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Abstract: Domain-specific aspect languages (DSALs) bring the well-known advantages of domain specificity to the
level of aspect code. However, DSALs incur the significant cost of implementing or extending a language processor
or weaver. Furthermore, this weaver typically operates blindly, making detection of interactions with aspects
written in other languages impossible. This raises the necessity of an appropriate infrastructure for DSALs. The
case study we present here illustrates how the Reflex kernel for multi-language AOP addresses these issues,
by considering the implementation of a DSAL for advanced transaction management, KALA. We first detail the
implementation of KALA in Reflex, called ReLAx, illustrating the ease of implementation of runtime semantics,
syntax, and language translation. We then show a straightforward and modular extension to KALA at all these
levels, and demonstrate how Reflex helps in dealing with interactions between KALA and another DSAL for
concurrency management. These invaluable assets enable faster development of DSALs as well as their ability
to coexist within one application, thereby removing the most important impediments to their re-emergence in
the aspect community.

1 Introduction
Initial research on AOP focused on domain-specific aspect
languages (DSALs), like RG [1] and AML [2]. DSALs
bring all the well-known advantages of domain
specificity to aspect programmers, such as conciseness
and abstraction. However, this research has quickly
become overshadowed by work on general-purpose
languages, such as AspectJ [3]. Important reasons for
this trend are the following three impediments to the
growth of DSALs.

The first impediment is that the implementation of a
language processor or aspect weaver requires a large amount
of effort. Each DSAL tends to be implemented using an
ad hoc weaver, which is not necessarily reusable for other
DSALs. Second, such weavers can be hard to extend to
adapt to changes in the language. This is because they are
not designed with extensibility in mind. A third major
impediment is that such weavers are usually not aware of
other aspect weavers that may affect the same application,
and therefore blindly weave their code into the application.

As a result, aspect composition, particularly when there are
interactions, becomes problematic. There is no indication
of interaction and possible conflicts, let alone a possibility
for simple conflict resolution.

The above three impediments can however be addressed
through the use of an appropriate infrastructure for
DSALs. Using a platform that provides adequate support
for implementing DSALs, it becomes easier to
experiment with them, their extensions, as well as with
interactions between aspects defined in different DSALs.
This is precisely the objective of Reflex, a kernel for
multi-language AOP [4]. Reflex provides as a base a large
number of generic facilities for the creation of aspects, in
addition to which support is included for detection and
resolution of interaction conflicts, and last but not least,
support for language definition and transformation based
on state-of-the art DSL technologies [5]. This allows
DSALs and their extensions to be implemented
faster, and provides direct support for detection of
interactions between different aspects, as well as for their
resolution [6, 7].
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This paper shows the design and implementation of a non-
trivial DSAL on top of Reflex. We consider KALA, a DSAL
for advanced transaction management [8, 9]. KALA is a
good candidate for this work not only because of its
significant size but also because of its complexity and
specific syntax and scoping rules. The in-depth discussion
of the implementation of KALA in Reflex provided here
shows that (a) Reflex provides appropriate support for
DSAL development, allowing for a compact yet accessible
implementation of such languages; (b) the DSL
technologies used by Reflex enable straightforward modular
extension of DSALs; and (c) Reflex adequately detects and
reports on interactions between aspects defined in different
DSALs, as well as supporting the resolution of these
interactions.

Previous work on KALA [8, 9] used a proof-of-concept
implementation based on source code transformation. The
ReLAx case study is a re-implementation of KALA in
Reflex, keeping the language unchanged (save for a
syntactic simplification made possible by the more
advanced parser in Reflex.).Q1 In order for this discussion to
be self-contained, we have included a brief introduction
to KALA. It shows the essentials that are required in order
to be able to obtain a full grasp of the implementation.
Furthermore, it serves as an illustration of the complexity of
the language. This gives an indication of the power of the
infrastructure, more specifically its ability to implement
non-trivial DSALs in a relatively straightforward fashion.
Readers familiar with KALA may safely skip this
introduction.

The paper is structured as follows: Section 2 discusses
multi-language AOP and Reflex. Section 3 provides an
introduction to KALA. Section 4 gives an operational
description of KALA, and discusses its implementation in
Reflex. Section 5 completes the language implementation
by treating both the KALA syntax definition and the
assimilation of KALA code into Java code for Reflex.
Section 6 evaluates our solution by considering both an
extension to KALA, and a case of interaction with another
DSAL. Section 7 discusses previous, related and future
work. Section 8 concludes.

2 Multi-language AOP and Reflex
This section briefly introduces the necessary background
concepts on multi-language AOP and the Reflex AOP
kernel.

2.1 Multi-language AOP
In order to be able to define and use different aspect
languages, including domain-specific ones, to modularise
the different concerns of a software system, we have
previously proposed the architecture of a versatile kernel for
multi-language AOP [10] and our current Java
implementation, Reflex [4].

A versatile AOP kernel supports the core semantics of
various AO languages through appropriate structural and
behavioural models. Designers of aspect languages can
experiment rapidly with an AOP kernel as a back-end, as
it provides a high level of abstraction for driving
transformation. Furthermore, such a kernel is a mediator
between different coexisting AO approaches: it detects
interactions between aspects, possibly written in different
languages, and provides expressive means for their resolution.

The architecture of an AOP kernel hence consists of
three layers (Fig. 1): a transformation layer in charge of
basic weaving, supporting both structural and behavioural
modifications of the base program; a composition layer,
for detection and resolution of aspect interactions; and a
language layer, for modular definition of aspect languages.
It has to be noted that the transformation layer is not
necessarily implemented by a (byte)code transformation
system: it can very well be integrated directly in the
language interpreter [11]. As a matter of fact, the role of
a versatile AOP kernel is to complement traditional
processors of object-oriented languages. Therefore the fact
that our implementation in Java is based on code
transformation should be seen as an implementation
detail, not as a defining characteristic of the kernel
approach.

2.2 Reflex in a Nutshell
2.2.1 Architecture: Reflex is our Java implementation of
a versatile kernel for multi-language AOP. As such, it follows
the architecture of an AOP kernel (Fig. 1):

† The transformation layer is based on a reflective core
extending Java with behavioural and structural reflective
facilities. The model of behavioural reflection is based on
that presented in [12], and explained in more details next.

† The composition layer ensures automatic detection of
aspect interactions, and provides expressive means for their
explicit resolution. The composition facilities of Reflex were
presented in [6], and later, advanced mechanisms for
declarative composition of structural aspects were
introduced [7].

† The language layer is based on the MetaBorg approach for
unrestricted embedding and assimilation of domain-specific
languages [5]. Concrete syntax for the Reflex kernel API

Figure 1 Architecture of a versatile kernel for multi-
language aspect-oriented programming
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using this approach was presented in [13]. In Section 5 we
report on the definition of KALA and its assimilation to
Reflex using MetaBorg.

