
1

* This manuscript has been accepted for publication in IET Networks.
Towards an Efficient Anomaly-Based Intrusion Detection for Software-Defined
Networks.

Majd Latah 1*, Levent Toker 2

1 Department of Computer Science, Ozyegin University, 34794, Cekmekoy, Istanbul, Turkey
2 Department of Computer Engineering, Ege University, 35100, Bornova, Izmir, Turkey
*majd.latah@ozu.edu.tr; levent.toker@ege.edu.tr

Abstract: Software-defined networking (SDN) is a new paradigm that allows developing more flexible network applications.
SDN controller, which represents a centralized controlling point, is responsible for running various network applications as
well as maintaining different network services and functionalities. Choosing an efficient intrusion detection system helps in
reducing the overhead of the running controller and creates a more secure network. In this study, we investigate the
performance of the well-known anomaly-based intrusion detection approaches in terms of accuracy, false alarm rate,
precision, recall, f1-measure, area under ROC curve, execution time and Mc Nemar’s test. Precisely, we focus on supervised
machine-learning approaches where we use the following classifiers: Decision Trees (DT), Extreme Learning Machine (ELM),
Naive Bayes (NB), Linear Discriminant Analysis (LDA), Neural Networks (NN), Support Vector Machines (SVM), Random Forest
(RT), K Nearest-Neighbour (KNN), AdaBoost, RUSBoost, LogitBoost and BaggingTrees where we employ the well-known NSL-
KDD benchmark dataset to compare the performance of each one of these classifiers.

1. Introduction

Network security is one of the most important aspects in

modern communications. Recently, programmable networks

have gained popularity due to their abstracted view of the

network which, in turn, provides a better understanding of the

complex network operations and increases the effectiveness

of the actions that should be taken in the case of any potential

threat. Software Defined Networking (SDN) represents an

emerging centralized network architecture, in which the

forwarding elements are being managed by a central unit,

called an SDN controller, which has the ability to obtain

traffic statistics from each forwarding element in order to take

the appropriate action required for preventing any malicious

behavior or abusing of the network. At the same time, the

SDN controller uses a programmable network protocol,

which is OpenFlow (OF) protocol, in order to communicate

and forward its decisions to OF-enabled switches [1].

In spite of the significant impact of using a centralized

controller, the controller itself creates a single point of failure,

which makes the network more vulnerable compared with the

conventional network architecture [2]. On the other hand, the

existence of a communication between the OF-enabled

switches and the controller opens the door for various attacks

such Denial of Service (DoS) [3], Host Location Hijacking

and Man in the Middle (MIM) attacks [4]. Therefore, in order

to develop an efficient Intrusion Detection System (IDS) for

SDNs, the system should be able to make intelligent and real

time decisions. Commonly, an IDS designed for SDNs works

on the top of the controller, which forms an additional burden

on the controller itself. Thus, designing a lightweight IDS is

considered advantageous, since it helps in effectively

detecting of any potential attacks as well as performing other

fundamental network operations such as routing and load

balancing in a more flexible manner. Scalability, is also an

important factor, which should be taken into consideration

during the designing stage of the system [4]. There are two

main groups of intrusion detection systems: signature-based

IDS and anomaly-based IDS. Signature-based IDS searches

for defined patterns within the analyzed network traffic. On

the other hand, an anomaly-based IDS can estimate and

predict the behavior of system. A signature-based IDS shows

a good performance only for specified well-known attacks.

On the contrary, anomaly-based IDS enjoys ability to detect

unseen intrusion events, which is an important advantage for

detecting zero day attacks [5].

Anomaly-based IDS can be grouped into three main

categories [5]: statistical-based approaches, knowledge-

based approaches, and machine learning-based approaches.

In this study, we focus on machine learning-based approaches.

Machine learning techniques can be categorized into four

categories: (i) supervised techniques, (ii) semi-supervised

techniques, (iii) unsupervised techniques and (iv)

reinforcement techniques. In this paper, we investigate

various supervised learning techniques with respect to their

accuracy, false alarm rate, precision, recall, f1-measure, area

under ROC curve, Mc Nemar’s test and time taken to train

and test each classifier.

2. Related work

Previous research efforts for providing a detailed

analysis of supervised machine learning techniques used for

intrusion detection are summarized in Table 1. These studies

focused on training and testing different machine learning

approaches using standard intrusion detection datasets.

