.
However, QSUTP is more suitable than SUTP for large images, since it generates a small number
of super-pixels.

Table 1 shows the processing time for both experiments for each stage of the segmentation
method, i.e. super-pixel extraction, graph generation and community detection. The super-pixel
extraction uses most of the time required for image segmentation. QSTUP reduces the processing
time significantly when images exhibit large uniform regions (see Fig. 6).

(a)

(b) (c) (d)

(e) (f) (g)

Fig. 5. Super-pixel segmentation with SUTP and QSTUP. (a) original 800 × 600 image, (b)
quadtree (zoom in), (c) QSTUP (zoom in), (d) segmentation by QSTUP with 30 objects in to-
tal, (e) original grid (zoom in), (f) original STUP (zoom in) and (g) segmentation by STUP with 34
objects in total.
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(a)

(b) (c) (d)

(e) (f) (g)

Fig. 6. Super-pixel extractions with SUTP and QSTUP. (a) Original 1280×960 image, (b) quadtree
(zoom in), (c) QSTUP (zoom in), (d) segmentation by QSTUP with 62 objects, (e) original grid
(zoom in), (f) original STUP (zoom in) and (g) segmentation by STUP with 59 objects.

Original SUTP Quadtree SUTP
SP GG FG Total SP GG FG Total

Fig. 5 1.21 1.03 0.25 2.49 1.69 0.59 0.14 2.42
Fig. 6 2.01 3.27 1.95 7.23 1.45 0.99 0.33 2.77

Table 1. Processing times (in seconds) for the original STUP and the proposed QSTUP, for each
stage of the segmentation method, i.e. super-pixel computation (SP), graph generation (GG) and
Fast Greedy community detection (FG).

5.2. Qualitative evaluation of the segmentation and the best parameter values

To analyse how the radius and threshold parameters influence the accuracy of the image segmenta-
tion we considered the Berkeley dataset [36] in our experiments. This dataset provides a different
number of manual segmentations for each of the 300 images of size 481 × 321. Each image was
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Fig. 7. Histograms of the segmentation quality I(S, S ′) for (a) R = 1, (b) R = 2, (c) R = 3 and
(d) R = 4.

segmented using radius values ranging from 1 to 5. The adaptive thresholding values ranged from
0.5 to 40.0, with a 0.5 increment. We adopted 10 × 10 initial size super-pixels, λ1 = 1, λ2 = 0.1
and the CIELAB colour model. Since we do not intend to penalize over-segmentation, we set the
penalty parameter α = 0. As a result, we generated 400 segmentations for each image, reaching
a total of 120,000 segmented images. To better compile the results, this massive amount of data
was stored in a Postgresql1 database. These segmented images were compared with the reference
images obtained by the method described in Section 4.4.

Fig. 7 shows the histograms of the segmentation quality measure I(S, S ′) - Eq. 9 - for radius
ranging from R = 1 to R = 4. Note that 0 ≤ I(S, S ′) ≤ 1, with I(S, S ′) = 1 representing
the highest accuracy. The best quality was achieved for R = 4. The mean value and standard
deviation of the segmentation quality for R = 4 are 〈I〉 = 0.74 and σI = 0.13, respectively. For
R = 5, 〈I〉 = 0.73 and σI = 0.14. Given the similarity between R = 4 or R = 5, we inferred that
either can be used for an accurate segmentation. Although there was no quality loss for R > 5, the
computational costs increased.

Fig. 8 shows the relationship between threshold (t) and the quality of the image segmentation
for different values of R. We considered an adaptive thresholding scheme, with t ranging from
0.5 to 40, with a 0.5 increment at each iteration. The Pearson correlation coefficient between the
quality of the segmentation I(S, S ′) and the threshold is ρ ≈ −0.3 for all cases. Unlike the radius,
the threshold does not have a significant influence on the segmentation results. The average quality

1http://www.postgresql.org/
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(a) (b)

(c) (d)

Fig. 8. Relationship between I(S, S ′) and the threshold for (a) R = 1, (b) R = 2, (c) R = 3 and
(d) R = 4.

of the segmentation suggests that the most accurate segmentations can be obtained for t < 15. The
plot in Fig. 9 shows that the processing time for segmentation equally increases with the radius
for both static and adaptive thresholding. The use of the adaptive thresholding approach does not
imply a significant increase in processing times, even when some super-pixels are evaluated more
than once. Moreover, the use of the adaptive threshold provided more accurate results.

