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Abstract 

In this paper, we propose a general framework to accelerate the universal histogram-based 

image contrast enhancement (CE) algorithms. Both spatial and gray-level selective down- 

sampling of digital images are adopted to decrease computational cost, while the visual 

quality of enhanced images is still preserved and without apparent degradation. Mapping 

function calibration is novelly proposed to reconstruct the pixel mapping on the gray levels 

missed by downsampling. As two case studies, accelerations of histogram equalization (HE) 

and the state-of-the-art global CE algorithm, i.e., spatial mutual information and PageRank 

(SMIRANK), are presented detailedly. Both quantitative and qualitative assessment results 

have verified the effectiveness of our proposed CE acceleration framework. In typical tests, 

computational efficiencies of HE and SMIRANK have been speeded up by about 3.9 and 

13.5 times, respectively. 

Index terms 

Image processing, contrast enhancement, acceleration, speed up, downsampling, histogram. 

1.  Introduction 

Contrast enhancement (CE) of digital images refers to the operations which improve the 

perceived contrast. Such contrast is typically defined as the dynamic range of pixel gray- 

levels within global or local image regions. CE is a widely used image enhancement tool in 

real applications [1]. Generally, a good CE technique is expected to have: 1) more contrast 

improvement with less image distortion; 2) low computational cost. 

   In consideration of its importance in image processing, plenty of previous works have 
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presented image CE techniques. In terms of the mapping applied to pixel gray-levels, the 

existing CE algorithms can be generally categorized as global, local and hybrid ones [2]. 

Global CE modifies an image via an identical pixel value mapping, such that the gray-level 

histogram of the processed image resembles the desired one and becomes more spread than 

that of the original image [2, 3]. Local CE improves contrast by altering pixels in terms of 

local properties, and typically operates in the image transform domains, such as the discrete 

cosine transform (DCT) [4] and the discrete wavelet transform (DWT) [5]. Local CE can 

also be enforced by adaptively applying the global CE to local image regions [3]. Hybrid 

CE, which combines the global and local CE together, can improve the unified perception 

of both global and local contrasts [6]. 

   Note that most of existing global CE techniques need to use the gray-level or transform 

coefficient histogram of input images. As summarized in [3], histogram modification-based 

CE received the most attention due to straightforward and intuitive implementation qualities. 

One popular global CE method is histogram equalization (HE) [1], which improves contrast 

by redistributing the probability density of gray-levels towards uniformity. The prominent 

merit of HE lies in its high computational efficiency. However, HE might incur excessive 

enhancement and unnatural artifacts on the images with high peaks in histograms. In order 

to attenuate such deficiency, lots of improved HE algorithms [3, 7-11] have been proposed, 

where the histogram modification framework (HMF) [3] is an influential one. HMF treats 

CE as an optimization problem by minimizing a cost function which includes the penalty of 

the histogram deviation from original to uniform. Gu et al. [10] proposed an optimal his- 

togram mapping for automatic CE based on a novel reduced reference image quality metric 

for contrast change. In [11], a complete HMF is presented by integrating the automatic 

parameter selection via saliency preservation. T. Celik [6] proposed spatial entropy based 

CE (SECE) by novelly incorporating the spatial distribution characteristics of pixels into the 

design of gray-level mapping function. SECE can always slightly improve image contrast 

without incurring serious image quality degradation. Recently, T. Celik [2] proposes the 

state-of-the-art global image CE method, SMIRANK, by using spatial mutual information 

of pixels and PageRank. Although good enhancement quality is achieved, such a algorithm 

runs rather slower than most of other CE algorithms including HE, HMF, SECE and the 

adaptive gamma correction with weighting distribution (AGCWD) [12]. Besides, the trans- 

form coefficient histogram has also been used in CE design [4]. 

   Low computational complexity is an important requirement for the real applications of 

CE techniques, such as those in low-power embedded imaging systems and the internet of  
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Fig. 1. The proposed CE acceleration framework. The new operations integrated into a general his- 

togram-based CE are plotted in dotted-line boxes. 

