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ABSTRACT

The growth of the number of people in the monitoring scene may increase the probability of security
threat, which makes crowd counting more and more important. Most of the existing approaches
estimate the number of pedestrians within one frame, which results in inconsistent predictions in
terms of time. This paper, for the first time, introduces a quadratic programming model with the
network flow constraints to improve the accuracy of crowd counting. Firstly, the foreground of each
frame is segmented into groups, each of which contains several pedestrians. Then, a regression-based
map is developed in accordance with the relationship between low-level features of each group and the
number of people in it. Secondly, a directed graph is constructed to simulate constraints on people’s
flow, whose vertices represent groups of each frame and arcs represent people moving from one group
to another. Then, the people flow can be viewed as an integer flow in the constructed digraph. Finally,
by solving a quadratic programming problem with network flow constraints in the directed graph,
we obtain consistency in people counting. The experimental results show that the proposed method
can reduce the crowd counting errors and improve the accuracy. Moreover, this method can also be
applied to any ultramodern group-based regression counting approach to get improvements.

Index Terms— crowd counting, network flow constraints, quadratic programming model

1. INTRODUCTION

Crowd counting is one of the most important tasks for intelligent video surveillance systems. It has
a wide range of applications, such as public security, public transportation monitoring etc. Crowd
gathering often happens in the monitoring scenarios, so accurately calculating and controlling the
number of people can effectively reduce the probability of the abnormal events. However, crowd
counting is a challenging task due to the heavy long-term occlusion and various perspective-related
distortions in different surveillance environments.
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Nowadays, most of the existing approaches of people counting estimate the number of people
within one frame, which may lead to different counting results estimated for the same group of people
in different frames. One situation is that the foreground size of the same group of people may be very
large in the first frame, and then it becomes very small due to occlusion or perspective distortions
in the next frame. Accordingly, a method which considers foreground size as the main feature may
lead to different results for this group of people. Clearly, it influences the accuracy of the results.
It cannot guarantee the global consistency of the counting results of same group of people among
frames, although contemporary clues have been used in some image feature designs. Motivated by
recent approaches based on graph theory for multi-object tracking tasks, the paper proposes a digraph
model to represent relationship of different groups of moving people among frames in videos. Further,
based on the counting results for each group in each frame as output from regression-based counting
algorithms, a quadratic programming method is proposed, which is characterized with network flow
constraints, to improve these counting results.

The framework of the proposed method is illustrated in Fig.1. It is assumed that all the moving
objects are pedestrians. Firstly, the pedestrian foreground of each frame is segmented and clustered
into groups. Here, we simply consider each connected region of foreground as a group. If several
people are occluded with each other, then they are categorized into the same group. After extracting
the features of each group, a trained support vector regressor is used to obtain the corresponding
number of people. Further, a network is constructed with the network flow constraints, defining that
the number of people entering the group equals the number of people exiting, in which the foreground
groups identified with vertices and relationships between the two groups with arcs. Then the predicted
number of people of each group is improved by solving a quadratic programming model with network
flow constraints. Finally, the counting results of each frame are obtained through totalling all groups
in the same frame. The proposed quadratic programming method can improve the performance of
the regression-based counting approaches which need segmenting foreground as the first step, such
as the methods previously reported [1–5].
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Fig. 1. The main components of our method

Experimental results on benchmark datasets show that the proposed quadratic programming
method following regression model can reduce the counting errors and obtain higher accuracy than
the single regression model. Further some experiments are conducted to compare the results of the
proposed algorithm with those of other advanced methods on benchmark datasets, which verified a
better performance in most cases.



The paper is organized as follows: Section 2 gives the reviews of related work. Section 3 intro-
duces the simple features and SVR regression method used for experiments in this paper. In section
4, we develop the network flow model and introduce the constraints for crowd counting. Section 5
presents the quadratic programming model and the solution of this model. Experimental results of
different methods applied to the crowd counting problem are presented in section 6. Finally, section
7 gives some concluding remarks.

2. RELATED WORK

In the past decades, there were mainly three types of counting techniques [6, 7]:

Counting by detection: This kind of method allows to count people by a detector designed to
detect each individual, for example, pedestrian detector [8], face detector and head-shoulder detector
[9, 10]. In pedestrian detection approach, a binary classifier is trained using common features, such
as Haar wavelets and histograms of oriented gradients (HOG) [11]. Then the trained classifier can be
applied to search for pedestrians by sliding window in the image pyramid. The detection performance
can be further improved by deformable parts model [12]. Pedestrian detection is distortion insensitive
due to pyramid window search and deformable parts model, which leads to cross-scene counting
techniques. However, despite the remarkable improvement, the accuracy of counting by detection
seriously suffers from high missing rate of detectors, especially in high occlusion level.

