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Abstract: Software-defined networking (SDN) is a new paradigm that allows developing more flexible network applications. 
SDN controller, which represents a centralized controlling point, is responsible for running various network applications as 
well as maintaining different network services and functionalities. Choosing an efficient intrusion detection system helps in 
reducing the overhead of the running controller and creates a more secure network. In this study, we investigate the 
performance of the well-known anomaly-based intrusion detection approaches in terms of accuracy, false alarm rate, 
precision, recall, f1-measure, area under ROC curve, execution time and Mc Nemar’s test. Precisely, we focus on supervised 
machine-learning approaches where we use the following classifiers: Decision Trees (DT), Extreme Learning Machine (ELM), 
Naive Bayes (NB), Linear Discriminant Analysis (LDA), Neural Networks (NN), Support Vector Machines (SVM), Random Forest 
(RT), K Nearest-Neighbour (KNN), AdaBoost, RUSBoost, LogitBoost and BaggingTrees where we employ the well-known NSL-
KDD benchmark dataset to compare the performance of each one of these classifiers.  
 

1. Introduction 

Network security is one of the most important aspects in 

modern communications. Recently, programmable networks 

have gained popularity due to their abstracted view of the 

network which, in turn, provides a better understanding of the 

complex network operations and increases the effectiveness 

of the actions that should be taken in the case of any potential 

threat. Software Defined Networking (SDN) represents an 

emerging centralized network architecture, in which the 

forwarding elements are being managed by a central unit, 

called an SDN controller, which has the ability to obtain 

traffic statistics from each forwarding element in order to take 

the appropriate action required for preventing any malicious 

behavior or abusing of the network. At the same time, the 

SDN controller uses a programmable network protocol, 

which is OpenFlow (OF) protocol, in order to communicate 

and forward its decisions to OF-enabled switches [1].  

 

In spite of the significant impact of using a centralized 

controller, the controller itself creates a single point of failure, 

which makes the network more vulnerable compared with the 

conventional network architecture [2]. On the other hand, the 

existence of a communication between the OF-enabled 

switches and the controller opens the door for various attacks 

such Denial of Service (DoS) [3], Host Location Hijacking 

and Man in the Middle (MIM) attacks [4]. Therefore, in order 

to develop an efficient Intrusion Detection System (IDS) for 

SDNs, the system should be able to make intelligent and real 

time decisions. Commonly, an IDS designed for SDNs works 

on the top of the controller, which forms an additional burden 

on the controller itself. Thus, designing a lightweight IDS is 

considered advantageous, since it helps in effectively 

detecting of any potential attacks as well as performing other 

fundamental network operations such as routing and load 

balancing in a more flexible manner. Scalability, is also an 

important factor, which should be taken into consideration 

during the designing stage of the system [4]. There are two 

main groups of intrusion detection systems: signature-based 

IDS and anomaly-based IDS. Signature-based IDS searches 

for defined patterns within the analyzed network traffic. On 

the other hand, an anomaly-based IDS can estimate and 

predict the behavior of system. A signature-based IDS shows 

a good performance only for specified well-known attacks. 

On the contrary, anomaly-based IDS enjoys ability to detect 

unseen intrusion events, which is an important advantage for 

detecting zero day attacks [5].  

Anomaly-based IDS can be grouped into three main 

categories [5]: statistical-based approaches, knowledge-

based approaches, and machine learning-based approaches. 

In this study, we focus on machine learning-based approaches. 

Machine learning techniques can be categorized into four 

categories: (i) supervised techniques, (ii) semi-supervised 

techniques, (iii) unsupervised techniques and (iv) 

reinforcement techniques. In this paper, we investigate 

various supervised learning techniques with respect to their 

accuracy, false alarm rate, precision, recall, f1-measure, area 

under ROC curve, Mc Nemar’s test and time taken to train 

and test each classifier. 

2. Related work 

Previous research efforts for providing a detailed 

analysis of supervised machine learning techniques used for 

intrusion detection are summarized in Table 1. These studies 

focused on training and testing different machine learning 

approaches using standard intrusion detection datasets. 

