
ar
X

iv
:1

30
3.

68
07

v1
 [

cs
.N

I]
 2

7
M

ar
 2

01
3

The performance of locality-aware topologies for

peer-to-peer live streaming

R. G. Clegg (richard@richardclegg.org)
R. Landa (rlanda@ee.ucl.ac.uk)
D. Griffin (dgriffin@ee.ucl.ac.uk)

E. Mykoniati (e.mykoniati@ee.ucl.ac.uk)
M. Rio(m.rio@ee.ucl.ac.uk)

Abstract

This paper is concerned with the effect of overlay network topology on

the performance of live streaming peer-to-peer systems. The paper focuses

on the evaluation of topologies which are aware of the delays experienced

between different peers on the network. Metrics are defined which assess

the topologies in terms of delay, bandwidth usage and resilience to peer

drop-out. Several topology creation algorithms are tested and the metrics

are measured in a simple simulation testbed. This gives an assessment

of the type of gains which might be expected from locality awareness in

peer-to-peer networks.

1 Introduction

This paper investigates the impact of the topology of overlay networks on per-
formance metrics for peer-to-peer live streaming. An overlay network is a con-
ceptual network of peers which exists on top of the standard Internet. Peers on
the overlay network connect according to given rules to form a topology. There
has been recent research interest in making overlay networks locality-aware so
that peers may more easily find “nearby” peers. In this paper we undertake a
systematic evaluation of a number of alternative locality-aware topology con-
struction methods (and some random methods for comparison).

The situation considered is that of a single node, known as the peercaster

wishing to distribute live streaming content through a peer-to-peer network.
The peers in the network wish to download this content reliably and with a
low delay between the peercaster and themselves. The challenge of distributing
live content is somewhat different to that of distributing recorded content on
demand. A major difference is that delay is important to optimise (so that peers
can view streams as “live” as possible) whereas throughput only needs to be
large enough to view the stream (a peer cannot continue to download at faster
than the rate the stream is broadcast).

1

http://arxiv.org/abs/1303.6807v1

A number of strategies might be considered for forming such topologies for
live streaming. Minimising delay to the peercaster might be one strategy. Con-
necting to close (in terms of delay) nodes might be a related strategy. Another
aspect to consider is whether it is important to aggressively minimise delay or
closeness by making as many connections as possible to the lowest delay/closest
node or whether it might be preferable to have a range of connections. The
topologies formed are tested against several metrics which attempt to assess
whether the topology is good at reducing delay, resilient in the case of peers
dropping out and whether it ensures that the bandwidth is used fairly.

1.1 Background and related work

Distributing content over an overlay network has been the subject of numerous
studies in recent years. Most of this research has been concentrated on non-live
content where the emphasis is on increasing throughput rather than reducing
delay. In early approaches like SpreadIt [1], a multicast tree is built by cen-
tralised logic running at the data source. Upon the arrival of a new node, the
source is contacted to appoint an unsaturated node to be the parent of the new
node. When the smart-placement policy is in effect, the parent node is also
selected to be close to the new node, where proximity is inferred with traceroute
messages. More recently, Bos [2] proposed a method which constructs a data
distribution tree containing the Euclidean Minimum Spanning Tree, where the
distance in the Euclidean space represents the network delay. A subset of stable
and high capacity nodes are elected to become super peers . Super peers are
interconnected to form a Yao graph, a structure which contains the Euclidean
Minimum Spanning Tree. Normal peers attach directly to the closest super
peer. The source routed multicast tree is built over the super peers topology
based on the compass routing protocol.

The departure of a node in a single distribution tree results in complete loss
of connectivity for all the nodes in the underlying subtree. To overcome this
problem, several studies investigate streaming the data over a forest of multicast
trees, each of which carries only part of the stream. CoopNet [3] is a forest-based
streaming approach, where the authors identify a tradeoff between efficiency in
terms of locality and path diversity required for resilience to node departures.
Upon addition of a new node, the source returns a significantly large set of
candidate parent nodes to ensure diversity. As an optimisation the candidate
parent nodes are selected, similarly to SpreadIt, so that are they are nearby the
newly added node.

Techniques for constructing trees typically assume global knowledge and
at least one interaction with the source. Alternatively, overlay topologies can
be constructed with local knowledge, where the connections are determined
by each node and the data flow may take many alternative and potentially
overlapping paths. In [4] a technique for clustering nodes to bins based on
their locality is proposed. As a case study of this technique, the BinShort-Long

overlay construction method is presented, where each node connects to k/2
randomly selected nodes from within its cluster (bin) and k/2 random nodes

2

from anywhere in the system. A similar technique is proposed in [5] as an
improvement for the BitTorrent protocol. The clustering here is done primarily
to distinguish between nodes located in the same ISP, and nodes in different
ISPs. Out of the total BitTorrent peers discovered by a new peer through the
local tracker, all but k are selected to be local peers, with typical values 35 for
total peers and 1 for the k external peers. This is done to reduce the traffic over
the inter-domain links while still maintaining enough connections with external
peers to receive the data. Finally, in [6] the authors formulate the Minimum

Delay Mesh problem and prove that it is NP-hard. They propose a heuristic
for constructing a shallow (low number of hops) and locality-aware (low delay
at each hop) overlay topology. In order to minimise the number of hops, nodes
with higher capacity need to be connected closer to the source. The selection
of the nodes to establish connections with, is done after calculating the power

of each node, as a function of the node’s locality and bandwidth availability.