However, obtaining all these features from an SDN controller

could be computationally expensive. Therefore, we have two

possible choices: either using a subset of these standard

datasets [6] or extracting new features based on network

traces of standard datasets or statistics provided by the

controller [7]. In this study, we use a subset of features

extracted from NSL-KDD dataset based on employing the

well-known Principal Components Analysis (PCA) approach

mailto:ma

2

and considering the following supervised machine learning

approaches: Decision Trees (DT), Extreme Learning

Machine (ELM), Naive Bayes (NB), Linear Discriminant

Analysis (LDA), Neural Networks (NN), Support Vector

Machines (SVM), Random Forest (RT), Nearest-Neighbor

(KNN), AdaBoost, RUSBoost, LogitBoost and BaggingTrees.

As mentioned before, for performance measurement, we use

accuracy, false alarm rate, precision, recall, f1-measure and

area under ROC curve, as well as time taken to train and test

each one of these classifiers. Furthermore, we use Mc

Nemar’s test in order to statistically demonstrate that a

significant increase has been achieved by an algorithm over

the other one.

Table 1 Overview of previous supervised machine learning

studies for intrusion detection
Ref. Year Algorithms Dataset

[8] 2005 C 4.5

K-nearest neighbor

Multi-layer perceptron

Regularized discriminant

analysis

Fisher linear discriminant

Support vector machines

KDD

CUP’99

[9] 2007 Decision Trees

Random Forest

Naive Bayes

Gaussian classifier

KDD

CUP’99

[10] 2009 J48

Naive Bayes (NB)

NB Tree

Random Forest

Random Tree

Multi-layer perceptron (MLP)

SVM

NSL-KDD

[11] 2010 Discriminative multinomial

Naïve Bayes classifiers

NSL-KDD

[12]

2013 Principal component analysis

based feature selection,

Genetic algorithm based

detector generation, J48, NB,

MLP, BF-Tree, NB- Tree, RF

Tree.

NSL-KDD

[13] 2013 Correlation based feature

selection and

consistency based filtering,

ADTree, C4.5, J48graft,

LADTree, NBTree,

RandomTree, RandomForest,

REPTree

NSL-KDD

[14] 2013 J48, BayesNet, Logistic, SGD,

IBK, JRip, PART, Random

Forest,

Random Tree and REPTree

NSL-KDD

[15] 2015 Neural Networks NSL-KDD

[16] 2016 Logistic Regression

Gaussian Naive Bayes

SVM and Random Forest

NSL-KDD

3. Dataset

As mentioned earlier, in this study we use NSL-KDD

dataset. NSL-KDD is an improved version of KDD Cup99

dataset, which suffers from huge number of redundant

records [10]. Both KDD Cup99 and NSL-KDD datasets

include the features shown in Table 2. It is worth mentioning

that these features fall into four different categories as

described in Table 3.

Table 3 List of feature categories presented in NSL-KDD

dataset
Category Features

Basic features F1,F2,F3,F4,F5,F6,F7,F8,F9,F10

Content features F11,F12,F13,F14,F15,F16,F17,F18

F19,F20,F21,F22

Time-based features F23,F24,F25,F26,F27,F28,F29,F30,F31

Host-based features F32,F33,F34,F35,F36,F37,F38,F39,F40

F41

As shown in Table 4, NSL-KDD includes a total of 39

attacks where each one of them is classified into one of the

following four categories (DoS, R2L, U2R, Probe). Moreover,

a set of these attacks is introduced only in the testing set.

These new attacks are indicated in bold font.

Table 4 List of attacks presented in NSL-KDD dataset
Attack category Attack name

Denial of service

(DoS)

Apache2, Smurf, Neptune, Back,

Teardrop, Pod, Land, Mailbomb,

Processtable, UDPstorm

Remote to local

(R2L)

WarezClient, Guess_Password,

WarezMaster, Imap, Ftp_Write, Named,

MultiHop, Phf, Spy, Sendmail,

SnmpGetAttack, SnmpGuess, Worm,

Xsnoop, Xlock

User to root

(U2R)

Buffer_Overflow, Httptuneel, Rootkit,

LoadModule, Perl, Xterm, Ps, SQLattack

Probe Satan, Saint, Ipsweep, Portsweep, Nmap,

Mscan

In addition, Table 5 shows the distribution of the normal

and attack records in NSL-KDD training and testing sets.