2.2.2 Links: The central abstraction supported at the level
of the kernel to drive behavioural transformation is that of
explicit links binding a set of program points, called a
hookset, to an object implementing the associated action,
called a metaobject. A link is characterised by a number of
attributes, for example the moment at which metaobjects
act (before, after and around), and a dynamically evaluated
activation condition. Fig. 2 depicts two links, one of which
is not subject to activation, along with the correspondence
to the AOP concepts of the pointcut/advice model. The
aforementioned links are called behavioural links to
distinguish them from structural links, which are used to
perform structural actions, as briefly illustrated in Section
6.1 when extending KALA.

A link can therefore be seen as a primitive aspect, that is, a
single cut/action pair. Higher-level aspects (a.k.a. composite
aspects) typically consist of several such pairs, and may as well
include structural primitive aspects (e.g. inter-type
declarations).

2.2.3 Hooksets: A hookset is specified by defining
predicates matching a reification of program elements,
following a class-object structural model similar to that of
Javassist [14]: an RPool object gives access to RClass
objects, which in turn gives access to their members as
RMember objects (either RField, RMethod or
RConstructor), which in turn gives access to their
bodies as RExpr objects (with a specific type for each kind
of expression). These objects are causally connected
representations of the underlying bytecode, offering a source-
level abstraction over bytecode. Reflex is implemented as a
Java 5 instrumentation agent operating on bytecode, typically
at load time. During installation of behavioural links, hooks
are inserted in class definitions at the appropriate places
according to hooksets, in order to provoke reification at
runtime, following the protocol specified for each link.

2.2.4 Metaobjects: A metaobject implements the action
associated to an aspect. In Reflex it can actually be any
standard Java object, whose existence may even precede the
actual definition of the link (e.g. System.out can serve
as a metaobject for a link). Reflex makes it possible to
customise the actual protocol between the base program

and metaobjects, on a per-link basis. For instance, a call
descriptor can specify that the println method of
System.out be called passing only the intercepted
method name as a parameter.

3 KALA in a Nutshell
In this section we first introduce advanced transaction models
(ATMS), via two well-known models. We then present the
KALA DSAL Q2for ATMS, illustrating its use with example
code for these two advanced transaction models.

3.1 Advanced transaction models
Transactions are the cornerstone of concurrency management
in multi-tier distributed systems. Originally designed to
provide concurrency management for short and
unstructured data accesses to databases; they are however
now used outside of this domain. This observation is not
new, and significant research has been performed to
address the shortcomings of classical transactions through
the use of ATMS [15, 16]. An overview of these models is
outside of the scope of this paper. Instead we briefly
introduce what are arguably the two best-known advanced
transaction models: nested transactions [17] and sagas [18].
Nested transactions allow a hierarchically structured
computation to be matched to a tree of transactions, while
sagas can be used to split a long-lived transaction into a
number of shorter steps.

3.1.1 Nested transactions: This model is one of the
oldest and arguably the best-known ATMS [17]. It enables
a running transaction T to have a number of child
transactions Tc (as shown in Fig. 3). Each Tc can view the
data used by T. This is in contrast to classical transactions,
where the data of T is not shared with other transactions.
Tc may itself also have a number of children Tgc, forming a
tree of nested transactions. When a child transaction Tc
commits its data, these data are not written to the database,
but instead it is delegated to its parent T, where it becomes
part of the data of T. If a transaction Tx is the root of a
transaction tree, that is it has no parent, its data are
committed to the database when it commits. Another
characteristic of this model is that if a child transaction Tc
aborts, the parent T is not required to abort, that is when it
ends it may choose to either commit or abort.

3.1.2 Sagas: The model of sagas [18] is, next to nested
transactions, one of the oldest ATMS and also arguably

Figure 2 Link model and correspondence to AOP concepts Figure 3 Nested transactions ATMS
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one of the most referenced ATMS in the community. Sagas
is tailored towards long-lived transactions. Instead of one
long transaction T, a saga S splits T into a sequence of sub-
transactions T1 to Tn (as shown in Fig. 4). Each sub-
transaction is a normal classical transaction and this
sequence is executed completely before the saga commits.
To abort or rollback a running saga S, the currently
running sub-transaction Ti is aborted and the work of
already-committed transactions T1 to Ti!1 has to be
undone, as their results have already been committed to the
database. To allow this, the application programmer has to
define for each sub-transaction Ti a compensating
transaction Ci that performs a semantical compensation
action. To undo the work of T1 to Ti!1, C1 to Ci!1 are ran
by the runtime transaction monitor in inverse sequence,
that is starting with Ci!1.

3.1.3 ACTA formalism for ATMS: In addition to a large
amount of advanced transaction models – each addressing a
specific subset of the shortcomings of classical transactions –
a formalism has been developed for advanced transaction
models. This formalism is called ACTA [19]. ACTA
allows a wide variety of advanced models to be described
formally. An in-depth treatment of ACTA is outside of the
scope of this paper. Suffice it to say that ACTA
specifications for a given model formally describe properties
that are exhibited by transactions in this model.

3.1.4 Towards aspects: From the viewpoint of an
application, an ACTA specification can be seen as formally
defining the properties of the concern of advanced
transaction management. This leads us to aspect-oriented
programming. Indeed, transaction management is a well-
known aspect, and a significant amount of work has already
been done to aspectise transaction management [20–22].
However, none of this work goes beyond classical
transactions. Using the ACTA formalism as a base, we
have developed a DSAL for ATMS: KALA, which we
present next.

3.2 KALA: an aspect language for
advanced transaction models
KALA is a DSAL for the domain of advanced transaction
models, based on the ACTA formalism. KALA reifies the
concepts of the ACTA formal model as statements in the
language. Our implementation of KALA targets Java
applications: a base Java application can be made
transactional, using KALA, with transactions that exhibit

the properties of an advanced transaction model. An
in-depth treatment of KALA, the design process and the
tradeoffs made is provided in [9]; in this paper, we solely
provide a short description of the language using two
example program fragments: one for nested transactions
and one for sagas.

3.2.1 KALA programs: A KALA program declares
transactional properties (discussed below) for a number of
transactions based on the life cycle of a given transaction.
As is usual in OO programs that use transactions, the life
cycle of every transaction coincides with the life cycle of a
method [8]. The transaction begins when the method
begins, commits when the method ends normally and
aborts if the method ends with a specific type of exception.
A KALA declaration consists of a signature and body. The
signature identifies a method, and therefore a transaction,
possibly using wildcards, similar to type and method name
patterns in AspectJ [3].

Consider the KALA code shown in Fig. 5. Line (2) is the
KALA signature, which identifies the transactional methods.
As a result, all data accesses to shared data within these
methods (and within methods called by these methods) are
included in the transaction. To indicate that instances of a
given class contain shared data, that is that they are
transactional objects, the class must implement the
Resourceable interface. This interface declares one
method: getPrimaryKey(), that should return a
unique identifier for the object. Note that having to
implement this interface implies an incomplete separation
of concerns. This is because the implementation has to be
done at the base level of the application, and not at the
level of the transaction aspect. We address this incomplete
separation of concerns in Section 6.1 with an extension to
KALA.