However, obtaining all these features from an SDN controller 

could be computationally expensive. Therefore, we have two 

possible choices: either using a subset of these standard 

datasets [6] or extracting new features based on network 

traces of standard datasets or statistics provided by the 

controller [7]. In this study, we use a subset of features 

extracted from NSL-KDD dataset based on employing the 

well-known Principal Components Analysis (PCA) approach 
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and considering the following supervised machine learning 

approaches: Decision Trees (DT), Extreme Learning 

Machine (ELM), Naive Bayes (NB), Linear Discriminant 

Analysis (LDA), Neural Networks (NN), Support Vector 

Machines (SVM), Random Forest (RT), Nearest-Neighbor 

(KNN), AdaBoost, RUSBoost, LogitBoost and BaggingTrees. 

As mentioned before, for performance measurement, we use 

accuracy, false alarm rate, precision, recall, f1-measure and 

area under ROC curve, as well as time taken to train and test 

each one of these classifiers. Furthermore, we use Mc 

Nemar’s test in order to statistically demonstrate that a 

significant increase has been achieved by an algorithm over 

the other one. 

Table 1 Overview of previous supervised machine learning 

studies for intrusion detection 
Ref. Year Algorithms Dataset 

[8] 2005 C 4.5 

K-nearest neighbor 

Multi-layer perceptron 

Regularized discriminant 

analysis 

Fisher linear discriminant 

Support vector machines 

KDD 

CUP’99 

[9] 2007 Decision Trees 

Random Forest 

Naive Bayes 

Gaussian classifier 

KDD 

CUP’99 

[10] 2009 J48 

Naive Bayes (NB) 

NB Tree 

Random Forest 

Random Tree 

Multi-layer perceptron (MLP) 

SVM 

NSL-KDD 

[11] 2010 Discriminative multinomial 

Naïve Bayes classifiers 

NSL-KDD 

[12] 

  

2013 Principal component analysis 

based feature selection, 

Genetic algorithm based 

detector generation, J48, NB, 

MLP, BF-Tree, NB- Tree, RF 

Tree. 

NSL-KDD 

[13] 2013 Correlation based feature 

selection and 

consistency based filtering, 

ADTree, C4.5, J48graft, 

LADTree, NBTree, 

RandomTree, RandomForest, 

REPTree 

NSL-KDD 

[14] 2013 J48, BayesNet, Logistic, SGD, 

IBK, JRip, PART, Random 

Forest,  

Random Tree and REPTree 

NSL-KDD 

[15] 2015 Neural Networks NSL-KDD 

[16] 2016 Logistic Regression 

Gaussian Naive Bayes 

SVM and Random Forest 

NSL-KDD 

3. Dataset  

As mentioned earlier, in this study we use NSL-KDD 

dataset. NSL-KDD is an improved version of KDD Cup99 

dataset, which suffers from huge number of redundant 

records [10]. Both KDD Cup99 and NSL-KDD datasets 

include the features shown in Table 2. It is worth mentioning 

that these features fall into four different categories as 

described in Table 3. 

Table 3 List of feature categories presented in NSL-KDD 

dataset 
Category Features 

Basic features F1,F2,F3,F4,F5,F6,F7,F8,F9,F10 

Content features F11,F12,F13,F14,F15,F16,F17,F18 

F19,F20,F21,F22 

Time-based features F23,F24,F25,F26,F27,F28,F29,F30,F31 

Host-based features F32,F33,F34,F35,F36,F37,F38,F39,F40 

F41 

 

As shown in Table 4, NSL-KDD includes a total of 39 

attacks where each one of them is classified into one of the 

following four categories (DoS, R2L, U2R, Probe). Moreover, 

a set of these attacks is introduced only in the testing set. 

These new attacks are indicated in bold font. 

 

Table 4 List of attacks presented in NSL-KDD dataset 
Attack category Attack name 

Denial of service 

(DoS) 

Apache2, Smurf, Neptune, Back, 

Teardrop, Pod, Land, Mailbomb, 

Processtable, UDPstorm 

Remote to local 

(R2L) 

WarezClient, Guess_Password, 

WarezMaster, Imap, Ftp_Write, Named, 

MultiHop, Phf, Spy, Sendmail, 

SnmpGetAttack, SnmpGuess, Worm, 

Xsnoop, Xlock 

User to root 

(U2R) 

Buffer_Overflow, Httptuneel, Rootkit, 

LoadModule, Perl, Xterm, Ps, SQLattack 

Probe Satan, Saint, Ipsweep, Portsweep, Nmap, 

Mscan 

In addition, Table 5 shows the distribution of the normal 

and attack records in NSL-KDD training and testing sets. 