Counting by statistics: These methods adopt machine learning techniques directly to learn a
mapping from low-level features to people counting in a scene. Among extensive machine learning
methods, regression methods [1–3, 5, 13–18] are the most popular in crowd counting. Chan and
Vasconcelos [1,13,14] utilized Gaussian process regression method and Bayesian-Poisson regression
methods to obtain the correspondence between the features of each segmented region and crowd
number. D.Conte et al [5, 15] applied support vector regression method to learn the mapping from
features based on the salient points to crowd number. Al-Zaydi et al [3] proposed a piece-wise linear
model with dynamic features selection to deal with low and high occlusions. Dan Kong et al [19]
introduced a viewpoint invariant feature and used a single hidden layer neural network as a regressor.
Yang Cong et al [20] estimated the number of pedestrians by quadratic regression, and a novel feature
based on flow velocity field estimation was considered as input of quadratic regression. Jingwen Li
[21] removed non-pedestrian moving objects first by template matching method, followed by a linear
regressor trained to predict the number of people. Although these type methods need some elaborate
work, including feature selection and off-line training stage, they are more robust and efficient than
that of detection based for a high-density crowd scene. Therefore, they gain extensive popularity in
crowd counting problem. There are other machine learning methods applied to crowd counting, such
as sparse respresentation [22] and deep learning [23]. However, almost all statistic methods estimate
the number of people within one frame, which may result in inconsistent predictions. It means that
these methods may get different values for the same group of people in consecutive frames.

Counting by tracking: Recent tracking methods consider people flow as a network flow and each
individual’s walking path as a continuous trajectory, which can be modeled as a 1-flow (or a path)
in the network. Then it’s possible to utilize network flow methods to complete tasks connected with
tracking multiple objects. Anton Milan et al [24] modeled the problem as a multi-labeled conditional
random field on the network, and found a set of continuous trajectory by α-expansion algorithm.
Horesh Ben Shitrit et al [25] formulated the problem of tracking multiple people whose walking



paths might intersect, as a multi-commodity network flow problem. As multiple objects tracking tasks
need to identify every single person, time-independent people detectors are used to detect possible
locations of individuals per frame, then these locations are linked into consistent trajectories by global
optimization on networks. Thus, this method may be successful in the situation where pedestrians are
well-separated from each other in the frame. However, it is hard to deal with ID switches and track
each person accurately in a crowd. It should be pointed out that the temporal cue and the network
model are also widely used in feature selection [26, 27] and other applications besides multi-object
tracking.

Motivated by the network flow methods in multi-object tracking, the research proposes a quadratic
programming method with network flow constraints for the refinement of the counting results from
regression method. Viewed as a whole object to be tracked, each group in the foreground is identified
as a vertex of a network (or a directed graph). Consistent counting results, which satisfy the network
flow constraints on the network, can be obtained by solving a quadratic programming problem.

3. BASIS OF REGRESSION BASED COUNTING METHODS

These methods have two hypotheses (which, anyway, are those used by most of the regression based
approaches in the literature): The camera is stationary; the moving objects are all pedestrians. Count-
ing by regression algorithms usually consists of three steps: (a) segmenting the foreground to several
groups; (b) extracting efficient features from the foreground groups, and (c) using a regression model
to predict the number of individuals for the extracted features obtained from each foreground group.

Inter-frame difference method and other methods are used to obtain motion foregrounds, and
the erosion and dilation operations can further reduce the noise of foreground images. Then each
connected region in the foreground image is viewed as a pedestrian group. As shown in Fig.2(a), the
pedestrians are clustered into four groups.

Let P be one of the groups in the segmented foreground image, V be the feature vector
(xc, yc, w, h, ψ, `, ζ, θ), which is extracted from group P , let f be a regression function trained
by the SVR with the key-values (group feature vector,count number). So the count number nP of
group P can be estimated by

nP = f(V ) (1)

where

• (xc, yc) is the center of gravity of group P .

• (w, h) are the width and height of bounding rectangle of group P .

• ψ is the total number of pixels of group P .

• ` is the perimeter of group P .

• ζ is the total number of edge pixels contained in group P .

• θ is the total number of SURF feature points contained in group P .



4. NETWORK FLOW CONSTRAINTS FOR CROWD COUNTING AND PROPERTY

(a) Frame 1 (b) Frame 2 (c) Frame 3

Fig. 2. Three consecutive frames and their segmentations.

Let (I1, I2, . . . , In) be a sequence of frames in a video. For each frame Ii, the foreground of
Ii is segmented into mi groups P i

1, P
i
2, . . . , P

i
mi

and each group is an integral region in frame i. Let
P i = {P i

1, P
i
2, . . . , P

i
mi
} and P =

⋃n
t=1 P

t. As the temporal cue is very important for video analysis,
the tracking of each group can get more information about the number of people. For example, as
shown in Fig.3(a), the foreground of Frame 1 is segmented into three groups, which are P 1

1 , P
1
2 , P

1
3 .

Fig.3(b) shows three groups in Frame 2, which are P 2
1 , P

2
2 , P

2
3 . Since the camera is fixed and people

cannot move fast within two frames, thus, P 1
1 and P 2

1 have large overlap as shown in Fig.3(c), so do
P 1
2 and P 2

2 , P 1
3 and P 2

3 . It is easy to see that P 1
i and P 2

i are the same group, they have the same
number of people (i = 1, 2, 3).