In the KALA body, transactional properties are declared
for this transaction, and possibly for other transactions. The
properties take effect at given times in the life cycle of the
transaction: properties can be declared to apply at begin
time, commit time and abort time. This is done by placing
these declarations, which are KALA statements, in a
begin block (6)–(7), commit block (8)–(10) and

Figure 5 KALA code for children in nested transactionsFigure 4 Sagas ATMS
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abort block (11)–(12), respectively. Outside of these
blocks, a number of statements can be placed in the
preliminaries (3)–(5). We shall talk about the preliminaries
later.

Using AOP terminology, KALA is an aspect language
of which the join-point model contains method executions;
the signatures are the pointcut expressions, and the body
constitutes advice. The advice specifies the transactional
properties of a set of methods, specified by the pointcut
expressions. Furthermore, within those methods reads and
writes to Resourceable objects are made transactional.
As a result the crosscutting concern of advanced transaction
management is aspectised.

3.2.2 Transactional properties: Transactional
properties of a method are declared to apply either at begin,
commit or abort time. They are taken from the ACTA
formal model: views, delegation and dependencies. Each of
these properties is reified as a statement in KALA,
respectively, view, del and dep statements.

The view property declared in (7) states that the current
transaction, which is a child transaction, can see the data of
its parent transaction. This property is established when the
transaction begins. The delegation property of (8) states
that upon commit, the child transaction delegates its data
changes to its parent transaction. This concisely expresses
the most important characteristics of nested transactions as
discussed previously.

A dependency statement, dep (6), sets relationships
between points in the life cycle of two transactions. For
example, a dependency can force a transaction to
commit if another transaction aborts (the cmd
dependency), it can restrict one transaction to start only
if another transaction has committed (the bcd
dependency), or to start only if another transaction has
aborted (the bad dependency). Combinations of
dependencies can be used to, for instance, sequence
different transactions or trigger the beginning of a
compensating transaction. A wide variety of
dependencies have been defined in the ACTA formal
model, and are available in KALA. We do not discuss
these in detail here, instead we refer to [9, 19]. The
dependency self wd parent (6) states that if the
parent aborts before this transaction ends, then this
transaction will be forced to also abort. parent cd
self states that if the parent wants to commit, it has
to wait until this transaction has ended.

3.2.3 Naming transactions: Dependencies, views and
delegation need to be able to denote the two transactions
they affect; therefore there is a need for a variable binding
mechanism. Within KALA code, such a binding is known
as an alias. An alias is looked up through the use of a
global naming service, which is declared using the alias
statement (3). This statement takes as argument the alias

for a transaction, that is the variable name, and a Java
expression that evaluates to a key that is used to look up
the transaction reference in the name service. This
expression, as well as all expressions we mention in the
remainder of this section, has access to the actual
parameters of the method and to aliases which have already
been resolved. Special cases are the alias self, which is
always bound to the currently running transaction, and the
null transaction, which is the result of a lookup failure.
KALA statements that have as an argument the null
transaction fail silently.

Adding transactions to the naming service is performed
using the name statement, which takes as argument an
alias and a Java expression that evaluates to the key for the
naming service. In Fig. 5, the current thread is first used as
a key to lookup the parent transaction (3), then to register
the current transaction (overriding the binding) (4) and
finally, upon commit or abort, the parent binding is
restored (9),(11). The scope of aliases within a KALA
declaration follows the usual lexical scoping rules: aliases
obtained in the preliminaries of a declaration are accessible
thoughout the remainder of the KALA code for that
declaration; aliases placed in begin, commit and abort
blocks are only accessible there.

3.2.4 Grouping transactions: KALA provides support
for named groups of transactions. A transaction can be added
to a group using the groupAdd statement: (5) adds the
current transaction to the group of children of the parent
transaction. All KALA statements have an overloaded
behaviour for groups, for example setting a view from a
transaction to a group of transactions implies setting the
view to each member of the group. The only non-obvious
case is when a group is a destination of a delegation
statement. As semantically this has no sense – delegating
some changes to a group of transactions – a failure is
produced. Note that for conciseness in the remainder of the
text, we shall refer to the collection of name, alias and
groupAdd statements as naming statements.

3.2.5 Terminating transactions: Because
dependencies may refer to transactions that have already
ended, it is impossible to perform automatic garbage
collection of names and dependency relationships when
transactions have ended. Instead the KALA programmer is
made responsible for such cleanup operations. This is
performed through the terminate statement, which
takes as argument a Java expression. This expression is
resolved to a name of the transaction or group of
transactions to be collected. Termination of transactions
can be performed within a begin, commit and abort
blocks. For instance, (10) and (12) state that if a nested
transaction finishes (by commit or abort), it terminates the
group of its child transactions. Note that if a transaction is
terminated when it has not yet ended, it is immediately
forced to rollback.
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3.2.6 Autostarting transactions: An important
number of advanced transaction models require that when
some properties are satisfied, a new transaction is automatically
started. An example is the use of compensating transactions in
the Sagas model, which we have discussed above. We term
these kinds of transactions secondary transactions. A
secondary transaction runs outside of the main control flow of
the application, and does not need to be run in order to have a
successful completion of the original transaction. KALA
provides support for secondary transactions through the
autostart statement: it specifies the signature of the
method corresponding to the secondary transaction to start in
parallel, a list of actual parameters (each of which can be a Java
expression), and optionally a nested KALA declaration for this
transaction. Autostarts are specified in the preliminaries and
their nested KALA code has access to all aliases defined in the
preliminaries, following the rules of lexical scope.

An example of an autostart is given in Fig. 6, which shows
part of the KALA code for one step of a bank transfer saga.
This step performs the actual bank transfer between two bank
accounts. The compensating transaction for this transfer
(13)–(15) is the inverse operation, that is calling the
transfer method with the src and dest arguments
swapped (14). The dependencies set in (16) and (17)
restrict the compensating transaction to run only if the saga
rolls back after this step has committed. Without these
dependencies in place, the compensating transaction
defined in the autostart would immediately start, and run
in parallel with the transaction of the top-level KALA
declaration, which is not the desired semantics.

3.2.7 Summary: KALA is an expressive aspect language
for ATMS because it is the direct realisation of the ACTA
formalism; it provides clear advantages over general-
purpose aspect languages, such as conciseness, coherent
scoping rules and appropriate abstractions corresponding to
the domain at stake, among others. Furthermore, it is a
non-trivial DSAL and therefore a valid case study for the
implementation in a DSAL infrastructure.

4 ReLAx: implementing
KALA in Reflex
We now enter in more details with respect to the working of
KALA and its implementation in Reflex.

4.1 Operational description of KALA
Generally, transactions are managed at runtime by a
component known as a transaction processing monitor (TP
monitor), whose task is to manage concurrent accesses to
shared data: individual transactions notify the TP monitor
of their intent to read or write shared data, and the TP
monitor allows or disallows these accesses to prevent race
conditions.

KALA is no exception to this rule. KALA works in close
cooperation with a TP monitor, called ATPMos [8].
ATPMos was specifically developed for advanced
transaction models and is also based on the ACTA
formalism. At runtime, beyond the normal tasks of a TP
monitor, ATPMos keeps track of dependencies and view
relationships and is able to perform delegation between
transactions; it also provides the naming services required
by KALA (naming, grouping and termination). A detailed
discussion of ATPMos is outside the scope of this paper
(more information is in [8]).