Table 2 List of features of KDD Cup '99 dataset. 
F. # Feature 

name. 
F. # Feature 

name. 
F. # Feature 

name. 

F1 Duration F15 Su 

attempted 

F29 Same srv 

rate 
F2 Protocol type F16 Num root F30 Diff srv 

rate 

F3 Service F17 Num file 
creations 

F31 Srv diff 
host rate 

F4 Flag F18 Num 

shells 

F32 Dst host 

count 
F5 Source bytes F19 Num 

access 

files 

F33 Dst host 

srv count 

F6 Destination 

bytes 

F20 Num 

outbound 

cmds 

F34 Dst host 

same srv 

rate 
F7 Land F21 Is host 

login 

F35 Dst host 

diff srv 

rate 

F8 Wrong 

fragment 

F22 Is guest 

login 

F36 Dst host 

same src 

port rate 
F9 Urgent F23 Count F37 Dst host 

srv diff 

host rate 
F10 Hot F24 Srv count F38 Dst host 

serror rate 

F11 Number 
failed logins 

F25 Serror rate F39 Dst host 
srv serror 

rate 

F12 Logged in F26 Srv serror 
rate 

F40 Dst host 
rerror rate 

F13 Num 

compromised 

F27 Rerror rate F41 Dst host 

srv rerror 
rate 

F14 Root shell F28 Srv rerror 

rate 

F42 Class label 
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4. Feature Selection 

In order to increase the efficiency of SDN based intrusion 

detection systems we need to select the best features that can 

be used in SDN context. It is worth noting that the content 

features need to be omitted due to the fact that these features 

are complex to extract by a network based IDS [17]. 

Therefore, content features (i.e. F11 to F22) were excluded 

from the NSL-KDD dataset. For the remaining features we 

apply Principal Component Analysis (PCA) on the training 

set. PCA allow us to transform a large dataset into a new, 

smaller and uncorrelated one [18]. The standard approach of 

PCA can be summarized in the followıng 6 steps [19]: 

 Find the covariance matrix of the normalized d-

dimensional dataset. 

 Find the eigenvectors and eigenvalues of the 

covariance matrix. 

 Sort the eigenvalues in descending order. 

 Select the k eigenvectors that correspond to the k 

largest eigenvalues. 

 Construct the projection matrix from the k selected 

eigenvectors. 

 Transform the original dataset to obtain a new k-

dimensional feature space. 

 

In this study, we employ PCA in the following steps: 

 First, we extract the features with the largest 

coefficients from the principal components. 

 Second, we select the k eigenvectors that correspond 

to the k largest eigenvalues. 

 Third, we transform the original dataset with 

corresponding features using the projection matrix 

from the k selected eigenvectors. 

 Finally, we validate the performance of the selected 

features and corresponding k component by 

applying the decision tree approach on the training 

test. 

5. Evaluation Metrics 

The performance of each classifier is evaluated in terms of 

accuracy, False Alarm Rate (FAR), precision, recall, F1-

measure, Area Under ROC Curve (AUC), execution time and 

Mc Nemar’s test. A good IDS should achieve high level of 

accuracy, precision, recall and F1-measure with low false 

alarm rate. The accuracy is calculated by: 

)( FPFNTNTP

TNTP
Accuracy




  

 

(1) 

True Positives (TP) is the number of attack records correctly 

classified; True Negatives (TN) is the number of normal 

traffic records correctly classified; False Positives (FP) is the 

number of normal traffic records falsely classified and False 

Negatives (FN) is number of attack records instances falsely 

classified. False alarm rate is calculated by: 

FPTN

FP
RateAlarmFalse


  

 

(2) 

We also calculate the precision, recall and F1-measure for 

each classifier where precision is calculated by: 

FPTP

TP
ecision


Pr  

 

(3) 

Recall is also calculated by: 