Table 2 List of features of KDD Cup '99 dataset.
F. # Feature

name.
F. # Feature

name.
F. # Feature

name.

F1 Duration F15 Su

attempted

F29 Same srv

rate
F2 Protocol type F16 Num root F30 Diff srv

rate

F3 Service F17 Num file
creations

F31 Srv diff
host rate

F4 Flag F18 Num

shells

F32 Dst host

count
F5 Source bytes F19 Num

access

files

F33 Dst host

srv count

F6 Destination

bytes

F20 Num

outbound

cmds

F34 Dst host

same srv

rate
F7 Land F21 Is host

login

F35 Dst host

diff srv

rate

F8 Wrong

fragment

F22 Is guest

login

F36 Dst host

same src

port rate
F9 Urgent F23 Count F37 Dst host

srv diff

host rate
F10 Hot F24 Srv count F38 Dst host

serror rate

F11 Number
failed logins

F25 Serror rate F39 Dst host
srv serror

rate

F12 Logged in F26 Srv serror
rate

F40 Dst host
rerror rate

F13 Num

compromised

F27 Rerror rate F41 Dst host

srv rerror
rate

F14 Root shell F28 Srv rerror

rate

F42 Class label

3

4. Feature Selection

In order to increase the efficiency of SDN based intrusion

detection systems we need to select the best features that can

be used in SDN context. It is worth noting that the content

features need to be omitted due to the fact that these features

are complex to extract by a network based IDS [17].

Therefore, content features (i.e. F11 to F22) were excluded

from the NSL-KDD dataset. For the remaining features we

apply Principal Component Analysis (PCA) on the training

set. PCA allow us to transform a large dataset into a new,

smaller and uncorrelated one [18]. The standard approach of

PCA can be summarized in the followıng 6 steps [19]:

 Find the covariance matrix of the normalized d-

dimensional dataset.

 Find the eigenvectors and eigenvalues of the

covariance matrix.

 Sort the eigenvalues in descending order.

 Select the k eigenvectors that correspond to the k

largest eigenvalues.

 Construct the projection matrix from the k selected

eigenvectors.

 Transform the original dataset to obtain a new k-

dimensional feature space.

In this study, we employ PCA in the following steps:

 First, we extract the features with the largest

coefficients from the principal components.

 Second, we select the k eigenvectors that correspond

to the k largest eigenvalues.

 Third, we transform the original dataset with

corresponding features using the projection matrix

from the k selected eigenvectors.

 Finally, we validate the performance of the selected

features and corresponding k component by

applying the decision tree approach on the training

test.

5. Evaluation Metrics

The performance of each classifier is evaluated in terms of

accuracy, False Alarm Rate (FAR), precision, recall, F1-

measure, Area Under ROC Curve (AUC), execution time and

Mc Nemar’s test. A good IDS should achieve high level of

accuracy, precision, recall and F1-measure with low false

alarm rate. The accuracy is calculated by:

)(FPFNTNTP

TNTP
Accuracy






(1)

True Positives (TP) is the number of attack records correctly

classified; True Negatives (TN) is the number of normal

traffic records correctly classified; False Positives (FP) is the

number of normal traffic records falsely classified and False

Negatives (FN) is number of attack records instances falsely

classified. False alarm rate is calculated by:

FPTN

FP
RateAlarmFalse




(2)

We also calculate the precision, recall and F1-measure for

each classifier where precision is calculated by:

FPTP

TP
ecision


Pr

(3)

Recall is also calculated by:

FNTP

TP
call


Re

(4)

And F1-measure is calculated by:

)Re(Pr

)Re(Pr
21

callecision

callecision
measureF






(5)

In addition, we evaluate the performance of the

previously selected classifiers based on their execution time

as well as the analysis of the receiver operator characteristic

(ROC) curve, where the area under curve (AUC) can be used

to compare each classifier with another one. The higher AUC,

the better IDS. One other important metric that can be used

for comparing two algorithms is Mc Nemar’s test, which is a

non-parametric pair-wise test shows that a statistically

significant increase has been achieved by an algorithm over

the other one. When z-value of Nemar’s Test > 1.96 (p-value

is less than 0.05), the conclusion is that there is a significant

difference between the two algorıthms. Z-score is used to

show the confidence levels [22].