At each point in the life cycle of a transaction, the
responsibilities of KALA therefore are: to instruct
ATPMos to place dependencies and views, to perform
delegation and termination, and to coordinate with
ATPMos to ensure that dependencies are met. While a
transaction runs, KALA informs ATPMos of all reads and
writes to shared data, before they are performed. Autostarts
are entirely managed by KALA; ATPMos provides no
specific support for them: it sees them as normal
transactions. The flow chart in Fig. 7, discussed below,
outlines how KALA works.

4.1.1 Preliminaries: First, general setup is performed:
obtaining a unique transaction identifier from ATPMos,
and setting up the alias environment, which keeps bindings
for aliases. The environment is initialised with the binding
of self to the obtained transaction identifier, as well as
with the bindings of formal parameters of the transactional
method (as specified in the KALA code) to their actual
values. Alias environments can be nested: if a lookup fails
in an environment, it is performed in the parent, if present.

Next, the naming statements of the preliminaries are
executed. As a rule, all naming is performed at the
beginning of a phase, in the sequence of the statements in
the KALA code. Recall that alias statements add
bindings from names to transaction or group identifiers in
the alias environment, name statements add these bindings
to the naming service of ATPMos and groupAdd
statements add transaction identifiers to the grouping
service of ATPMos.

Finally, for each autostart statement a thread is
defined that calls the method specified in the autostart
statement. This transactional method is parameterised by
the KALA body nested in the autostart, overridingFigure 6 KALA code for a step in a bank transfer saga
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any other KALA declarations for that method. Furthermore,
the current alias environment is given as a parent
environment of the created transaction: this allows the
KALA declarations in the autostart to refer to aliases
defined in the enclosing KALA definition. The autostart
thread is started, and allowed to run until its preliminaries
are finished. This allows for the registration of a global
name that can be used in the enclosing KALA code, such
as in Fig. 6, where the autostart of a saga registers itself
with a name, which is then looked up in the begin and
commit blocks of the enclosing KALA definition.

4.1.2 Begin: In the begin phase, a nested alias
environment is created, and naming operations are
performed. Then, dependencies are set in ATPMos, as
they may impact the begin of an autostart or of the current
transaction. For instance, in Fig. 6, the autostart is a
compensating transaction that may not begin unless this
transaction has committed and the saga aborts, which is
specified both in the begin and abort blocks. After
dependencies have been set, the autostarts are allowed to
proceed with their begin phase.

At this point, ATPMos is asked if, according to the
dependencies currently placed on this transaction, it may
begin; otherwise, this call blocks. An example of this is the

case of a compensating transaction in a saga (Fig. 6). This
is because the compensating action should only be
performed when the saga aborts. The call to ATPMos may
finally return with three possible values (Fig. 7); the
transaction may be allowed to begin, or it may be
immediately forced to commit or to abort. The latter two
cases occur if the dependencies currently placed require
immediate commit or abort of the method. The
compensating transaction mentioned above is such a case: if
the overall saga has committed, it will never need to run,
and therefore has to immediately abort. If the transaction is
allowed to begin, views are set and delegation is performed,
ATPMos is informed that the transaction is about to
begin, and termination is performed. If the transaction
must commit or abort, control flow proceeds in the
corresponding phases.

4.1.3 Running: The running phase of the transaction
corresponds to running the code of the method, that is the
application logic, but with an interception of all getters and
setters of transactional objects. The interception calls
ATPMos to inform it that this shared data are going to be
read or written. This call may block, in order to prevent
race conditions, and may throw a transactional exception,
for example in case that a deadlock needs to be broken. If
such an exception is thrown, either by ATPMos, or by the
application logic, the control flow proceeds with the abort
phase.

4.1.4 Commit: The commit phase starts with a choice
point for the enforcement of dependencies, similar to the
choice point in the begin phase. If the transaction may
commit, the actions are straightforward; the only difference
with the begin phase is that dependencies are set after the
choice point, because they are considered to hold only if
the transaction actually commits. If it must abort, control
flow proceeds with the abort phase.

4.1.5 Abort: The abort phase is mostly identical to the
commit phase. There are two differences, which we discuss
here. First, if the transaction is forced to commit because of
a dependency, control flow does not proceed to the
beginning of the commit phase, but it skips the choice
point. This is to avoid loops if a transaction is both forced
to abort and forced to commit because of conflicting
dependencies. Although such a conflict might be a bug in
the specification, we have chosen to let the transaction end
instead of letting the application loop endlessly [8].
Second, a transactional exception is thrown to the caller of
the method at the end of the phase. This is done to inform
the caller that this transaction ended in an abort, that is
that the work expected of this method was not performed
successfully. Note that the caller may also be a transactional
method, and hence will also abort, unless the exception is
caught by the application logic.

Figure 7 Flow chart of a KALA transaction
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4.2 Reflex definitions for KALA
Having discussed the operational description of KALA, we
now give an overview of how this is implemented using
Reflex. For the sake of simplicity, we consider a KALA
program that only contains one KALA declaration. This
discussion can however straightforwardly be generalised to
programs with multiple KALA declarations.

4.2.1 Declaration links: We consider one primitive
KALA aspect per KALA declaration. The cut of a KALA
aspect is defined by the method signature of the
declaration. In terms of execution points, this corresponds
to a Reflex hookset (Fig. 8a), matching the execution of
the methods specified by the pattern. The action of a
KALA aspect occurs around the specified methods, and is
implemented in a Java object, called a Demarcator.
There is one Reflex link per KALA declaration, binding
the hookset to the demarcator, and specifying the
information that must be passed at runtime: the name of
the method and its actual parameters (Fig. 8).

4.2.2 Demarcator: The runtime behaviour of KALA
programs is implemented in the demarcate method of a
Demarcator. This method is generic for all KALA
programs: it just ensures the correct control flow, following
Fig. 7, interacting with ATPMos. Actions that are specific
to KALA programs are delegated to a number of KALA
configuration objects that reify KALA statements and
interpret them, as discussed next. There is one demarcator
per KALA declaration: a demarcator is instantiated with
a number of configuration objects, as well as with the list
of formal parameters of the transactional method. A
Demarcator is reentrant, that is it is shared between all
running instances of a given KALA declaration.

4.2.3 Configuration objects: There are three categories
of configuration objects, corresponding to different KALA
statements:

† Transactional properties are a simple reification of
dependencies, views and delegation statements as structured
data. A KProps object is a triplet of bi-dimensional string
arrays, one per kind of property. For instance, the
statement dep(self wd parent) is represented as an
array f‘self’,‘wd’,‘parent’g, within the array of
dependencies. The actual interpretation of these values
consists in looking up the identifiers in the alias
environment, then calling ATPMos to set the property (if a
group is involved, the property is set for each member of
the group). Lookup failures are reported as errors and no
action is taken.

† Naming evaluators are objects interpreting a number
of naming and termination statements. Naming and
termination statements are not pure data, they include
expressions that need to be evaluated at runtime, including
identifiers that must be looked up in the alias environment.
Therefore a set of naming and termination statements is
represented as a dedicated Java class implementing their
expressions. This class is a subclass of NamingEval,
which defines generic evaluation and lookup mechanisms.