 

things. Moreover, existing histogram-based CE algorithms may become computationally 

inefficient in enhancing the images with large spatial resolution and high dynamic range 

(HDR). In such frequently encountered scenarios, both the one- and two-dimensional gray 

level histograms involved calculations would become highly time-consuming. Therefore, it 

is essential and significant to speed up general histogram-based CE algorithms. However, 

despite some particularly designed fast CE methods [13, 14], to the best of our knowledge, 

there does not exist any prior work focusing on the acceleration of general histogram-based 

CE. In this work, we study such a universal problem by proposing a general acceleration 

framework to improve the existing CE algorithms themselves, instead of applying parallel 

computing or device-dependent computational strategies [15, 16]. Selective downsampling 

in both spatial and gray-level domains is employed to decrease computational cost, while 

the visual quality of enhanced images is still preserved. As case studies, the accelerations of 

HE and SMIRANK are presented detailedly. 

   The remainder of this paper is organized as follows. Section 2 proposes the acceleration 

framework for general histogram-based CE techniques. Section 3 presents the detailed case 

studies on HE and SMIRANK, followed by the experimental results and discussion given in 

Section 4. The conclusions are drawn in Section 5. 

2.  Proposed CE Acceleration Framework  

As illustrated by the solid-line boxes of Fig.1, a general gray level histogram-based CE 

technique typically consists of three basic steps: histogram computation, mapping function 

generation and image transform. Specifically, a single global or dense local histogram(s) of 

an input image is first computed. Then an elaborately designed mapping function is derived 

from such statistics and the image. Lastly, the pixel gray-level mapping is globally applied 

to the input image.  
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   In order to accelerate such histogram-based CE processing, we propose to speed up the 

histogram computation by selective spatial and gray level downsampling. The yielded low- 

resolution histogram would benefit the fast generation of a low-resolution mapping function, 

which is merely defined in the quantized gray levels. However, such a mapping function is 

improper to be directly applied to neither downsampled nor primary input images, because 

the abnormal stratification artifacts are incurred and the function on missed gray levels are 

undefined. As another contribution of this framework, we novelly propose to calibrate such 

a low-resolution mapping function so that it reasonably covers the full gray level dynamic 

range of input images. 

2.1 Fast Histogram Computation via Selective Downsampling 

   Histogram construction is an essential and fundamental step in general histogram-based 

CE methods, which can be accelerated by decreasing the computational costs of histogram 

computation and histogram-involved operations in mapping function generation. As such, 

the cost-effective selective spatial and gray-level downsampling is proposed to be used as 

acceleration strategies, as plotted in the dotted-line boxes of Fig. 1. 

   In order to decrease the number of counted pixels, spatial downsampling is first applied 

to the B-bit input grayscale image denoted by X(i, j), i=0, 1, …, M-1, j=0, 1, …, N-1, where 

[M, N] denote the image size. Without loss of generality, the uniform downsampling with 

the sampling step s is used to diminish the computational cost. The spatially downsampled 

image Xs is generated as  

 Xs(i, j)=X(s·i, s·j)                            (1) 

where i=0, 1, …, M s   -1, j=0, 1, …, N s   -1, and     denotes rounding towards zero. If s 

is limited within a proper range, gray-level histogram of the downsampled image can keep 

consistent shape as that of the input. The integer, instead of fraction, datatype of s values are 

adopted to decrease the additional computational cost incurred by downsampling. s can also 

be larger for large size of images due to the higher correlationship between local pixels.  

   The gray-level histogram of Xs can be obtained as  

h(k) =
 1 1

0 0

,M s N s
s

i j

i j
k

        

 

  
     

 
X

l                       (2) 

where k=0, 1, ..., Ng-1.   is the quantization step of gray levels. Ng 2B   is the number of 

histogram bins.  l  is an indicator function. h(k) would be used to yield the mapping 

function, where post operations typically run on such a histogram. As such, the histogram 
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dimension, Ng, also affects the computational cost of CE algorithms. Here, we propose to 

decrease the statistical precision of histograms properly by reducing the number of bins. 

Such histogram coarsening can be treated as the gray-level downsampling of images. 

   Overall, we can see that spatial downsampling benefits CE of large size of images, and 

gray-level downsampling accelerates histogram-dependent mapping function generation. 