𝑧 =
(|𝑁12 − 𝑁21|) − 1

√(𝑁12 + 𝑁21)

(6)

𝑁12: represents the number of times when the first algorithm

success in classification and other one fails.

𝑁21 : represents the number of times when the second

algorithm success in classification and the first one fails.

6. Experimental Results

The experiment is conducted on Intel i5 machine with 12 GB

of RAM. As shown in Fig 1, we get the best results when

selecting 9 of the top features that contribute to the all PCA’s

components as input, which need to be transformed to less

dimensional space of the corresponding components.

Fig. 1. The level of accuracy obtained by using

 top selected features

Table 5 Distributions of attacks and normal records in

NSL-KDD dataset
Total

Records

Normal DoS R2L U2R Probe Total

Records

KDD
Train

125973 67343 45927 995 52 11656
53.46% 36.46 0.79% 0.04% 9.25%

KDD

Test

22544 9711 7458 2754 200 2421

43.07% 33.08% 12.22% 0.89% 10.74%

4

These 9 selected features are: F27, F30, F5, F23, F8, F1, F2,

F39, F3. Brief description of these features is provided in

Table 6.

Table 6 List of feature selected from NSL-KDD dataset
Feature Description

F27 Percentage of connections that have REJ errors

F30 Percentage of connections to different services

F5 Number of data bytes from source to destination

F23 Number of connections to the same host as the current

connection in the past two seconds

F8 Number of wrong fragments

F1 Duration of the connection in seconds

F2 Connection protocol (tcp, udp, icmp)

F39 Percentage of connections to the current host and

serror rate specified service that have an S0 error

F3 Destination port mapped to service

Fig. 2, shows the level of accuracy achieved when using

different number of principal components. The best results

achieved with the first 10 components.

Fig. 2. The level of accuracy obtained with different number

of PCA’s principle components

Table 7 shows the results obtained for both training and

testing stages. In terms of accuracy level, the

most accurate classifiers for the training stage are: DT, RF,

BaggingTrees, RUSBoost and AdaBoost with a slight

difference between them. For the testing stage, however, we

notice that DT approach achieved the highest level of

accuracy followed by AdaBoost, RUSBoost and

BaggingTrees. One can observe that ensemble methods

achieved a lower false positive rate compared to DT.

Table 7 Detection accuracy and false alarm rate obtained

after training and testing different supervised machine

learning algorithms with 10 principle components

Method

Accuracy (%) False Alarm Rate (%)

Training Testing Training Testing

Naive Bayes 64.16 49.12 4.54 5.74

LDA 72.37 70.32 9.98 3.76

Linear SVM 91.04 81.40 9.21 5.92

NN 92.15 74.23 4.54 6.38

ELM 92.66 75.86 5.54 3.57

KNN 98.14 82.31 1.92 3.53

LogitBoost 98.95 84.85 0.94 2.83

AdaBoost 99.03 87.16 1.03 3.68

RUSBoost 99.19 85.57 0.96 3.59

BaggingTrees 99.33 84.03 0.81 3.51

RandomForest 99.70 80.13 0.29 3.49

Decision Tree 99.70 88.74 0.31 3.99

In terms of false alarm rate, it is worth mentioning that

LogitBoost approach achieved the best results. Therefore, one

can conclude that ensemble methods such AdaBoost and

LogitBoost can achieve a good accuracy with low false

positive rate.

From both Table 7 and Table 8, one can observe that

using PCA feature selection enhanced the accuracy level for

most of the classifiers in compared with using the basic

features provided by the SDN controller (F1, F2, F5, F6, F23

and F24). In terms of area under ROC curve, as shown in Fig.

3 (a), we notice that DT and RF approaches achieved the best

AUC for the training task followed by BaggingTrees,

RUSBoost, AdaBoost and LogitBoost with slight difference

between each other. Both NN and SVM had nearly the same

AUC for the training task. NB, however, achieved the least

training AUC.

Table 8 Detection accuracy and false alarm rate obtained

after training and testing different supervised machine

learning algorithms based on basic features provided by the

SDN controller (i.e. features number F1, F2, F5, F6, F23 and

F24).