† Autostarts are represented as runnable objects, instances of
a subclass of AStart, whose run method calls the method
indicated in the autostart statement. The values of the
arguments to this method call are looked up in the alias
environment. Furthermore, the AStart object sets the
Demarcator object of the method that it calls to a new
metaobject. This new object is configured by the nested
KALA declaration of the autostart and the alias
environment it contains has as parent the current alias
environment.

A Demarcator is initialised with four pairs of
configuration objects, one for each of the sections of a
KALA declaration (Fig. 8): a naming evaluator and
autostarts for the preliminaries (b), and for begin, commit
and abort blocks a naming evaluator and a transactional
properties object (c). Fig. 9 shows the install method
of the base configuration class used for ReLAx: given all
the above parameters, the method creates the demarcator
(19) and the link binding the given hookset to the
demarcator (20). Link attributes, like control, scope, etc.,
are then set (21), before the link is installed (22).

Figure 9 Method of the configuration class that installs a
link for a given reified KALA declaration

Figure 8 Mapping of KALA declarations to runtime objects
There is one link per KALA declaration
a Method signatures are mapped to hooksets
b Demarcators are parameterised by configuration objects
reifying KALA statements (a pair for preliminaries)
c One for each block
They are given control upon transactional method executions, and
interact with ATPMos
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4.2.4 Transactional objects: In addition to the above,
KALA includes a secondary aspect: that of intercepting
executions of getter and setter methods of classes that
implement the Resourceable interface. This aspect is
implemented as a single link, binding a hookset matching
the above executions to other methods of the
Demarcator (preWrite and preRead). These
methods simply inform ATPMos of reads and writes to
shared data, as discussed previously. Because these methods
are stateless and reentrant for all KALA programs, the link
is installed only once, when the first KALA program is
being woven.

5 Definition and assimilation
of KALA
After this informal discussion of both the operational
semantics of KALA and the way it is supported in Reflex
as a framework, we present how the actual KALA language
is defined in our infrastructure. This includes the concrete
syntax definition, as well as the automatic transformation of
a KALA program into Reflex configuration code in plain
Java (a process called assimilation).

5.1 Declarative syntax definition
The syntax definition of KALA is performed using SDF, a
modular syntax definition formalism [23]. Fig. 10 shows
the syntax definition of KALA in SDF: it is defined as an
SDF module importing the Java 5 syntax as well as a
module for pattern syntax (taken from the SDF definition
of AspectJ [24]), shown in line (23). SDF productions are
declared in the reverse manner from the traditional BNF

notations, as illustrated in Fig. 10 where (24) states that
a number of KALA declarations are valid as a
CompilationUnit non-terminal. This non-terminal is
the root of the Java language SDF definition, therefore we
are actually extending the Java language with the KALA
syntax. Note that although this allows Java and KALA
code to be mixed in one file, the KALA assimilator
presented below only processes KALA code.

A KALA declaration consists of a fully qualified method
pattern followed by a body (25); a KBody is made up of four
optional sections (26): preliminaries, begin block commit
block, and abort block. Preliminaries are a list of
PrelimStm (27), while blocks are made up of BlockStm
(28)–(30). A PrelimStm can be either an autostart (31)
(defined on line (38)), or a naming statement (32). A naming
statement is also valid as a BlockStm (33), along with
dependency, view, delegation and termination statements
(34)–(37). A naming statement can either be an alias
(39), a name (40) or a groupAdd (41). These statements
include binding expressions, binding a Java identifier to
an expression (46). Dependency, view, delegation and
termination statements also make use of the imported Java
non-terminals JavaId and JavaExpr (42)–(45).

The KALA syntax definition is very compact and
declarative, thanks to the SDF notation. We have only
omitted a few lines of details such as the method patterns.
It is also modularly extensible, as will be illustrated in
Section 6.1.

5.2 Reflex code generation
With the SDF definition above, the MetaBorg toolset
generates a parser for KALA that produces an abstract syntax
tree in the ATerm format [25]. The actual AST nodes that
are produced for the non-terminals of the grammar are
specified using constructor declarations, omitted here for
conciseness. The AST is then processed by an assimilator
defined declaratively using the Stratego language [26]. By
defining assimilation rules, KALA declarations are converted
into Reflex configuration code, in plain Java.

5.2.1 Assimilating declarations: Fig. 11 shows the
main assimilation rule, which deals with KALA

Figure 10 Syntax definition of KALA in SDF Figure 11 Rule for assimilating a KALA declaration
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declarations. An assimilation rule has a name (47), and
specifies how a term (AST node) matching the pattern on
the left-hand side is transformed into the right-hand side.
We make use of the embedding of Java within Stratego, so
the result of the transformation is directly written in Java
code between the |[ and ]| separators [5]. Within this
block, metavariables are referred to using the ~ escape. A
where clause (55) can be specified for applying further
rules to some elements and bind them to variables which
can be used in the right-hand side of the rule.

The assimilation rule of a KALA declaration generates the
hookset, the formal parameters array, and the configuration
objects that are needed to create the corresponding link.
Then the install method of Fig. 9 (18) is called (54).
These statements are inserted in the initReflex method
of a class extending ReLAxConfig (Fig. 9). A
configuration class is instantiated and called at startup in
order to perform the necessary link definitions. We
generate one configuration class per KALA source file. A
single source file can of course contain more than one
declaration, resulting in a Reflex configuration class that
installs more than one parameterised link.

5.2.2 Assimilating parameters: The different
configuration objects in Fig. 11 are denoted by an identifier
in order to refer to them when calling the install
method (54). To ensure hygiene, identifiers are
automatically generated by Stratego. This is why the
hookset variable in (48) is the metavariable ˜hs, which is
determined in the where clause of the rule, which applies
the <newname> utility rule to the ‘hs’ symbol (55).
The result of this transformation is then bound to the
variable we use in the Java code. This means Stratego will
generate hookset variable names hs_0, hs_1 etc., as
needed.

Line (48) specifies that the right-hand side of the
assignment for the hookset is obtained by applying the
AssimMethSig rule to the meth term (the AST node
representing the method signature). The list of formal
parameters of the method is also obtained by applying a
rule to this same term (49). Following this, the eight
configuration objects (Section 4.2) needed are obtained via
application of dedicated rules: the preliminary naming
statements (50), the autostart objects (51), the naming and
termination statements of the begin block (52), its
transactional properties (53) etc.

5.2.3 Assimilating properties: Statements that deal
with transactional properties – that is dependencies, views
and delegation – are assimilated into a configuration object
KProps (Fig. 12). A KProps object is a bi-dimensional
array of strings, as explained in Section 4.2. The creation of
this array is shown in (56); the content of each column in
this configuration object is obtained via applying other
assimilation rules, one for each type of property:
dependencies (57), views (58) and delegation (59). The use

of the try and filter strategies ensures that the rule is
applied to all terms (the statements) and that the process
goes on if a term does not match. Fig. 12 shows the
assimilation rule for dependencies (60): if a statement is a
dependency, it is assimilated into a variable initialiser with
the three corresponding values (source, dependency and
destination) (61).