(a) Frame 1 (b) Frame 2 (c) Overlaps

Fig. 3. Groups of two consecutive frames and their overlaps.

Therefore, for two groups in consecutive frames, it depends on the area of overlap to link them.
Moreover, two or more groups in the same frame may merge into one group in the next frame, with
the number of people of merged group equalling to the total sum people of each group in the previous
one. And one group may be divided into two or more groups in the next frame, the number of people
in divided group equals the total sum of number of people in each group in the next one. In order to
model all these kinds of situations, a digraph model is utilized to track each group. If one group in
the first frame overlaps with another group in the second one, there is an arc between the two groups.
The formal definition will be given in Def 4.1.

This paper denotes with S where people enter the fixed scene and with T where people exit the
fixed scene. The number of people in groups entering the S-region may increase at any time, and
that of groups exiting the T-region may decrease at any time. For a fixed scene, regions where people
enter and exit, often close to the image boundaries, are not changed. The selection of S and T is
done manually. An example is shown in Fig.4. S and T are the same region, because they both allow
pedestrian to enter and exit in these videos.

Definition 4.1. Let D(V,A) be a directed graph, whose vertex set is V = P
⋃
{S, T} and the arc set



is A , as in:

(1) 〈P t
i , P

t+1
j 〉 ∈ A if and only if P t

i overlaps P t+1
j ;

(2) 〈S, P t
i 〉 ∈ A if P t

i overlaps S, and 〈P t
i , T 〉 ∈ A if P t

i overlaps T ;

(3) 〈S, P t
i 〉 ∈ A if frame t is the first frame of image sequence, and 〈P t

i , T 〉 ∈ A if frame t is
the last frame of image sequence;

(4) 〈S, P t
i 〉 ∈ A if P t

i ∩ P
t−1
k = ∅ for any P t−1

k ∈ P t−1, and 〈P t
i , T 〉 ∈ A if P t

i ∩ P
t+1
j = ∅

for any P t+1
j ∈ P t+1.

Clearly, directed graph D is a network with regions S and T . It should be noticed that all groups
in the first frame have arcs pointed from S and all groups in the last frame have arcs pointed to
T according to Def 4.1(4). Since frame number is increasing with the extension of each arc, then
network D is acyclic. To put it simple, groups and vertices of graph D are viewed as equivalent in
this paper. Obviously, foreground segmentation may not be as accurate as expected. Group tracking
failures may be caused by the fact that some P t

i has no intersection with any groups in P t−1 or some
P t
i has no intersection with any groups in P t+1. If P t

i has no intersection with any groups in P t−1,
then 〈S, P t

i 〉 is an arc according to Def 4.1(4). If P t
i has no intersection with any groups in P t+1, then

〈P t
i , T 〉 is an arc according to Def 4.1(4). The robustness of the proposed method will be shown as

follows.

Since it is impossible to construct the network of whole video in real time, for any frame Ic, the
set of (2` + 1) frames {Ic−`, Ic−`+1, . . . , Ic−1, Ic, Ic+1, . . . , Ic+`} is used to construct the network.
The graph is called (2` + 1)-layer network, which is centered in frame c and denoted by H(c, `).
The three consecutive frames are shown in Fig.2, and the corresponding 3-layer network centered in
frame 2, denoted by H(2, 1), is shown in Fig.5.

For digraph D, the sub-graph induced by V1 ⊂ V is denoted by D[V1]. Let D′ = D[V \{S, T}],
and decompose D′ into p weakly connected components D′1, D

′
2, . . . , D

′
p. Then for each i ∈

{1, 2, . . . , p}, induced digraph D[V (D′i) ∪ {S, T}] forms a network with region S and T , which is

Fig. 4. Entering region S and exiting region T in the specific scene.
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Fig. 5. 3-layer network H(2, 1) corresponding to three frames in Fig.2.

called weakly connected sub-networks Di. As an example, the three weakly connected sub-networks
corresponding to network H(2, 1) in Fig.5 are shown in Fig.6.
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Fig. 6. Connected component decomposition of network H(2, 1).

Suppose that the segmentation of foreground never divides a single person into two or more
groups, then the actual number of people in each group is an integer value. The definition of function
f is as follow.

f : A 7→ N. (2)

such that

• For any arc 〈P t
i , P

t+1
j 〉 ∈ A, define f(〈P t

i , P
t+1
j 〉) as the actual number of people moving from

group i in frame t to group j in frame t+ 1;

• For any arc 〈S, P t
i 〉 ∈ A, define f(〈S, P t

i 〉) as the actual people counting of group i in frame t;

• For any arc 〈P t
i , T 〉 ∈ A, define f(〈P t

i , T 〉) as the actual people counting of group i in frame t.