Figs. 10 and 11 show the results of our segmentation approach for some natural scene images.
Segmentations are very accurate in comparison with the manual segmentation of the Berkeley
dataset. Recall that segmentation quality is computed by taking the reference image obtained as
described in Section 4.4, which can be understood as the most likely human segmentation.

5.3. Comparison with related image segmentation methods

We compared our approach with two segmentation methods: a) Felzenszwalb and Huttenlocher’s
[17] and Arbelaez’s [18]. The former is a graph-based approach which is suitable for large images
due to its low computational costs (see Section 2). The latter is a contour-based image segmentation
method with multi-scale capabilities which delivers highly accurate results. Quantitative analysis
presented in this section is the result of segmentation accuracy (according to the metric presented
in [33]) for all the 300 images on the Berkeley image database. The segmentation quality mean
and the standard deviation for our method were 〈I〉 = 0.74 and σI = 0.13 for R = 4, respectively.
We summarize in Table 2 the results produced by Felzenszwalb and Huttenlocher, Arbelaez and
our method.
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Fig. 9. Processing times (in seconds) for increasing values of radius R: static (t = 0.75) and
adaptive thresholds.

Method Mean Standard Deviation
Felzenszwalb 0.48 0.52

Arbelaez 0.67 0.16
Community Detection 0.74 0.13

Table 2 Segmentation quality Mean and standard deviation computed for the Berkeley database.

5.3.1. Felzenszwalb and Huttenlocher: We used the parameters as described in the original
paper. The mean and standard deviation of the segmentation quality for the Berkeley database
were 〈I〉 = 0.48 and σI = 0.52, respectively. Note that this mean value is close to the random
segmentation. Fig. 11 shows some segmentations obtained with our approach and the algorithm
by Felzenszwalb and Huttenlocher. In all cases our method provided more accurate results.

5.3.2. Arbelaez’s Contour-based Image Segmentation: We performed a similar experiment
with Arbelaez’s method, running the available source code implemented by the authors. The mean
and standard deviation of the segmentation quality for the Berkeley database were 〈I〉 = 0.67 and
σI = 0.16, respectively. Figure 12 shows the segmentation results of both proposed approach and
Abelaez’s for 4 samples selected from the database. Notice that the accuracy of our method is
slightly better, but the processing average time per image is much superior. Our method takes 4
seconds whereas Arbelaez’s takes 90 seconds in average.

6. Conclusions

The current article has reported on a framework for the segmentation of large images based on
super-pixels and community detection in graphs. We conducted a statistical analysis with 120,000
segmented images obtained from the Berkeley dataset. A new quantitative evaluation technique
for image segmentation has also been introduced. A technique that automatically selects reference
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(a) Original (b) Original (c) Original

(d) Ground Truth (e) Ground Truth (f) Ground Truth

(g) I(S, S′) = 0.99 (h) I(S, S′) = 0.98 (i) I(S, S′) = 0.99

Fig. 10. Segmentation produced by the proposed methodology based on super-pixels and commu-
nity detection in graphs.

images, given a set of manually segmented images, has been implemented. We modified the super-
pixel algorithm by Cigla and Alatan [26] in order to replace the original regular grid approach for a
quadtree-based grid. Quadtree contributes to reduce the number of super-pixels when images have
large and uniform regions. The fast greedy community detection algorithm for graph partition was
employed. Results show that our method is faster and more accurate than the algorithm by Felzen-
szwalb and Huttenlocher [17], which is also based on graph concepts. It is also more accurate than
Arbelaez’s, although by a narrower margin. However, our approach is much faster. This is due to
super-pixels, which speed up the process and allow the segmentation of large images in a much
faster way.
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(a) Original (b) Ground Truth (c) I(S, S′) = 0.98 (d) I(S, S′) = 0.94

(e) Original (f) Ground Truth (g) I(S, S′) = 0.97 (h) I(S, S′) = 0.94

(i) Original (j) Ground Truth (k) I(S, S′) = 0.96 (l) I(S, S′) = 0.65

(m) Original (n) Ground Truth (o) I(S, S′) = 0.95 (p) I(S, S′) = 0.77

Fig. 11. Original and ground truth images are in the first and second columns, respectively. Seg-
mentations produced by our method and Felzenszwalb and Huttenlocher’s [17] are in the third and
fourth columns, respectively. I(S, S ′) indicates the quality of the segmentation according to our
evaluation technique given in Section 4.4.
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