2.2 Calibration of Mapping Function 

   Let the low-resolution mapping function derived from h(k) be denoted by y=m(k), k=0, 

1, ..., Ng-1. Mapping function calibration aims to reconstruct a proper full dynamic mapping 

function y=m’(x), x=0, 1, ..., 2B-1 from y=m(k). Generally, there exist two candidate image 

transform schemes which are discussed detailedly as follows. 

   1) As Matlab function imhisteq, y=m(k), k=0, 1, ..., Ng-1 is upsampled into y=m’(x)= 

m( x    ), x=0, 1, ..., 2B-1 by nearest neighboring interpolation. Then y=m’(x) is applied to 

Xs, and the result is reversely upsampled to yield an enhanced image Y with the same size 

as X. Note that in some CE algorithms, such as SMIRANK, the y=m’(x) here can not be 

directly applied to X, since some kinds of gray levels in X may be missed by the spatial 

downsampling and excluded from histograms. Nevertheless, annoying stratification artifacts 

are easily incurred in Y due to degraded gray-level resolution, especially in the X with large 

smooth regions and histogram peaks. As a result, such a transform scheme is undesirable. 

   2) y=m(k) is linearly completed and upsampled into y=m’(x) for covering all the gray 

levels of X, and then applied to X for yielding an enhanced image Y. The stratification 

artifacts can be attenuated efficiently in this scheme, which is adopted as mapping function 

calibration in our proposed CE acceleration framework. 

   Specifically, in order to reduce additional computational burden, the simple yet efficient 

one-dimensional linear interpolation is used to implement the upsampling and completing 

of y=m(k). In terms of generation methods of mapping function, the completing operation 

may be selectively used to estimate the gray levels missed by either spatial or gray-level 

downsampling, as that enforced in the accelerated SMIRANK algorithm (see Section 3.1). 

3.  Case Studies on HE and SMIRANK 

This section presents the case studies of our acceleration scheme on two typical CE algo- 

rithms: HE and SMIRANK. For the input B-bit grayscale image X, CE algorithms aim to 

yield an enhanced image Y with higher contrast and less distortion than X. As the prior 
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works [2, 3, 6], CE of color images is realized by applying CE to luminance channel images 

and preserving the chrominance components in HSV color space. 

3.1 Acceleration of HE 

   The accelerated HE algorithm is proposed as follows, 

   (1) Spatially downsampling X to Xs as Eq. (1). 

   (2) Compute the downsampled gray-level histogram h of Xs as Eq. (2). 

   (3) Obtain cumulative distribution function (CDF) c from h. 

   (4) Calibrate c to c' with 2B items by upsampling it with linear interpolation. 

   (5) Perform pixel value transform Y(i, j)=[(2B-1)  c'(X(i, j))], where [  ] means conver- 

ting to unsigned B-bit integers. 

   Comparing with the baseline HE algorithm [1], the integrated acceleration measures are 

included in the steps (1), (2), (4). Specifically, in the step (1), spatial image downsampling 

decreases the number of counted pixels, which can accelerate the generation of histogram. 

The shorter histogram (Ng<2B) yielded in the step (2) benefits the fast calculation of CDF. 

In the calibration phase, i.e., the step (4), the computationally cost-effective upsampling of 

CDF is used to reconstruct a continuous mapping function covering the full dynamic range 

[0, 2B-1] of X.  

3.2 Acceleration of SMIRANK 

   The accelerated SMIRANK algorithm is proposed as follows, 

   (1) Compute 2D joint-spatial histogram hb(k) of the spatially downsampled image Xs as 

Eqs. (1)(2). Here, b=1, 2, ..., Nb are the indexes of divided non-overlapped image blocks in 

Xs, and k=0, 1, ..., Ng-1 are the bin indexes of blockwise gray level histograms. 

   (2) Normalize hb(k) to be hb(k)／(( M s   )( N s   )). 

   (3) Compute the mutual spatial information as 

'
'

0

( , )
( , ) ( , )log

( ) ( )

bN
b

b
b b b

h k l
k l h k l

h k h l


  

I
                      

(3) 

where h'
b(k, l) = min(hb(k), hb(l)), k, lX={xn | ( ) 0nbb

h x  , n=1, 2, ..., K}. K denotes the 

number of non-zero columns within the matrix H which consists of Hb, k +1=hb(k). 