Let
f+(P t

i ) =
∑

〈P t
i ,y〉∈A

f(〈P t
i , y〉),

f−(P t
i ) =

∑
〈x,P t

i 〉∈A
f(〈x, P t

i 〉).
(3)



Clearly, f+(P t
i ) = f−(P t

i ) and they both represent the actual number of people in group P t
i , so

f(P t
i ) = f+(P t

i ) = f−(P t
i ). Moreover, people only enter the scene from region S and exit the scene

through region T , which implies that f+(S) = f−(T ). Thus, function f on arc set A is an integer
(S, T )-flow in network D. The flow constraints of network D can be defined as follows:


∑

〈x,P t
i 〉∈A

f(〈x, P t
i 〉) =

∑
〈P t

i ,y〉∈A
f(〈P t

i , y〉) = f(P t
i ), for P t

i ∈ V \{S, T}∑
〈S,P t

j 〉∈A
f(〈S, P t

j 〉) =
∑

〈P t
k,T 〉∈A

f(〈P t
k, T 〉)

(4)

Therefore, the predicted number of people of (2` + 1) frames in a video, which is a consistent
result, should satisfy the flow constraints of network D.

5. QUADRATIC PROGRAMMING MODEL

Let f̂(P t
i ) be the predicted value of group P t

i , which is obtained by the regression method described
in section 3. Since the prediction is processed per frame, it can never guarantee consistency results,
which means it will violate the network flow constraints of networkD. In order to obtain better crowd
counting results, an integer quadratic programming model on network D is put forward to improve
the performance of regression based methods.

5.1. Quadratic Programming Model

The quadratic programming model on network D is constructed as follows:

min
∑

P t
i ∈V \{S,T}

w(f̂(P t
i )) · (f(P t

i )− f̂(P t
i ))2

s.t. f(P t
i ) =

∑
〈x,P t

i 〉∈A

f(〈x, P t
i 〉), for P t

i ∈ V \{S, T}

f(P t
i ) =

∑
〈P t

i ,y〉∈A

f(〈P t
i , y〉), for P t

i ∈ V \{S, T}

∑
〈S,P t

j 〉∈A

f(〈S, P t
j 〉) =

∑
〈P t

k,T 〉∈A

f(〈P t
k, T 〉) (5)

where f(P t
i )’s and f(〈P t

i , P
t+1
j 〉)’s are integer valuables, w(f̂(P t

i )) represents the reliability of pre-
diction f̂(P t

i ) for the people counting of group P t
i . The determination of weights w(f̂(P t

i )) will be
given in section 5.2.

5.1.1. Model Solution

In general, it is difficult to obtain the solution of the proposed model directly. However, by relaxing the
integer valuables f(P t

i ), f(〈P t
i , P

t+1
j 〉) (∀P t

i ∈ V \{S, T}, ∀P
t+1
j ∈ V \{S, T}) into real valuables,



the model is modified to a quadratic programming problem with only linear equation constraints.
Since the objective function is strongly convex, the problem has a unique optimal solution. The
Lagrangian function of (5) can be written as follows:

L(f , λ−, λ+, µ) =
∑

P t
i ∈V \{S,T}

w(f̂(P t
i )) · (f(P t

i )− f̂(P t
i ))2

+
∑

P t
i ∈V \{S,T}

λ−
P t
i

f(P t
i )−

∑
〈x,P t

i 〉∈A

f(〈x, P t
i 〉)


+

∑
P t
i ∈V \{S,T}

λ+
P t
i

f(P t
i )−

∑
〈P t

i ,y〉∈A

f(〈P t
i , y〉)


+ µ

 ∑
〈S,P t

j 〉∈A

f(〈S, P t
j 〉)−

∑
〈P t

k,T 〉∈A

f(〈P t
k, T 〉)

 . (6)

In mathematical optimization, the Karush-Kuhn-Tucker (KKT) conditions are necessary condi-
tions of the first order. For convex programming problems, KKT conditions are also sufficient. The
KKT condition of the proposed problem (5) can be derived as follows:

∑
〈x,P t

i 〉∈A
f(〈x, P t

i 〉) = f(P t
i ), for P t

i ∈ V \{S, T};∑
〈P t

i ,y〉∈A
f(〈P t

i , y〉) = f(P t
i ), for P t

i ∈ V \{S, T};∑
〈S,P t

j 〉∈A
f(〈S, P t

j 〉) =
∑

〈P t
k,T 〉∈A

f(〈P t
k, T 〉);

λ+
P t
j

+ λ−
P t+1
k

= 0, for 〈P t
j , P

t+1
k 〉 ∈ A;

−µ+ λ−
P t
j

= 0, for 〈S, P t
j 〉 ∈ A;

λ+
P t
k

+ µ = 0, for 〈P t
k, T 〉 ∈ A;∑

P t
i ∈V \{S,T}

w(f̂(P t
i )) · (f(P t

i )− f̂(P t
i )) + λ−

P t
i

+ λ+
P t
i

= 0, for any P t
i ∈ V \{S, T}.