5.2.4 Assimilating naming and termination:
Naming and termination are more complex statements to
assimilate (Fig. 13), because they directly relate to the scope
of identifiers in KALA. For each part of a KALA
declaration (preliminaries, begin, commit and abort), a
NamingEval object is created and passed as a parameter
to the Demarcator (recall Section 4.2) (62). A naming
evaluator has two methods, evalNaming and
evalTerm, which are filled in with statements generated
by the assimilation of naming (63) and termination (64),
respectively. The application of these assimilations is
defined in the where clause of the main assimilation rule
(65)(66).

As an example, Fig. 13 shows the case of a name
statement (the operation is similar for alias and
groupAdd). The generated statement is a call to the
nameOp method defined in the superclass NamingEval,

Figure 13 Rules for assimilating naming and termination

Figure 12 Rule for assimilating transactional properties
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which takes as a parameter the current environment and
transaction manager, the name to bind, and the expression
to which the name should be bound (67). Note however
that the expression is processed in order to replace all
occurrences of identifiers with a lookup for the identifier in
the alias environment (68). This is because a naming
statement can include aliases and formal parameters of the
method (recall Section 3.2); these names are not valid in
the generated Java method, so they are transformed into an
alias environment lookup expression (70). The assimilation
of a termination statement is very similar (69).

6 Evaluation
In this section we evaluate the benefits of our infrastructure by
considering an extension to the KALA language, and
discussing a scenario of composition of KALA with another
DSAL for concurrency management.

6.1 Extending KALA
We first illustrate the extensibility of our implementation by
considering a simple extension to the KALA language.
Recall from Section 3.2 that the identification of
transactional objects is made explicitly by the programmer:
classes of transactional objects must implement the
Resourceable interface, which declares a
getPrimaryKey() method. This method returns a
unique identifier for a transactional object.

The extension we consider here is to provide transactional
declarations in KALA, such as:

transactional "Data;

to specify that all classes whose name ends with Data should
be made transactional, automatically. If a class of
transactional objects already implements a method that can
serve the purpose of getPrimaryKey, this can be
specified:

transactional "Data (getID);

The getID method will be called by a generated
getPrimaryKey method, which therefore just serves as
an adapter for the resourceable protocol on which KALA
relies.

In the following, we first give the syntax of this extension,
then describe how to operationally implement the
transformation with Reflex. Finally, we describe the
assimilation of the language extension with Stratego. This
example illustrates the conciseness and modularity of
DSAL extensions.

6.1.1 Syntax definition: The syntax extension is very
concise, as illustrated in Fig. 14. A new SDF module
extending the KALA module of Fig. 10 is defined (71): it

simply gives an alternative production for the KalaDecl
non-terminal, which corresponds to transactional
declarations (72). Classes are identified by a type pattern,
which is a non-terminal inherited from the Pattern
module used for the standard KALA language (and which
comes from the SDF of AspectJ [24]). Optionally, the
primary key method is specified, as a Java identifier (73).

6.1.2 Operational description: For classes matching
the type pattern, Reflex must add the Resourceable
interface, and if so specified, generate the standard primary
key method that calls the existing one. Both steps are easily
implemented using the structural abilities of Reflex [4]. A
structural link is defined, binding a class selector that matches
classes according to the given type pattern to a metaobject
that performs the operations above. The implementation of
TrAdd is straightforward (Fig. 15): if given a non-empty
string when created, the metaobject builds a string
representing the source code of the primary key method to
add (74). The action of the metaobject, defined in
handleClass simply consists of adding the resourceable
interface (75) and, if necessary, the generated method (76).

6.1.3 Assimilation: The assimilation of the KALA
extension is also defined modularly and concisely. A new
Stratego module importing the KALA assimilation module
defines an alternative assimilation rule for KALA
declarations (Fig. 16). The parse tree node corresponding
to a transactional declaration is TransDecl (77). The
assimilation consists in first creating the class selector
corresponding to the type pattern (78), and then creating a
structural link with the class selector and a TrAdd
metaobject created with the primary key method name
(79). Finally, the structural link is installed (80).

6.2 Composing KALA
We now illustrate a major advantage of using a versatile
kernel for multi-language AOP as discussed in Section 2.1:

Figure 15 Implementation of the TrAdd metaobject

Figure 14 SDF module extending KALA with transactional
declarations
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the detection and resolution facilities provided to handle
interactions between aspects defined in different languages.
Aspect composition is a multi-faceted issue, and our
objective here is not to cover it exhaustively; in-depth
discussion of aspect composition in Reflex can be found in
[6, 7].

In previous work, a library for concurrent programming
providing the sequential object monitor (SOM) abstraction
was proposed [27]. SOM is implemented as a Java library,
and also has a small DSAL for configuring it. With SOM,
one can specify which objects have to be turned into
monitors, and in addition specify a scheduler that has
complete control over the scheduling strategy of concurrent
requests over the monitor it is associated with. SOM
presents several advantages over hand coding this
functionality, in particular with regard to modularity and
efficiency. A SOM specification in the DSAL is very simple:

schedule: BufferData with: GetPriority

Scheduler;

This specification ensures that (non-thread safe)
BufferData objects are turned into object monitors
whose scheduling policy gives priority to get requests (in
addition to ensuring the usual conditional synchronisation
of put and get requests on the buffer).

Both KALA and SOM can be used in a single application,
if there is no interaction. Here by interaction we mean a
shared join point. Basically, this refers to the fact that it is
erroneous to have an object being both a transactional
object from the KALA point of view, and an object
monitor from the SOM point of view. This is because both
aspect languages, although with a different focus and scope,
deal with concurrency. Note that a similar observation has
also been made by Kienzle and Guerraouis [20].

Suppose the above SOM aspect is defined in a file
buf.som, and a KALA program including the
transactional declaration of (1) is defined in a file
data.kala. When run, since BufferData actually
matches both the SOM aspect and the type pattern of the
transactional declaration of KALA, Reflex detects and
reports this interaction to the user when weaving on the
get and put methods:

[WARNING] don’t know how to compose on
BufferData.get():

- SOM (buf.som, line 1)

- KALA (data.kala, line 1).

[WARNING] composing arbitrarily (sequence).

. . .weaving goes on. . .

The programmer is therefore informed of the interaction, and
can decide which measure to take. In the case of SOM and
KALA, as we said, it is semantically incorrect to have both
apply to the same objects, although they can co-exist in an
application. Reflex makes it possible to declare a mutual
exclusion between links [6], that can result either in a
warning or in an error. In the case of an interaction
between any link coming from KALA and any link coming
from SOM, an error should occur. This declaration can be
put for example in a separate configuration class, in order
to avoid modifying both KALA and SOM aspect definitions.