   (4) Calculate = +(1- ) T G S ov , where S is created by normalizing each column of I. 
1Ko R

 
is unit vector and 

1Kv R is uniform vector, i.e., =1To v . [0,1]  
 
is the adjustable 

damping factor. 
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   (5) The gray-level rank vector 1Kr R is gained by solving Gr = r, where r = (1- ) 

(E- S)-1v, and E is K×K identity matrix. 

   (6) Map input gray-levels in X to output 

yk = yk-1 + k-1, k  (2
B-1)

                          
(4) 

where k=2, 3, ..., K and y1=0.  k-1, k [0,1]  is defined as 

1,

( 1) ( ) (1) ( )

2 2( 1)k k

k k K

K 
  

  


r r r r
.
                     

(5) 

   (7) Complete F(xk)=yk , k =1, 2, ..., K, to F(k) , k=0, 1, ..., Ng-1, by filling the lost items 

via linear interpolation. Then F is linearly upsampled to be with 2B items, i.e., F(x) , x=0, 

1, ..., 2B-1. Lastly, output Y(i, j)=[(2B-1) F(X(i, j))]. 

   Comparing with SMIRANK [2], the main changes lie in the steps (1), (7). Specifically, 

both spatial and gray-level downsampling are implemented to speed up the generation of 2D 

joint-spatial histograms in the step (1). The low-dimensional blockwise histograms hb  

could evidently speed up the post computations of mutual information I and gray-level rank 

vector r, which correspond to the steps (3) and (5), respectively. Such two steps constitute 

the main part of SMIRANK, and serve to generate an incomplete low-resolution mapping 

function {F(xk)=yk | k=1, 2, …, K} in the step (6). In the calibration step (7), F is completed 

and upsampled by linear interpolation to recover the full dynamic mapping function {F(x) | 

x=1, 2, …, 2B-1}. Such processing refers to mapping function calibration in the acceleration 

framework. Lastly, the enhanced image Y is outputted via pixel value mapping. 

4.  Experimental Results and Discussion 

4.1 Datasets, Algorithms and Performance Measures 

   Test images are collected from four standard databases, i.e., TID2013 [17], CSIQ [18], 

CCID2014 [10] and RGB-NIR [19]. TID2013 image dataset includes 25 reference images 

and their contrast-changed versions at Levels 1~5, which respectively correspond to small 

contrast decreasing/increasing, larger contrast decreasing/increasing and the largest contrast 

decreasing. In CSIQ, 30 reference images are degraded at 5 consecutive levels, where the 

Levels 1 and 5 signify the smallest and largest contrast degrading, respectively. CCID2014 

consists of 15 representative Kodak images [20] and their 655 contrast-distorted copies. 

RGB-NIR image dataset has 477 images captured in RGB and near-infrared (NIR), where 
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RGB images are used in our tests. The size of TID2013, CSIQ, CCID2014 and RGB-NIR 

images are 512×384, 512×512, 768×512 and 1024×(620~768) pixels, respectively. CE 

algorithms are applied to the corresponding 8-bit luminance images in HSV color space. 

   Our proposed fast HE (FHE) and fast SMIRANK (FSMIRANK) are compared with 

naive HE [1], SMIRANK [2], HMF [3], AGCWD [12] and SECE [6]. Default parameter 

settings of primary algorithms are used. Without loss of generality,  = 0.9 is set in both 

SMIRANK and FSMIRANK. 

   Currently, the performance assessment of image CE algorithms is still a challenge task 

[2, 10, 21-23]. In order to keep consistency with prior works, the state-of-art CE metrics, 

QRCM (quality-aware relative contrast measure) [2] and BIQME (blind image quality 

measure of enhanced images) [23] are used in all the tests. QRCM is a full-reference image 

quality assessment for measuring both the contrast change and image quality degradation 

between input and outputs. It yields a number within [-1, 1], where -1 and 1 denote the full 

level of contrast degradation and improvement, respectively. As a no-reference CE metric, 

BIQME captures five influencing factors: contrast, sharpness, brightness, colorfulness and 

naturalness. A larger BIQME score signifies better visual perceptual quality. 