(7)

Suppose |V | = n and |A| = m, the KKT condition is a linear system with 3n+m− 5 variables and
3n+m−5 equations. Therefore, the solution of the quadratic programming problem can be obtained
by solving KKT linear system.

As can be seen, network D can be decomposed into several weakly connected sub-networks
D1, D2,
. . . , Dp. Since each sub-network is independent, then the original problem can be divided into some
simple sub-problems, which means we only need to solve the quadratic programming model on each
weakly connected sub-network Di, for i = 1, 2, . . . , p.

If some weakly connected sub-networks of D have a directed path with the n internal vertices
like H3(2, 1) shown in Fig.6 (H3(2, 1)), network flow constraints will turn to be f(P 1

l1
) = f(P 2

l2
) =



. . . = f(Pn
ln

). After setting them all be f , the optimal problem becomes as follow:

min
n∑

t=1

w(f̂(P t
lt)) · (f − f̂(P t

lt))
2. (8)

Finally, we get the consistent prediction, which is the weighted average value of each prediction.

f =

∑n
t=1 w(f̂(P t

lt
)) · f̂(P t

lt
)∑n

t=1 w(f̂(P t
lt

))
. (9)

5.1.2. Reduction of Lagrange Multipliers

In order to simplify the KKT linear system, the constraints on Lagrange multipliers are analyzed. The
equations in (10) are independent with other valuables in (7), and each of them is related to an arc of
graph D. 

λ+
P t
j

+ λ−
P t+1
k

= 0, for 〈P t
j , P

t+1
k 〉 ∈ A;

−µ+ λ−
P t
j

= 0, for 〈S, P t
j 〉 ∈ A;

λ+
P t
k

+ µ = 0, for 〈P t
k, T 〉 ∈ A.

(10)

Let λ+S = −µ and λ−T = µ, and set Ā be the union set of A and {〈S, T 〉}. Then equations (10)
can be unified as equation (11).

λ+x + λ−y = 0, for any 〈x, y〉 ∈ Ā. (11)

For any arc 〈x, y〉 ∈ Ā, Lagrange multiplier λ+x = −a can be viewed as out-weight of arc 〈x, y〉,
λ−y = a can be viewed as in-weight of 〈x, y〉. Fig.7 shows an edge representation of two Lagrange
multipliers. Define Deg+(x) = {y|〈x, y〉 ∈ Ā} and Deg−(x) = {y|〈y, x〉 ∈ Ā}. Clearly, equation
(11) implies λ−x = λ−y for any x, y ∈ Deg+(z) and λ+x = λ+y for any x, y ∈ Deg−(z).

−a a

x y

(b)

λ
+

x
λ
−

y

x y

(a)

Fig. 7. (I) The arc representation of Lagrange multipliers. (II) Reduction of Lagrange multipliers.

Definition 5.1. For any two arcs 〈u, v〉 ∈ Ā and 〈x, y〉 ∈ Ā, define relation R on arc set Ā as
〈u, v〉R〈x, y〉 if and only if u = x or v = y.

According to the defined relation R, it is easy to prove that the transitive closure of R is a relation
of equivalence. So arc set A can be partitioned into distinct k equivalent classes, say A1, A2, . . . , Ak.
For example, the equivalent classes of Ā(H1) = A(H1)∪{〈S, T 〉} in Fig.6 are setsA1(H1), A2(H1)
and A3(H1), where

A1(H1) ={〈S, T 〉, 〈S, P 1
2 〉, 〈P 3

1 , T 〉};
A2(H1) ={〈P 1

2 , P
2
2 〉, 〈P 1

2 , P
2
3 〉};

A3(H1) ={〈P 2
2 , P

3
1 〉, 〈P 2

3 , P
3
1 〉}.



Arcs in the same equivalent class have the same out-weights and in-weights, and they share one
common valuable. Therefore 2|V | − 4 Lagrange multipliers are reduced to k valuables. Suppose
arc set A(D) can be partitioned into distinct k equivalent classes, say A1, A2, . . . , Ak. Then define
R〈·, y〉 = i if and only if some arc 〈x, y〉 ∈ Ai, define R〈x, ·〉 = i if and only if some arc 〈x, y〉 ∈ Ai.
Finally by multipliers reduction, the multipliers can be reduced to λ1, λ2, . . . , λk and Equation (7)
can be simplified to the following form.

∑
〈x,P t

i 〉∈A
f(〈x, P t

i 〉) = f(P t
i ), for P t

i ∈ V \{S, T};∑
〈P t

i ,y〉∈A
f(〈P t

i , y〉) = f(P t
i ), for P t

i ∈ V \{S, T};∑
〈S,P t

j 〉∈A
f(〈S, P t

j 〉) =
∑

〈P t
k,T 〉∈A

f(〈P t
k, T 〉);∑

P t
i ∈V \{S,T}

w(f̂(P t
i )) · (f(P t

i )− f̂(P t
i )) + λR〈·,P t

i 〉 + λR〈P t
i ,·〉 = 0, for any P t

i ∈ V \{S, T}.