Method

Accuracy (%) False Positive Rate (%)

Training Testing Training Testing

Naive Bayes 59.27 49.88 3.7227 5.14

LDA 87.57 69.36 3.26 2.24

SVM 90.86 71.00 6.55 10.27

NN 84.10 66.22 2.41 1.61

ELM 93.16 74.17 2.25 2.31

KNN 98.23 77.09 3.128 4.07

RandomForest 98.09 75.96 0 0

Decision Trees 98.37 74.43 0.306 6.43

LogitBoost 99.38 79.44 0.43 2.75

BaggingTrees 99.54 79.16 0.47 3.26

AdaBoost 99.56 78.94 0.384 2.76

RUSBoost 99.68 80.31 0.29 3.48

For the testing task, as shown in Fig. 3(b), one can

observe that the best AUC obtained by DT followed by

AdaBoost, RUSBoost, LogitBoost and BaggingTrees. KNN

achieved a better AUC than SVM and RF. In the same context,

we notice that SVM also achieved a higher AUC than ELM

approach. In terms of precision and F1-measure the best

results were achieved by DT, whereas LogitBoost achieved

the best results in terms of recall.

Table 9 Precision, Recall, F1-measure obtained after training

and testing different supervised machine learning algorithms

with 10 principle components
Method Precision

(%)

Recall

(%)

F1-measure

(%)

Naive Bayes 14.95 77.49 25.06

LDA 50.7 94.69 66.07

Linear SVM 71.81 94.13 81.47

NN 59.56 92.5 72.46

ELM 60.29 85.71 73.98

KNN 71.59 96.41 82.17

LogitBoost 75.53 97.24 85.03

AdaBoost 80.23 96.65 87.67

RUSBoost 77.41 96.6 85.95

BaggingTrees 74.61 96.56 84.17

RandomForest 67.73 96.25 80.13

Decision Tree 83.24 96.50 89.38

5

(a)

(b)

Fig. 3. ROC curve comparison for (a) training and (b) testing different supervised machine learning based IDS

Table 10 Z-score values of Mc-Nemar’s Test for the supervised machine-learning algorithms used in the this study (the

arrowheads ← ↑ denote which classifier performed better). The shaded ones that larger than 1.96 indicate statistically significant

differences at the confidence level of 95% (p < 0.05).
 NB DT AdaB RUSB LogitB Bagging RF KNN ELM NN SVM LDA

NB -

DT 86.2 ← -

AdaB 88.2 ← 7.1 ↑ -

RUSB 82.4 ← 19.2 ↑ 10.3 ↑ -

LogitB 86.2 ← 16.5 ↑ 18.2 ↑ 4.3 ↑ -

Bagging 84.4 ← 20.7 ↑ 22.1 ↑ 9.2 ↑ 6.4 ↑ -

RF 75.0 ← 40.0 ↑ 35.7 ↑ 30.0 ↑ 25.2 ↑ 24.8 ↑ -

KNN 78.1 ← 28.0 ↑ 23.8 ↑ 17.5 ↑ 13.9 ↑ 10.1 ↑ 12.3 ← -

ELM 71.1 ← 42.6 ↑ 43.2 ↑ 38.6 ↑ 35.6 ↑ 33.5 ↑ 13.1 ↑ 29.3 ↑ -

NN 64.4 ← 49.4. ↑ 47.6 ↑ 43.9 ↑ 39.0 ↑ 37.9 ↑ 24.1 ↑ 30.2 ↑ 13.7 ↑ -

SVM 75.5 ← 25.1 ↑ 22.9 ↑ 15.7 ↑ 14.0 ↑ 10.5 ↑ 4.6 ↑ 3.4 ↑ 17.4 ↑ 22.3 ↑ -

LDA 58.5 ← 56..7 ↑ 54.9 ↑ 49.7 ↑ 50.7 ↑ 47.1 ↑ 33.8 ↑ 41.1 ↑ 26.6 ↑ 12.4 ↑ 36.0 ↑ -

6

For Mc Nemar’s test, the null hypothesis suggest that

different classifiers perform similarly whereas the alternative

hypothesis claims that at least one of the classifiers performs

differently. As shown in Table 10, by looking at the z-score

values of Mc Nemar’s Test, one can conclude that DT

achieved significantly better results than the other classifiers

where the alternative hypothesis was accepted with a

confidence level more than 99.5%. KNN also performed

better than RF. AdaBoost also performed better than the other

algorithms except DT, with a confidence level more than

99.5%. Bagging and boosting produced better results over

other conventional machine learning methods such as KNN,

ELM, NN, RF, SVM and LDA.