4.2 Effectiveness Evaluation of Acceleration Strategies 

   Perceptual quality of enhanced images and average processing time per image are two 

important criteria for evaluating CE methods. In order to evaluate the visual quality change 

incurred by proposed accelerations, the QRCM difference between the images yielded by 

accelerated and naive algorithms (QRCM=QRCMfast－QRCMnaive) is computed for each 

RGB-NIR image. CDF statistics of such QRCM values are plotted in Fig. 2, where (a)(c) 

and (b)(d) correspond to the HE and SMIRANK groups, respectively.  

   We also investigate the performance varying with Ng and s. Fig. 2(a)(b) plots QRCM 

statistics varying with Ng for HE and SMIRANK groups, respectively. For HE, QRCM 

values of nearly all samples are above a rather small value, i.e., -0.005. Moreover, more 

than 60% sample values are positive, which signifies higher QRCM gained by FHE. Overall, 

visual quality of the image enhanced by FHE is comparative or even better than that of HE, 

and is insensitive to Ng. Fig. 2(b) shows that QRCM values of more than 90% samples for 

FSMIRANK are lower than those for SMIRANK. However, there are about 99%, 90%, 

70% sample values above -0.01 (a negligible degradation) for Ng=128, 64, 32, respectively. 

Such results verify that FSMIRANK is comparative or slightly worse than SMIRANK on 

the visual quality of outputs. 
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Fig. 2. Cumulative distribution of the difference between QRCM values yielded by (a)(c) FHE and 

HE; (b)(d) FSMIRANK and SMIRANK on RGB-NIR dataset under different s and Ng settings. 

 

TABLE I 

AVERAGE COMPUTATION TIME (MS) PER IMAGE ON RGB-NIR DATASET FOR FHE AND FSMIRANK 

UNDER DIFFERENT s AND Ng SETTINGS. 

Ng 256 128 64 32 64 

s 1 1 4 8 16 

FHE   48.6  42.4 36.4 32.7 36.4 12.6 11.7 11.0 

FSMIRANK  530.2 156.0 86.3 64.9 86.3 34.5 35.3 29.7 
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   The computational complexity decrease incurred by accelerations is tested by running 

CE algorithms on a computer with Intel Core i5-5200U CPU @ 2.2 GHz and 8G RAM 

under MATLAB R2013a. As shown in Table I, the average processing time for one image 

decreases monotonously with Ng. Without loss of generality, Ng=64 is selected for limiting 

the degradation and computational complexity. 

   Results on the visual quality varying with s are shown in Fig. 2(c)(d). Overall, the per- 

formances at s=1, 4, 8 are comparative, and far better than that at s=16. Table I shows that 

the computing speed also decreases monotonously with s. In terms of the trade-off between 

computation cost and visual quality, s=8 is selected. In conclusion, the effectiveness of our 

proposed CE acceleration strategies can be verified by such baseline evaluation results.  

4.3 Comparing with Other CE Methods 

   Objective and subjective performance assessment of the accelerated CE methods is also 

enforced by comparing with other CE algorithms on extensive datasets. Table II shows the 

average QRCM values for different CE algorithms on four databases. It shows that FHE is 

comparative or slightly better than HE, where the increment falls within [-0.003, 0.044]. 

Among all methods, SMIRANK ranks first and is nearly followed by FSMIRANK, which 

owns comparative or slightly lower QRCM values. The decrement falls within [-0.01, 0] 

 

TABLE II 

AVERAGE QRCM (X10-2) FOR DIFFERENT CE ALGORITHMS ON EACH DATASET. HERE, S=8, Ng=64.  

LEVEL 0 MEANS UNALTERED IMAGES. THE LARGEST TWO PER ROW ARE LINED. 