(12)
The arc representation of reduced Lagrange multipliers ofH1,H2 andH3 is given in Fig.8, and all the
Lagrange multipliers are labeled on the arcs of the network and arcs with the same label are equivalent.
As shown in Fig.8, arcs inA1(H1) share one common Lagrangian multiplier µ. Arcs inA2(H1) share
one common Lagrangian multiplier a and arcs in A3(H1) share one common Lagrangian multiplier
b.
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Fig. 8. Equivalence classes of lagrange multipliers.

5.2. Algorithm pseudo-code and time complexity

Algorithm 1 shows the pseudo-code of our proposed method.

Determination of weights: In order to determine w(f̂(P t
i )) (∀P t

i ∈ V \{S, T}) in quadratic
programming model, we analyzed the trained regressor in section 3. Let {(P t

i , g(P t
i )) : 1 ≤ i ≤

mt, t ∈ I} be the training set, where I is the set of selected frame numbers, mt is the number of
groups in the frame t and g(P t

i ) is the actual number of people in group P t
i . Let f̄(P t

i ) denote the
number of people of each group P t

i predicted by the trained regressor. Then the training data can be
represented by set {(P t

i , g(P t
i ), f̄(P t

i )) : 1 ≤ i ≤ mt, t ∈ I}. For a given predicted value τ , there must



Input: A sequence of frames I1, I2, . . . , In.
Output: Number of pedestrians f1, f2, . . . , fn according to each frame.

1 for j = 1; j ≤ n; j + + do
2 for t = j − 2`; t ≤ j + 2`; t+ + do
3 if t ≥ 1&&t ≤ n then
4 Segment It into mt groups and let P k = {P t

1, P
t
2, . . . , P

t
mt
};

5 for i = 1; i ≤ mt; i+ + do
6 Utilize trained regressor to predict people counting f̂(P t

i ) in group P t
i ;

7 end
8 end
9 else

10 Let mt = 0 and P t = ∅;
11 end
12 end
13 Construct network H(j, `) with vertex set V (j, `) =

(⋃j+2`
t=j−2` P

t
)
∪ {S, T};

14 Decompose network H(j, `) into p weakly connected sub-networks H1(j, `), H2(j, `),
. . . , Hp(j, `);

15 for i = 1; i ≤ p; i+ + do
16 if Hi(j, `) is a path then
17 Let f be the weighted average value of all f̂(P t

i )’s in Hi(j, `) according to
Equation (9);

18 for each vertex v in Hi(j, `) do
19 f(v) = f ;
20 end
21 end
22 else
23 Initialize a Union Set U such that each arc in Hi(j, `) is in a single class; for each

vertex v in Hi(j, `) do
24 Union all classes of U that contain in-arcs of v into one class;
25 Union all classes of U that contain out-arcs of v into one class;
26 end
27 Build system of linear equations Ax = b according to Equation (12);
28 Obtain S, T -flow f on Hi(j, `) by solving linear equations;
29 end
30 end
31 fj = 0;
32 for i = 1; i ≤ mj ; i+ + do
33 fj = fj + f(P j

i );
34 end
35 end
36 return f1, f2, . . . , fn;

Algorithm 1: QPL(2`+ 1) method.



be a list of groups whose number of people are predicted as τ , that is, set G(τ) = {g(P t
i ) : f̄(P t

i ) =
τ, 1 ≤ i ≤ mt, t ∈ I}. Finally, the regressor was regulated by subtracting the mean of G(τ) when
the predicted value equals τ , and let weight w(τ) be the variance of set G(τ).

Time complexity of QPLm algorithm : Suppose the image size is m × n, then foreground
extraction, foreground segmentation and feature extraction will cost O(mn). The SVR regressor
costs O(l)(l is the feature vector length)to get predictions of each group, in which l is the feature
vector length. For directed graph building process, each pixel in each group is labeled with its group
id. If the area of the overlap between group P t

i and group P t+1
j is greater than a given threshold, then

there is an arc from group P t
i to group P t+1

j . Thus, it costs at most O(mn) to create a finite layered
directed graph. Finally, suppose the graph has |V | vertices and |A| arcs, then the KKT condition of
equation (7) is a linear equation with 3|V |+|A|−5 variables and 3|V |+|A|−5 equations. If Gaussian
elimination approach is adopted to solve this model, the time complexity is O(|V |3 + |A|3). Thus,
the total time complexity is O(mn+ |V |3 + |A|3). Because the proposed method only considers the
limited layers, such as 23 layers, |V | and |A| are very small.