The code for this is shown in Fig. 17. It first creates a
selector matching all links resulting from the assimilation
of a KALA aspect (81). This is done by introspecting the
LANG property of a link (82) (Links can have arbitrary
properties. A usage of these properties is precisely to tag
links with information related to the DSAL program that
generated them, such as language name and source code
location. We have chosen not to present these features here
for the sake of clarity and brevity of the assimilation code).
The same is done for matching all links resulting from
a SOM declaration (83). Finally, a composition rule is
declared (84)–(85): it ensures that any interaction between
a SOM link and a KALA link is interpreted as an error,
hence stopping the weaving process with the given error
message, in addition to the information related to the
interaction:

[ERROR] forbidden interaction on
BufferData.get():

- SOM (buf.som, line 1)

- KALA (data.kala, line 1).

-> SOM and KALA cannot affect the same
objects

Figure 16 Rule for assimilating transactional declarations

Figure 17 Error declaration when KALA and SOM links
interact
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In this scenario, the programmer is therefore left with the
alternative of modifying the cut of the aspects in order to
ensure that they do not interact.

6.3 Benefits of the infrastructure
This section highlights the main benefits of our infrastructure
for DSALs:

† Versatile weaving facilities – The reflective core of Reflex
offers generic facilities for both structural and behavioural
aspects, with both expressive cuts and actions. The fact that
all constituents of an aspect are first-class entities (objects)
brings a lot of benefits [28], some of which have been used
in the implementation of KALA: a KALA aspect
definition is parameterised by both its cut and the
parameters used for the explicit instantiation of the
demarcator; the demarcator controlling an autostart method
is dynamically set to the demarcator of the enclosing
definition; and the resourceable aspect is programmatically
deployed upon the first definition of a KALA aspect.

† Extensible language definition – The language facilities of
MetaBorg combine very well with the versatility of Reflex,
since it is possible to define concisely, declaratively and
modularly, both DSALs and extensions to them. In
addition, although we have not illustrated this feature here,
MetaBorg supports actual embedding of languages within a
host language [5]. This means that for example KALA
code can be embedded within Java code.

† Composition support – The composition facilities of
Reflex represent a major motivation for using this platform
to implement DSALs, because it ensures that DSALs can
be used in conjunction with other aspect languages,
domain-specific or not. The fact that Reflex automatically
detects interactions, reports on them and offers expressive
means for their resolution is crucial for AOP in general,
and multi-language AOP in particular.

We admit that our infrastructure is certainly not as efficient
as agressively optimised compilers like abc [29]. Nevertheless,
recent performance evaluations of AOP systems [11] show
that Reflex performs really well compared to other dynamic
aspect systems, which makes it a reasonable platform from
this point of view. Also, the conciseness of language
definitions and extensions makes it more suitable for rapid
language prototyping and validation of ideas, because less
burden is placed on the programmer than that of extending
a full compiler infrastructure.

6.4 Advantages over a code translator þ
AspectJ combination
We have also considered a concrete case of implementing
KALA using a general-purpose aspect weaver such as
AspectJ [3] combined with a standalone parser and code

generator tool. If we reflect on such an implementation we
see three elements where it would fall short.

Firstly, building DSAL support on top of AspectJ requires
more than just the use of separate parser and code translator
as a preprocessor. The detection, notification and resolution
of composition problems at the level of the domain of the
DSAL requires an integration between the code translator
and the weaver, which such a preprocessor approach does
not have.

Secondly, AspectJ lacks features required for the
transactional keyword we discussed in Section 6.1.
Concretely, the TrAdd metaobject illustrated in Fig. 15
performs an inter-type declarations which is not possible in
AspectJ: the introduction of the getPrimaryKey
method. This is because this kind of inter-type declaration
is not declared to apply on a class, but on a type pattern.
AspectJ only allows type names to be used as the target of
such an inter-type declaration.

Thirdly, AspectJ is not a suitable weaver here because it has
insufficient composition support [6]. For example, it does not
provide us with the possibility to prohibit the weaving
of different aspects on one join-point, which we have
demonstrated in Section 6.2.

In conclusion, we can say that if we wanted to implement
KALA using AspectJ combined with a standalone parser and
code generator tool, this would not be possible. On the one
hand, this is due to the lack of integration between AspectJ
and the parser and code generator, and on the other hand
due to features missing in AspectJ.

7 Discussion
7.1 Previous work
The motivation for a versatile AOP kernel was first presented
in [10], and the first account of Reflex as a kernel for multi-
language AOP was reported in [4]. Although a first attempt
at the language layer of the kernel was included, the only
languages supported in Reflex were AspectJ and SOM
[27]. SOM indeed features a very limited DSAL because it
is only used to configure bindings of schedulers
implemented in Java, and the implementation of AspectJ
was not extensible [30].

Since then, a major shift has been taken with respect to the
language layer by working on the integration of MetaBorg, as
reported here. An extensible kernel language for Reflex, that
is concrete syntax for the Reflex kernel API using SDF plus
the corresponding assimilation in Stratego, was proposed in
[13]. Here, we have pushed the experimentation on the
kernel a step further by studying the support of a full-
fledged DSAL. KALA is an interesting DSAL because it
has its own specific syntax and scoping rules and, if
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considering the extension we have presented, requires both
behavioural and structural abilities of the kernel.

With respect to KALA, the original proof-of-concept
implementation was based on source-code transformation
and required a variety of tools to be combined to weave
KALA and Java source into one executable. The
implementation in Reflex integrates these tools, making the
development process using KALA much easier.
Considering the time taken, the implementation in Reflex
was completed in approximately half a man-month,
whereas the original implementation took almost two. In
terms of the implementation, we can compare both the
syntax definition and the semantics.

In the original implementation the concrete grammar was
defined using a yacc-like parser generator, and required 130
lines of code. The SDF definition is four times more
compact (32 lines, Fig. 10). Also, the original version
suffered from context-sensitive parsing issues for the Java
expressions embedded in KALA statements, which
required the use of special escape characters. ReLAx does
not have this drawback, due to to the many advantages of
SDF for parsing ‘composite’ languages [24]. With respect
to semantics, the original source code transformation
engine consists of approximately 1200 lines of code, not
counting the Java parser used. The ReLAx implementation
consists of 150 lines of Stratego rules, and 500 lines of Java
code. It not only is half the size of the original
implementation but also presents several modularity
advantages. First, transformation rules are specified
declaratively in Stratego, separately from the actual
semantics implementation in Java (Section 5.2). Second,
the Java implementation consists of only 25 lines of
weaving specification (the Reflex configuration class of
Fig. 9), and four classes implementing the whole of KALA
as explained in Section 4.2. The demarcator class is the
most involved; about 230 lines of code. In contrast to this,
the original implementation is an ad hoc engine handling
weaving- and semantics-related concerns in a mixed
manner, making it much less evolvable and understandable.

The current implementation furthermore has several
advantages over the previous one. First of all, because
Reflex is based on bytecode weaving, the source code of the
base program is no longer required, potentially allowing a
larger amount of software to be treated, and we are
somewhat more protected from changes in the Java
language grammar. Second, the current implementation is,
as we have shown, modularly extensible, both in terms of
syntax and semantics. This is important for future work on
KALA. Finally, the fact that Reflex manages composition
of aspects written in different languages is a definite plus
compared to the previous version. Managing interactions
such as between SOM and KALA would have been
impossible with the previous version, because it ‘blindly’
transforms base application code.