Algorithm HMF AGCWD SECE HE FHE SMIRANK FSMIRANK

TID2013 

Level 0  10.1  9.1  7.5 10.7 12.0 13.5 13.5 

Level 1  11.5 12.3 11.8 15.8 15.5 17.5 17.3 

Level 2   7.7  5.6  4.0  4.6  7.2  9.3  9.3 

Level 3  14.1 17.8 18.8 22.1 22.0 23.9 23.7 

Level 4   5.5  2.7  1.8 -1.9  2.5  5.9  5.9 

Level 5  17.1 28.8 31.2 33.0 32.8 34.9 34.9 

CSIQ 

Level 0   7.6  6.3  3.1  3.3  3.4  7.9  7.7 

Level 1  10.5 10.5  9.3  9.3  9.1 13.7 13.2 

Level 2  14.2 17.0 18.1 17.8 17.6 21.9 21.3 

Level 3  17.5 30.0 33.0 31.5 31.5 35.0 34.1 

Level 4  17.8 35.0 37.7 36.1 36.1 38.9 37.9 

Level 5  17.8 35.0 37.7 36.1 36.1 38.9 37.9 

CCID2014  13.0  9.8 11.9 11.8 13.9 17.3 17.4 

RGB-NIR  12.9  9.4  7.8 11.0 11.7 14.9 14.7 
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TABLE III 

AVERAGE BIQME (X10-1) FOR DIFFERENT CE ALGORITHMS ON EACH DATASET. HERE, S=8, Ng=64.  

UNEN MEANS UNENHANCED IMAGES. THE LARGEST TWO PER ROW ARE LINED. 

Algorithm UNEN HMF AGCWD SECE HE FHE SMIRANK FSMIRANK

TID2013 

Level 0  59.0 63.0 60.9 61.6 64.1 64.6 63.5 63.7 

Level 1  56.3 61.5 59.1 61.1 64.4 64.1 63.2 63.3 

Level 2  62.3 64.8 63.8 63.4 64.1 65.1 64.7 64.9 

Level 3  51.5 58.5 56.3 60.4 64.2 64.0 62.8 62.9 

Level 4  63.7 65.2 65.0 64.1 63.1 64.8 64.8 65.0 

Level 5  41.9 50.8 51.0 59.2 63.9 63.5 62.3 62.2 

CSIQ 

Level 0  60.1 62.8 62.4 61.4 65.2 65.3 63.4 62.6 

Level 1  55.6 60.5 58.9 59.4 62.8 62.8 61.7 61.7 

Level 2  51.2 57.8 56.7 58.6 62.1 62.2 61.4 61.4 

Level 3  42.2 49.6 52.2 57.8 61.3 61.3 61.0 60.8 

Level 4  38.0 45.0 49.6 57.2 60.4 59.9 60.5 60.1 

Level 5  38.0 45.0 49.6 57.2 60.4 59.9 60.5 60.1 

CCID2014  50.1 57.3 55.2 57.9 63.2 63.9 61.1 60.8 

RGB-NIR  54.6 60.2 56.8 57.3 62.0 62.3 60.4 60.6 

 

 
    Input        HMF       AGCWD       SECE        HE         FHE      SMIRANK  FSMIRANK 

 

      Image 1         0.21           0.19          0.15           0.27          0.27           0.26          0.25 

 

      Image 2         0.16           0.20          0.07           0.11          0.11           0.20          0.21 

   

      Image 3         0.14           0.19          0.13           0.24          0.24           0.22          0.22 

               
      Image 4         0.16           0.20          0.07           0.11          0.11           0.20          0.21 

Fig. 3. Results for different CE methods on four example images. The corresponding QRCM value 

of each image is shown below. 
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with the average of -0.004, which is rather smaller than the margins above the other CE 

methods including HMF, AGCWD and SECE. Table III lists the corresponding test results 

achieved by the BIQME metric. Although the measurements are prone to HE, the consistent 

conclusion as that of QRCM could also be obtained. All such quantitative and objective 

assessment results verify that the accelerated methods can preserve the visual enhancement 

quality of naive CE methods, and generally behave better than HMF, AGCWD and SECE. 

   Fig. 3 shows the qualitative visual quality assessment enforced on four example images. 

The images 1-2, 3, 4 are from CSIQ, BSD500 [24] and RGB-NIR databases, respectively. 

From both visual observation and QRCM measurements, we can see that perceptual quality 

of the enhanced images yielded by accelerated methods is preserved successfully. Except 

for those inherently brought by naive CE methods, no additional unnatural artifacts would 

be incurred by the corresponding accelerated methods. 