6. EXPERIMENTAL RESULTS AND ANALYSIS

6.1. Experiment Setup

Experiments are conducted on three benchmark datasets: PETS2009 dataset ,UCSD dataset and Fu-
dan dataset. The PETS 2009 dataset [28] is organized in four sections, but our attention is mainly
focused on the section S1 that was used to benchmark algorithms for the “Person Count and Den-
sity Estimation” of PETS2009 and 2010 contests. The experimental videos involve two different
views captured by using two cameras that contemporaneously acquired the same scene from different
points of view. They are eight videos of this dataset, namely S1.L1.13-57, S1.L1.13-59, S1.L2.14-06
and S1.L3.14-17 in view 1, and S1.L1.13-57, S1.L2.14-06, S1.L2.14-31 and S3.MF.12-43 in view 2;
which can be denoted as V1, V2, V3, V4, V5 ,V6, V7, and V8 for short. The UCSD dataset is intro-
duced by Chan [13] and contains 2000 annotated frames of the pedestrian moving along a walkway.
The Fudan dataset is proposed by Tan [29] and contains five sequences of 300 frames each, 1500
frames in total. It is worth noting that the ground-truths of all datasets are generated by manually
counting people in the specified regions in each sampled frame.

The indices used to report the performance are the Mean Absolute Error(MAE) and the Mean
Relative Error(MRE) defined as follows,

MAE =
1

N
·

N∑
i=1

|G(i)− T (i)|, (13)

MRE =
1

N
·

N∑
i=1

|G(i)− T (i)|
T (i)

(14)

where N is the number of frames of the test video and G(i) and T (i) are the estimated and the true
numbers of individuals in the i-th frame, respectively.



6.2. Experimental results of QPLm

On these datasets, two groups of tests are performed. For simplicity, the method that uses SVR
regression only is named after RO (regression-only), and the proposed method is named after QPLm
(quadratic programming model with m layers).

The first group of tests is carried on PETS2009 datasets, in which inter-frame difference method
was applied to obtain the foreground images. The training set is constructed by manually collecting
30-40 frames from the video, and the rest frames are used for testing. The experimental results are
reported in Table 1, and the curves of crowd estimation with two methods on four videos are shown in
Fig.9. Table 1 shows that the errors of QP method tend to descend with the increase of the numbers of
network layers. As shown in Fig.9, the RO method curve of video V1 oscillates around the ground-
truth curve (Fig.9(a)). Its errors are Gaussian-like noises, which are suited to be solved by QP method.
Thus, the QP method performs well.

Table 1. performance of RO method and QPLm on PETS2009 dataset.

Method
RO QPL7 QPL15 QPL23

MAE MRE MAE MRE MAE MRE MAE MRE
V1 1.29 5.58% 1.21 5.27% 1.18 5.21% 1.13 5.04%
V2 1.14 7.29% 1.01 6.31% 0.96 6.11% 0.96 5.90%
V3 4.77 17.35% 4.76 17.33% 4.71 17.22% 4.65 17.06%
V4 2.82 11.68% 2.88 11.84% 2.88 11.84% 2.88 11.84%
V5 8.53 24.79% 8.10 23.48% 8.04 23.30% 8.03 23.20%
V6 10.54 38.61% 10.10 37.30% 9.70 35.80% 9.25 33.69%
V7 2.97 9.57% 2.84 9.31% 2.90 9.48% 2.99 9.73%
V8 0.49 9.99% 0.28 5.13% 0.21 3.86% 0.11 2.20%

Compared with the curve of RO method using only one frame to predict the number of people
which leads to an obvious oscillation, the QP method can predict more precisely by smoothing out
the oscillations. The proposed method is highly effective to reduce the errors because of the nontriv-
ial network flow constraints. Otherwise, there will no improvements that can be made. Such as in
Fig.9(d), there is no remarkable promotion between the regression-only method and the QP method.
One of the reasons is that there is only one group in most frames of this video, and the only group
connects either to vertex S or to vertex T , so that no nontrivial network flow constraints are formed
in the network. Another reason is that the foreground segmentation algorithm of inter-frame differ-
ence used in the paper is not robust enough, therefore, network flow constraints fail to improve the
performance of video V4.

The second group of tests is carried out on UCSD and Fudan datasets. Since the foreground image
of each frame is provided by the authors in their datasets, our algorithm simply loads their foreground
images in foreground extraction phase. For UCSD datasets, frames 601-1400 are used for training
and the rest for testing. For Fudan datasets, frames 1-300 are used for training and the rest for testing.
Table 2 demonstrates that QPLm methods can always reduce the errors of the two datasets.



Table 2. Performance of RO method and QPLm on UCSD and fudan datasets.

Method
UCSD Fudan

MAE MRE MAE MRE
RO 2.41 10.02% 1.00 15.11%

QPL7 2.33 9.58% 0.93 13.72%
QPL15 2.27 9.22% 0.93 13.16%
QPL23 2.22 8.95% 0.93 12.80%

6.3. Evaluation of Processing Time

The datasets with the smallest and largest images were selected for comparison: the UCSD dataset
has a resolution of 236 * 158 pixels, whereas the PETS 2009 dataset has a resolution of 768 * 576.
The processing time of QPLm methods is reported in Table 3, which is obtained using a laptop with
an Intel(R) Core(TM)i5-3317U CPU @1.70GHz and uses Visual Studio 2010 with Opencv2.4.8 on
Windows 7. As shown in Table 3, the processing time of QPLm methods may increase significantly
with the addition of new network layers. The time complexity of network flow equations mostly
depends on the total groups in all layers in the constructed network. If there is only one group in most
frames, the processing time of QPLm methods has almost no noticeable changes with the increasing
of the number of network layers, like in the video V3. Table 4 presents the comparison of processing
speed using different methods.