In terms of execution time, as shown in Fig. 4(a), we notice

that NB approach achieves the best results for the training

task. We excluded KNN from Fig. 4(a) due to the fact that

KNN has no training time, where this algorithm employs a

distance function in order to predict the corresponding labels

[20]. From Fig. 4(b), on the other hand, one can observe that

ELM approach achieved the best testing time. Moreover,

ELM has achieved an acceptable false alarm rate as shown in

Table 7. Therefore, ELM and its improved hierarchical

approach [21] can possibly be an efficient choice for SDNs.

On the other hand, in spite of the good level of accuracy for

the testing stage achieved by KNN approach, it showed the

worst testing time, which may indicate that KNN algorithm

is not the best choice for SDNs where each controller may

need to handle thousands of flows per second. A possible

solution to this problem can be achieved by reducing the

number of the training instance by applying an appropriate

sampling method. Finally, one can observe that DT has

achieved the highest level of accuracy and a good testing time

in compared with the other classifiers.

(a)

(b)

Fig. 4. Execution time for (a) training and (b) testing different supervised machine learning method

7

7. Conclusion

In this paper, we provide a comparative study of

choosing an efficient anomaly-based intrusion detection

method for SDNs. We focused on supervised machine

learning approaches by using the following classifiers: NN,

LDA, DT, RF, Linear SVM, KNN, NB, ELM, AdaBoost,

RUSBoost, LogitBoost and BaggingTrees. In addition, we

used PCA method for feature selection and dimensionality

reduction. Using NSL-KDD dataset and based on our

extensive experimental study, we conclude that DT approach

shows the best performance in terms of accuracy, precision,

F1-measure, AUC and Mc Nemar’s Test. Also bagging and

boosting approaches outperformed other conventional

machine learning methods such as KNN, ELM, NN, RF,

SVM and LDA with a confidence level more than 99.5%.

Whereas in terms of false alarm rate and recall the best results

achieved by LogitBoost. In terms of the execution time, ELM

approach achieved the best testing time.

It is worth noting that using PCA approach was very

successful in enhancing the accuracy level from 77.09% to

88.74% in compared with using the basic features provided

by the SDN controller. Our future work will be focused on

comparing the results obtained from this study with other

machine learning approaches and exploring other flow-based

features that could be used to achieve a higher level of

accuracy with lower false alarm rate.

8. Acknowledgement

We would like to thank the reviewers for their insightful

comments to improve the quality of this paper.

9. References

 [1] Ha, T., Kim, S., An, N, Narantuya, J., Jeong, C., Kim, J.,

Lim, H.: 'Suspicious traffic sampling for intrusion detection

in software-defined networks', Comput. Netw, 2016, 109, pp.

172-182.

[2] AlErouda, A. and Alsmadib, I.: 'Identifying cyber-attacks

on software defined networks: An inference-based intrusion

detection approach', J. Netw. Comput. Appl, 2017, 80, pp.

152–164.

[3] Cui, Y., Yan, L., Li, S., Xing, H., Pan, W., Zhu, J., Zheng,

X.: 'SD-Anti-DDoS: fast and efficient DDoS defense in

software-defined networks', J. Netw. Comput. Appl, 2016,

68, pp. 65–79.

[4] Hong, S., Xu, L., Wang, H., Gu, G.: 'Poisoning network

visibility in software-defined networks: new attacks and

countermeasures'. Proc. NDSS. 22nd Annu. Network and

Distributed System Security Symposium, California, USA,

Feb 2015, pp. 1-15.

[5] Garcıa-Teodoroa, P., Dıaz-Verdejoa, J. Macia´-

Fernandeza, G., Vazquezb, E.: 'Anomaly-based network

intrusion detection: Techniques, systems and challenges',

Comput. Secur, 2009, 28, pp. 18–28.

[6Tang, T. A., Mhamdi, L., McLernon, D., Zaidi, S. A. R.,

Ghogho, M.: 'Deep learning approach for network intrusion

detection in software defined networking'. Proc. International

Conf. on Wireless Networks and Mobile Communications,

Fez, Morocco, Oct. 2016, pp. 258-263.