4.4 Complexity Comparison 

   Time complexity of different CE algorithms is also tested. The average processing time 

for each image of the four different datasets is shown in Table IV, which indicates that FHE 

outperforms other methods remarkably. Although HE is famous for its fast processing speed, 

it is still speeded up by about 3.9 times by our proposed acceleration scheme. Moreover, 

SMIRANK is impressively speeded up by about 13.5 times by FSMIRAMK. Such evident 

improvement should attribute to both the spatial and gray-level downsampling. FSMRANK 

runs much faster than SECE and AGCWD. Comparing with HMF, FSMIRANK behaves 

comparatively on TID2013 and CSIQ, but better on CCID2014 and RGB-NIR. Such results 

should attribute to the benefit of our proposed methods on enhancing the relatively large 

size of images, such as those from RGB-NIR and CCID 2014. 

   We also analyze the theoretical time complexity of CE algorithms in enhancing a M×N 

B-bit grayscale image. The analysis results are shown in Table V. For HE, computing the 

 

TABLE IV 

AVERAGE COMPUTATION TIME (MS) PER IMAGE FOR DIFFERENT CE ALGORITHMS ON EACH 

DATASET. HERE, S=8, Ng=64. THE FASTEST TWO PER ROW ARE LINED. 

Algorithm HMF AGCWD SECE HE FHE SMIRANK FSMIRANK

TID2013  18.0  37.2  54.3 14.7  4.0 314.0 22.6 

CSIQ  23.9  50.7  60.8 19.6  5.3 283.0 21.0 

CCID2014  34.8  68.8  75.7 29.1  6.9 307.8 25.5 

RGB-NIR  56.9 118.6 116.4 47.4 11.7 519.4 35.3 
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TABLE V 

THEORETICAL TIME COMPLEXITY OF NAIVE AND ACCELERATED CE ALGORITHMS. 

Algorithm Time Complexity 

HE     O(2MN+2B) 

FHE     O((1/s2+1)MN +Ng) 

SMIRANK     O(2MN +K22B+K3) 

FSMIRANK     O((1/s2+1)MN+KNg
2+ (KNg/2

B) 3) 

 

histogram requires time O(MN). Generating the mapping function requires time O(2B), and 

finally applying pixel-wise transform to yield the enhanced image requires time O(MN). As 

a result, the total time complexity of HE is O(2MN+2B) [3]. For FHE, such corresponding 

three items require times O(MN/s2), O(Ng) and O(MN), respectively. The mapping function 

calibration costs time O(1). So the total time complexity of FHE is O((1/s2+1)MN +Ng). 

   For SMIRANK, the whole computational cost mainly comes from the computations of 

blockwise histograms, mutual information matrix, the rank vector and pixel value mapping. 

Such four items requires times O(MN), O(K22B), O(K3) and O(MN), respectively. Here, K 

denotes the number of gray levels existing in the primary input image. Therefore, the total 

time complexity for SMIRANK is O(2MN+K22B+K3). Correspondingly, the total time com- 

plexity of FSMIRANK is O((1/s2+1)MN+KNg
2+(KNg/2

B)3), where the mutual information 

matrix and rank vector are calculated in terms of downsampled gray levels. 

   We also noted that 
 
can be set automatically based on the gradient magnitude map of 

input images [2]. We also conduct related experiments and find that such automatic setting 

may slightly improve the visual quality at a cost of increasing a little computational time. 

Nevertheless, comparing with the prior art, the computational performance superiority of 

FSMIRAMK gained by the integrated acceleration strategies is still rather evident.  

5.  Conclusions 

In this paper, a fundamental framework is proposed to accelerate general histogram-based 

image CE algorithms. Both spatial downsampling and histogram simplifying mechanisms 

are investigated deeply and adapted to significantly decrease the computational complexity 

of prior CE techniques. Mapping function calibration is novelly proposed to reconstruct the 

transform on the gray levels missed by downsampling. The case studies on two typical CE 

algorithms, i.e., HE and SMIRANK, are presented detailedly. Effectiveness of our proposed 

CE acceleration scheme has been validated by the extensive experimental results on four 
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standard databases. In conclusion, our proposed CE acceleration framework can be friendly 

used to remarkably improve the computational efficiency of histogram-based CE algorithms, 

while perceptual quality of enhanced images can still be preserved. 
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