Table 3. Processing time per frame (ms) of the proposed algorithm with different datasets.
dataset V1 V2 V3 V4 UCSD Fudan

resolution 768*576 768*576 768*576 768*576 238*158 320*240
RO 152 145 149 146 25 46

QPL7 155 146 149 147 28 49
QPL15 173 156 149 148 65 63
QPL23 255 197 149 151 254 134

Table 4. Comparison of processing speed(fps) with different algorithms
Method PETS2009 UCSD Fudan
Ryan [6] 4.5 32.3 –

Al-Zaydi [3] 14.88 – –
QPL3 6.9 40.00 21.74
QPL23 5.88 3.94 7.46

6.4. Comparison with other methods

Table 5 presents the comparison between the counting accuracy of the proposed method and that of
Conte’s [5] and Zini’s [2] method on PETS2009 datasets. Here, the training set is constructed by
manually collecting 30-40 frames from each video, which is the same as that in Conte’s method. It is
worth noting that when compared with Conte’s results the QP method has a significant performance
improvements, except video V4 and video V5. In these two videos, there is a rapid change of the
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(d) V4

Fig. 9. Curves of count number estimated by different methods and the ground truth. x-axis presents
frame number.

density of people when they turn right in the scene. Our designed feature, too simple to adapt well to
these rapid changes, may to some extent affect initial estimations of people number. Despite of the
improvements on the results the QP method can make, there are still gaps between our results and
Conte’s for the two videos.

Table 6 demonstrates the comparison between the performance of the proposed method and that
of Zhang’s [4] method on PETS2009 datasets. The training sets are the same as that in Zhang’s [4]
method as reported in Table 6. The results suggest that the regression model with network flow
constraints can always obtain lower MRE. That is, we can picture that there are no sharp changes on
the curve of people counting predicted by the proposed method.

Finally, we compare our proposed method with previous studies in the literature on the UCSD
and Fudan datasets in Table 7. As shown in Table 7, the proposed method can get lower MRE than
Ryan’s algorithm. However, QP method performs less than successfully on UCSD dataset. Since we



Table 5. Performance of our method and other methods on PETS2009 datasets.

Method
Conte [5] Zini [2] QPL23

MAE MRE MAE MRE MAE MRE
V1 1.36 6.80% 1.8 - 1.13 5.04%
V2 2.55 16.30% 1.72 - 0.96 5.90%
V3 5.40 20.80% 2.01 - 4.65 17.06%
V4 2.81 15.10% 2.0 - 2.88 11.84%
V5 4.45 15.10% - - 8.03 23.20%
V6 12.17 30.70% - - 9.25 33.69%
V7 7.55 23.60% - - 2.99 9.73%
V8 1.64 35.2% - - 0.11 2.20%

Table 6. Performance of our method and Zhang’s methods on PETS2009 datasets.

Method
Zhang [4] QPL23

MAE MRE MAE MRE
S1.L1.13-57(1) training - training -
S1.L1.13-59(1) 2.15 13.86% 2.22 13.60%
S1.L2.14-06(1) 9.89 34.87% 8.65 27.12%
S1.L1.13-57(2) training - training -
S1.L2.14-06(2) 9.98 62.21% 14.58 36.58%

simply load foreground images provided by authors of UCSD dataset in foreground extraction phase
and the provided foreground area is larger than the real area, because the foreground area includes the
moving people and some background pixels. The group feature, which uses all pixels in each group
as key part, interferes with the accurate estimation of the number of people in this method.

Table 7. Performance of the proposed method and other methods on UCSD and Fudan datasets.

Method
Ryan [6] Al-Zaydi [3] Conte [5] QPL23

MAE MRE MAE MRE MAE MRE MAE MRE
UCSD 1.46 6.23% 1.63 4.32% 3.26 10.88% 2.22 8.95%
Fudan 0.92 15.51% - - - - 0.93 12.80%

7. CONCLUSION

This paper introduced the network flow constraints to crowd counting for the first time. An integer
quadratic programming model is used to improve the prediction of regression methods. To put it
simple, the integer variables are firstly relaxed into real ones. Then the integer quadratic programming
models can be solved with linear equations. And the experimental results show that the proposed
algorithm can enhance the accuracy of the RO methods significantly in a great majority of videos.
When compared with other methods, the QPLm algorithm shows the obvious improvement and lower
MRE in most videos. In addition, the time complexity can be controlled within the acceptable range
by adapting the number of network layers. In the future, the more precise foreground segmentation
algorithms and more complex group features will be explored to improve the performance. And the



original integer programming problem should be considered directly, since the relaxation of integer
variables will lead to only approximate solutions.
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