FNTP

TP
call


Re  

 

(4) 

And F1-measure is calculated by: 

)Re(Pr

)Re(Pr
21

callecision

callecision
measureF




  

 

(5) 

In addition, we evaluate the performance of the 

previously selected classifiers based on their execution time 

as well as the analysis of the receiver operator characteristic 

(ROC) curve, where the area under curve (AUC) can be used 

to compare each classifier with another one. The higher AUC, 

the better IDS. One other important metric that can be used 

for comparing two algorithms is Mc Nemar’s test, which is a 

non-parametric pair-wise test shows that a statistically 

significant increase has been achieved by an algorithm over 

the other one. When z-value of Nemar’s Test > 1.96 (p-value 

is less than 0.05), the conclusion is that there is a significant 

difference between the two algorıthms. Z-score is used to 

show the confidence levels [22]. 

 

𝑧 =  
(|𝑁12 − 𝑁21|) − 1

√(𝑁12 + 𝑁21)
 

(6) 

𝑁12: represents the number of times when the first algorithm 

success in classification and other one fails. 

𝑁21 : represents the number of times when the second 

algorithm success in classification and the first one fails. 

6. Experimental Results 

The experiment is conducted on Intel i5 machine with 12 GB 

of RAM. As shown in Fig 1, we get the best results when 

selecting 9 of the top features that contribute to the all PCA’s 

components as input, which need to be transformed to less 

dimensional space of the corresponding components. 

 
Fig. 1. The level of accuracy obtained by using 

 top selected features 

Table 5 Distributions of attacks and normal records in 

NSL-KDD dataset 
Total 

Records 

Normal DoS R2L U2R Probe Total 

Records 

KDD 
Train 

125973 67343 45927 995 52 11656 
53.46% 36.46 0.79% 0.04% 9.25% 

KDD 

Test 

22544 9711 7458 2754 200 2421 

43.07% 33.08% 12.22% 0.89% 10.74% 
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These 9 selected features are: F27, F30, F5, F23, F8, F1, F2, 

F39, F3. Brief description of these features is provided in 

Table 6.   

Table 6 List of feature selected from NSL-KDD dataset 
Feature Description 

F27 Percentage of connections that have REJ errors 

F30 Percentage of connections to different services 

F5 Number of data bytes from source to destination 

F23 Number of connections to the same host as the current 

connection in the past two seconds 

F8 Number of wrong fragments 

F1 Duration of the connection in seconds 

F2 Connection protocol (tcp, udp, icmp) 

F39 Percentage of connections to the current host and 

serror rate specified service that have an S0 error 

F3 Destination port mapped to service 

 

Fig. 2, shows the level of accuracy achieved when using 

different number of principal components. The best results 

achieved with the first 10 components. 

 
Fig. 2. The level of accuracy obtained with different number 

of PCA’s principle components 

 

Table 7 shows the results obtained for both training and 

testing stages. In terms of accuracy level, the 

most accurate classifiers for the training stage are: DT, RF, 

BaggingTrees, RUSBoost and AdaBoost with a slight 

difference between them. For the testing stage, however, we 

notice that DT approach achieved the highest level of 

accuracy followed by AdaBoost, RUSBoost and 

BaggingTrees. One can observe that ensemble methods 

achieved a lower false positive rate compared to DT. 

 

Table 7 Detection accuracy and false alarm rate obtained 

after training and testing different supervised machine 

learning algorithms with 10 principle components 
 

Method 

Accuracy (%) False Alarm Rate (%) 

Training Testing Training Testing 

Naive Bayes 64.16 49.12 4.54 5.74 

LDA 72.37 70.32 9.98 3.76 

Linear SVM 91.04 81.40 9.21 5.92 

NN 92.15 74.23 4.54 6.38 

ELM 92.66 75.86 5.54 3.57 

KNN 98.14 82.31 1.92 3.53 

LogitBoost 98.95 84.85 0.94 2.83 

AdaBoost 99.03 87.16 1.03 3.68 

RUSBoost 99.19 85.57 0.96 3.59 

BaggingTrees 99.33 84.03 0.81 3.51 

RandomForest 99.70 80.13 0.29 3.49 

Decision Tree 99.70 88.74 0.31 3.99 

In terms of false alarm rate, it is worth mentioning that 

LogitBoost approach achieved the best results. Therefore, one 

can conclude that ensemble methods such AdaBoost and 

LogitBoost can achieve a good accuracy with low false 

positive rate.  