[7] Braga, R., Mota, E., Passito, A.: 'Lightweight DDoS

flooding attack detection using NOX/OpenFlow'. Proc. IEEE

35th Conf. on Local Computer Networks, Denver, USA, Oct.

2010, pp. 408-415.

[8] Laskov, P., Düssel, P., Schäfer C., Rieck, K.: 'Learning

intrusion detection: supervised or unsupervised?'. Proc. 13th

International Conf. Image Analysis and Processing–ICIAP,

Cagliari, Italy, Sept. 2005, pp. 50-57.

[9] F. Gharibian, F.,Ghorbani, A. A.: 'Comparative study of

supervised machine learning techniques for intrusion

detection'. Proc. IEEE Fifth Annu. Conf. on Communication

Networks and Services Research, New Brunswick, Canada,

May 2007, pp. 350-358.

[10] Tavallaee, M., Bagheri, E., Lu, W., Ghorbani, A. A.: 'A

detailed analysis of the KDD CUP 99 data set'. Proc. IEEE

Symposium on Computational Intelligence for Security and

Defense Applications, Ontario, Canada, July 2009, pp. 1-6.

[11] Panda, M., Abraham, A., Patra, M. R.: 'Discriminative

multinomial naive bayes for network intrusion detection'.

Proc. IEEE Sixth International Conf. on Information

Assurance and Security, Atlanta, Canada, Aug. 2010, pp. 5-

10.

[12] Aziz, A. S. A., Hassanien, A. E., Hanaf, S. E. O., Tolba,

M. F.: 'Multi-layer hybrid machine learning techniques for

anomalies detection and classification approach'. Proc. IEEE

13th International Conf. on Hybrid Intelligent Systems,

Gammarth, Tunisia, Dec. 2013, pp. 215-220.

[13] Thaseen, S., Kumar, C. A.: 'An analysis of supervised

tree based classifiers for intrusion detection system'. Proc.

IEEE International Conf. on Pattern Recognition, Informatics

and Mobile Engineering, Salem, India, Feb. 2013, pp. 294-

299.

[14] Chauhan, H., Kumar, V., Pundir, S., Pilli E. S.: 'A

comparative study of classification techniques for intrusion

detection'. Proc. IEEE International Symposium on

Computational and Business Intelligence, New Delhi, India,

Aug. 2013, pp. 40-43.

[15] Ingre, B., Yadav, A.: 'Performance analysis of NSL-

KDD dataset using ANN'. Proc. IEEE International Conf. on

Signal Processing and Communication Engineering Systems,

Guntur, India, Jan. 2015, pp. 92-96.

[16] Belavagi, M. C., Muniyal, B.: 'Performance evaluation

of supervised machine learning algorithms for intrusion

detection'. Proc. Twelfth International Multi-Conf. on

Information Processing, Bangalore, India, Dec. 2016, pp.

117-123.

[17] Staudemeyer, R., Omlin, C.W.: 'Feature set reduction for

automatic network intrusion detection with machine learning

algorithms'. Proc. of the southern African telecommunication

networks and applications conference (SATNAC),

Swaziland, Swaziland, Aug. 2009.

[18] Taylor, J., King, R.D., Altmann, T. Fiehn, O.:

'Application of metabolomics to plant genotype

discrimination using statistics and machine learning.

Bioinformatics', 2002, 18, (suppl_2), pp. S241-S248.

[19] Ikram S.T., Cherukuri A.K.: 'Improving Accuracy of

Intrusion Detection Model Using PCA and Optimized SVM'.

Journal of Computing and Information Technology, 2016, 24,

pp. 133–148.

[20] Wettschereck, D., Aha, D.W. Mohri, T.: 'A review and

empirical evaluation of feature weighting methods for a class

of lazy learning algorithms', Artificial Intelligence Review,

1997, 11, (1-5), pp. 273-314.

8

[21] Tang, J., Deng, C., Huang, G.B.: 'Extreme learning

machine for multilayer perceptron', IEEE T NEUR NET

LEAR, 2016, 27, (4), pp. 809-821.

[22] Bostanci, B., Bostanci, E.: 'An evaluation of

classification algorithms using Mc Nemar’s test'. Proc. of

Seventh International Conference on Bio-Inspired

Computing: Theories and Applications (BIC-TA 2012),

Gwalior, India, Dec. 2012, pp. 15-26.