7.2 Related work
7.2.1 Transaction management as an aspect:
Although transaction management is generally accepted by
the AOSD community as being an aspect, only a few
papers have been published that treat this subject [20–22].
Furthermore, in two of these papers transaction
management is but a minor topic because the main focus
of the paper is on persistence [21, 22]. Common to the
three papers is that they use AspectJ and aspectise classical
transactions only and do not address issues like what
happens if a transactional method calls another
transactional method. KALA however addresses not only
classical transactions, but also a wide variety of advanced
transaction models. This allows the above issue to be easily
addressed, for example using nested transactions it can
straightforwardly be mapped to spawning a child transaction.

The first of the three above papers, by Kienzle and
Gerraoui [20], is arguably the best known, using
transaction management to evaluate AOP. The same topic
is addressed by Soares et al. [22]: they build a number of
persistence and distribution aspects, which include
transaction management and implement a health watcher
system first without and afterwards with these aspects.
Similarly, Rashid and Chitchyan implement a persistence
aspect, which includes a transaction management part [21].
The paper explores whether persistence can be aspectised
and if this aspect is reusable for other applications.
Remarkably, the conclusions of the last two papers
contradict the first: Kienzle and Gerraoui are pessimistic,
while Soares et al. and Rashid and Chitchyan are optimistic
about the use of AOSD for transactions.

Also treating the topics of aspects and transaction
management is the recent work of Kienzle and Gélineau
[31]. It is however not directly related to our work and the
above three papers. This is because it discusses the design
and implementation of a TP Monitor using aspects, raising
interesting composition issues and not how (advanced)
transactions are used by an application.

7.2.2 Extensible aspect languages: Work on
extensible aspect languages somewhat relates to ours. Josh
[32] is an open AspectJ-like language, which makes it
possible to experiment with new means of describing
pointcuts and advices. However it does not fit the purpose
of multi-language AOP mainly because of its lack of
support for aspect composition, as well as the fact that it is
not possible to experiment with DSALs whose syntax does
not fit the AspectJ feel.

The AspectBench Compiler [29] is an extensible
framework for experimenting with new language features in
AspectJ. The spirit of abc is similar to Josh, but since abc is
a full compiler, it provides a powerful framework for static
analysis. By sticking to AspectJ as the basic language, abc
presents the inconvenience that both the complexity of
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AspectJ and that of a full compiler infrastructure may
be overkill for simple extensions. Also, issues in the
extensibility of the syntax definition mechanism presently
used in abc have been reported in [24]. The focus of abc
is on efficient extensions to AspectJ, rather than on
combination of different aspect languages and treatment of
aspect composition.

7.2.3 Platforms for DSALs: The above projects do not
explicitly target multi-language AOP as such, and are
therefore only loosely related to our work. As a matter of
fact, only a few proposals of platforms for DSALs have
been made.

XAspects [33] is a plugin mechanism for DSALs, based
on AspectJ [3]. An aspect language is implemented as a
plugin generating AspectJ code, while the global
compilation process is managed by the XAspects compiler.
XAspects suffers a number of limitations, among which the
most important are that the XAspects compiler provides
no higher-level intermediate abstractions to DSAL
implementors, and that composition of aspects is not
tackled at all. Furthermore, because AspectJ is a mature
and production-quality aspect language with a strong
practitioner perspective, it has a limited versatility for the
purposes of multi-language AOP: no detection of aspect
interactions, restricted means for resolution, it is impossible
to define algorithmic cuts, to parameterise aspects,
pointcuts and advices etc.

Brichau et al. [34] present an approach to building
composable aspect-specific languages with logic
metaprogramming. Using the same logic language, aspects
and aspect languages can be composed. The underlying
logic facilities are very good for expressing advanced and
parameterised aspects, however, the aspect languages do not
really shield the programmer from the inherent power of
the logic metaprogramming approach: no aspect-specific
syntax is provided, aspects are defined in the same logic
framework as languages. Issues such as detection of
interactions and support for structural aspects are not
considered.

Lastly, the work of Kojarski and Lorenz [35] on Pluggable
AOP focuses in depth on how two or more DSALs are
composed. Their approach considers aspects as mixins to
the base code, which allows the aspects to be composed
like mixin layers. However, pluggable AOP lacks the
DSAL language definition part which we consider required
for a complete DSAL infrastructure.

7.3 Future work
Although research on advanced transactions has been
dormant for some years, these concepts are becoming more
and more relevant with the growth of Web Services and
the requirements for composition of Web Services. We are

therefore performing research on how KALA can be
adapted to best fit this domain.

With respect to the support of DSALs in Reflex, we are
in the process of fine tuning a plugin architecture for the
seamless integration of Reflex and MetaBorg, addressing
issues such as packaging of language implementations,
traceability and dynamic combination of aspect languages.
We are also designing and implementing a number of
domain-specific and general-purpose aspect languages on
top of this infrastructure.

8 Conclusions
In this paper we have shown how an infrastructure for
DSALs aids in their development. In particular, we have
detailed the implementation of KALA, a DSAL for
advanced transaction management in the Reflex kernel for
multi-language AOP. KALA is a good candidate for this
case study because it has its own specific syntax and
scoping rules and, in the extended version, requires both
behavioural and structural abilities of the kernel in which it
is implemented.

Furthermore this paper demonstrates that, while being
compact, the implementation is accessible enough that it
can be explained in reasonable detail in the scope of a few
pages. This is thanks to the use of an appropriate
infrastructure, in this case Reflex. In addition to this ease of
definition of the language, this infrastructure also provides
advantages over a combination of an existing language
generator tool with a general-purpose aspect language such
as AspectJ [3]. Reflex provided for detection, notification
and resolution of composition problems at the level of the
domain, including the ability to prohibit weaving at a given
join point. Additionally, Reflex provides a number of
technical features that AspectJ lacks, which are discussed in
detail in Section 6.4.

We first provided an operational description of KALA
and gave an overview of its implementation over Reflex
as a generic object parameterised by a collection of
configuration objects. This illustrates an important benefit
of using an infrastructure like Reflex, which is the use of
generic facilities for aspects, where all constituents of an
aspect are first-class objects. We then described how
KALA programs are translated into the required
configuration objects, giving the full KALA syntax
definition and an overview of how code generation is
performed, using SDF and Stratego. We have finally
shown some additional benefits of using Reflex over writing
a domain-specific weaver from scratch: (a) ease of making
modular extensions to the language, and (b) built-in
support for the automatic detection and explicit resolution
of interactions between aspects written in different languages.

This brings us to the conclusion that the use of an
appropriate infrastructure for DSALs, such as Reflex, gives
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a number of invaluable assets to the aspect language
developer: ease of implementation, ease of extension and
effortless support for composition. Using such an
infrastructure enables a faster development cycle of DSALs
and allows them to coexist within one application, thereby
removing the most important impediments to the
re-emergence of DSALs in the aspect community.

Availability: ReLAx is available on the PLEIAD website:
http://pleiad.dcc.uchile.cl/relax
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