 

From both Table 7 and Table 8, one can observe that 

using PCA feature selection enhanced the accuracy level for 

most of the classifiers in compared with using the basic 

features provided by the SDN controller (F1, F2, F5, F6, F23 

and F24). In terms of area under ROC curve, as shown in Fig. 

3 (a), we notice that DT and RF approaches achieved the best 

AUC for the training task followed by BaggingTrees, 

RUSBoost, AdaBoost and LogitBoost with slight difference 

between each other. Both NN and SVM had nearly the same 

AUC for the training task. NB, however, achieved the least 

training AUC.  

 

Table 8 Detection accuracy and false alarm rate obtained 

after training and testing different supervised machine 

learning algorithms based on basic features provided by the 

SDN controller (i.e. features number F1, F2, F5, F6, F23 and 

F24). 
 

Method 

Accuracy (%) False Positive Rate (%) 

Training Testing Training Testing 

Naive Bayes 59.27 49.88 3.7227 5.14 

LDA 87.57 69.36 3.26 2.24 

SVM 90.86 71.00 6.55 10.27 

NN 84.10 66.22 2.41 1.61 

ELM 93.16 74.17 2.25 2.31 

KNN 98.23 77.09 3.128 4.07 

RandomForest 98.09 75.96 0 0 

Decision Trees 98.37 74.43 0.306 6.43 

LogitBoost 99.38 79.44 0.43 2.75 

BaggingTrees 99.54 79.16 0.47 3.26 

AdaBoost 99.56 78.94 0.384 2.76 

RUSBoost 99.68 80.31 0.29 3.48 

     

For the testing task, as shown in Fig. 3(b), one can 

observe that the best AUC obtained by DT followed by 

AdaBoost, RUSBoost, LogitBoost and BaggingTrees. KNN 

achieved a better AUC than SVM and RF. In the same context, 

we notice that SVM also achieved a higher AUC than ELM 

approach. In terms of precision and F1-measure the best 

results were achieved by DT, whereas LogitBoost achieved 

the best results in terms of recall. 

 

Table 9 Precision, Recall, F1-measure obtained after training 

and testing different supervised machine learning algorithms 

with 10 principle components 
Method Precision 

(%) 

Recall 

(%) 

F1-measure  

(%) 

Naive Bayes 14.95 77.49 25.06 

LDA 50.7 94.69 66.07 

Linear SVM 71.81 94.13 81.47 

NN 59.56 92.5 72.46 

ELM 60.29 85.71 73.98 

KNN 71.59 96.41 82.17 

LogitBoost 75.53 97.24 85.03 

AdaBoost 80.23 96.65 87.67 

RUSBoost 77.41 96.6 85.95 

BaggingTrees 74.61 96.56 84.17 

RandomForest 67.73 96.25 80.13 

Decision Tree 83.24 96.50 89.38 
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(a) 

 
(b) 

Fig. 3. ROC curve comparison for (a) training and (b) testing different supervised machine learning based IDS 

 

Table 10 Z-score values of Mc-Nemar’s Test for the supervised machine-learning algorithms used in the this study (the 

arrowheads ← ↑ denote which classifier performed better). The shaded ones that larger than 1.96 indicate statistically significant 

differences at the confidence level of 95% (p < 0.05). 
 NB DT AdaB RUSB LogitB Bagging RF KNN ELM NN SVM LDA 

NB -            

DT 86.2 ← -           

AdaB 88.2 ← 7.1 ↑ -          

RUSB 82.4 ← 19.2 ↑ 10.3 ↑ -         

LogitB 86.2 ← 16.5 ↑ 18.2 ↑ 4.3 ↑ -        

Bagging 84.4 ← 20.7 ↑ 22.1 ↑ 9.2 ↑ 6.4 ↑ -       

RF 75.0 ← 40.0 ↑ 35.7 ↑ 30.0 ↑ 25.2 ↑ 24.8 ↑ -      

KNN 78.1 ← 28.0 ↑ 23.8 ↑ 17.5 ↑ 13.9 ↑ 10.1 ↑ 12.3 ← -     

ELM 71.1 ← 42.6 ↑ 43.2 ↑ 38.6 ↑ 35.6 ↑ 33.5 ↑ 13.1 ↑ 29.3 ↑ -    

NN 64.4 ← 49.4. ↑ 47.6 ↑ 43.9 ↑ 39.0 ↑ 37.9 ↑ 24.1 ↑ 30.2 ↑ 13.7 ↑ -   

SVM 75.5 ← 25.1 ↑ 22.9 ↑ 15.7 ↑ 14.0 ↑ 10.5 ↑  4.6  ↑ 3.4 ↑ 17.4 ↑ 22.3 ↑ -  

LDA 58.5 ← 56..7 ↑ 54.9 ↑ 49.7 ↑ 50.7 ↑ 47.1 ↑ 33.8 ↑ 41.1 ↑ 26.6 ↑ 12.4 ↑ 36.0 ↑ - 
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For Mc Nemar’s test, the null hypothesis suggest that 

different classifiers perform similarly whereas the alternative 

hypothesis claims that at least one of the classifiers performs 

differently. As shown in Table 10, by looking at the z-score 

values of Mc Nemar’s Test, one can conclude that DT 

achieved significantly better results than the other classifiers 

where the alternative hypothesis was accepted with a 

confidence level more than 99.5%. KNN also performed 

better than RF. AdaBoost also performed better than the other 

algorithms except DT, with a confidence level more than 

99.5%. Bagging and boosting produced better results over 

other conventional machine learning methods such as KNN, 

ELM, NN, RF, SVM and LDA. 

 

In terms of execution time, as shown in Fig. 4(a), we notice 

that NB approach achieves the best results for the training 

task. We excluded KNN from Fig. 4(a) due to the fact that 

KNN has no training time, where this algorithm employs a 

distance function in order to predict the corresponding labels 

[20].  From Fig. 4(b), on the other hand, one can observe that 

ELM approach achieved the best testing time. Moreover, 

ELM has achieved an acceptable false alarm rate as shown in 

Table 7. Therefore, ELM and its improved hierarchical 

approach [21] can possibly be an efficient choice for SDNs.  

 

On the other hand, in spite of the good level of accuracy for 

the testing stage achieved by KNN approach, it showed the 

worst testing time, which may indicate that KNN algorithm 

is not the best choice for SDNs where each controller may 

need to handle thousands of flows per second. A possible 

solution to this problem can be achieved by reducing the 

number of the training instance by applying an appropriate 

sampling method. Finally, one can observe that DT has 

achieved the highest level of accuracy and a good testing time 

in compared with the other classifiers. 

 

 
(a) 

 

 
(b) 

 

Fig. 4. Execution time for (a) training and (b) testing different supervised machine learning method
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7. Conclusion 

In this paper, we provide a comparative study of 

choosing an efficient anomaly-based intrusion detection 

method for SDNs. We focused on supervised machine 

learning approaches by using the following classifiers: NN, 

LDA, DT, RF, Linear SVM, KNN, NB, ELM, AdaBoost,  

RUSBoost, LogitBoost and BaggingTrees. In addition, we 

used PCA method for feature selection and dimensionality 

reduction. Using NSL-KDD dataset and based on our 

extensive experimental study, we conclude that DT approach 

shows the best performance in terms of accuracy, precision, 

F1-measure, AUC and Mc Nemar’s Test. Also bagging and 

boosting approaches outperformed other conventional 

machine learning methods such as KNN, ELM, NN, RF, 

SVM and LDA with a confidence level more than 99.5%. 

Whereas in terms of false alarm rate and recall the best results 

achieved by LogitBoost. In terms of the execution time, ELM 

approach achieved the best testing time.  

It is worth noting that using PCA approach was very 

successful in enhancing the accuracy level from 77.09% to 

88.74% in compared with using the basic features provided 

by the SDN controller. Our future work will be focused on 

comparing the results obtained from this study with other 

machine learning approaches and exploring other flow-based 

features that could be used to achieve a higher level of 

accuracy with lower false alarm rate. 
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