2 Simulation method

In order to make the simulation of the overlay tractable it is necessary to abstract
away the network itself and simulate only the overlay. The simulation described
here makes as few assumptions as possible. It is assumed that each node has a
fixed delay to every other node in the overlay (as described in the next section).
It is also assumed that each node has a sufficient download bandwidth to obtain
the entire stream and upload bandwidth to deliver a fixed proportion (which
may be more than unity) of the stream.

2.1 Node distributions

Synthetic coordinate systems associate a coordinate with each peer in an overlay
network, in such a way that the distance between the coordinates is a good
estimate of some network property measured between the peers, predominantly
round trip time (RTT). This can be achieved efficiently by using a limited set
of end-to-end measurements to extrapolate those distances between nodes that
were not explicitly measured. Thus, synthetic coordinate systems use a limited
set of measurements to model the structural properties of the Internet, and then
use this model to predict end-to-end properties (such as RTT) between arbitrary
peers.

The first step in the operation of a network coordinates system is generating
a distance graph, where links between peers represent distance measurements.
This distance graph is then embedded onto a space that integrates some of the
structural properties of the Internet. Examples of these include a standard Eu-
clidean space [7], a Euclidean space augmented with a purely additive coordinate
[8] or a hyperbolic space [9]. The embedding process can be viewed as an error
minimization procedure where nodes are positioned in the space in such a way
that the cumulative difference between the measurements and the embedded
distances is minimized. Once this embedding has been done, and to the extent

3

that the embedding space faithfully recovers the structure of the Internet for
the measure in question, geodesic distances over this space are good predictors
of the actual distances over the Internet [10]. This space will be referred to as
delay space.

In the case of the simple simulation used in this paper, a standard two-
dimension Euclidean delay space is used. Let N be the number of nodes in
the system excluding the peercaster. The N + 1 nodes, numbered from 0 (the
peercaster) toN are distributed over the two-dimensional Euclidean space. Each
node has a co-ordinate (xi, yi) and the delay from node i to node j is obtained
using the standard Euclidean distance from (xi, yi) to (xj , yj).

The next question for the simulation is how to distribute the nodes on the
delay space. For the purposes of this paper we use three generation methods to
create random node distributions. In reality, nodes in an overlay network will
cluster to some degree, for example, nodes in the real Internet are more prevalent
in some areas of the world than others (clusters in large cities, particularly large
cities with high levels of Internet usage). In the case of an overlay network based
upon nodes wishing to download particular streaming content, the distribution
will be further complicated by whether the content is of regional, national or
global interest as well as what language the broadcast is in. For this reason the
simulation here is tested against different assumptions about how nodes might
be randomly situated in delay space.

Flat node distribution: In this distribution the nodes are flatly distributed
in a square delay space. For each node i, xi and yi are chosen randomly from a
flat distribution in the interval (−D,D). In the simulations given here D = 0.25
seconds (so the maximum delay between any two nodes is

√
2/2 secs).

Tightly clustered node distribution: This distribution simulates a sit-
uation where nodes are grouped into tight clusters. The following procedure is
followed until sufficient nodes have been generated.

1. Coordinates position X,Y is chosen with a flat distribution where X and
Y are chosen from the interval (−D,D).

2. The position (X,Y) is modified by a small random perturbation (dX , dY)
where dX and dY are chosen with a flat distribution in the interval (−d, d).

3. Coordinate (X,Y) is recorded.

4. With probability p go to step 1, otherwise go to step 2.

In this distribution D = 0.25, d = 0.005 and p = 0.01.
Loosely clustered node distribution: This distribution is identical to

the previous one but the clusters are more diffuse but on average contain the
same number of nodes: D = 0.25, d = 0.05 and p = 0.01.

In each of the last two cases, after the distribution is created, the node order
is randomised. Node order is important for local topology schemes (see section
3.2). This reordering prevents nodes being created in a convenient “by cluster”
order with nodes locally close being created together.

4

2.2 Modelling assumptions

For simplicity it is assumed that each node attempts to download a stream as
M separate and equally sized substreams – note, however, that this could also
be thought of as simply an abstraction of, say, a chunk-based swarming system
with M partners from whom equal amounts are downloaded. Assume that each
node has capacity to download all M substreams and that nodes have upload
capacities to upload only a limited number of substreams.

Each node has associated with it an upload capacity ui ∈ Z
+ which is the

number of substreams it can support (for the purposes of bandwidth calculation
each substream is considered to have a bandwidth of 1Mb/s – although the
precise unit is unimportant and of the metrics described, only the bandwidth
variance is affected by this). Note that it must be assumed that u0 ≥ M (in
order that all M substreams can be uploaded from the peercaster itself) and
also for the system to scale it is important that ui ≥ M (the average peer has
sufficient capacity to upload all M substreams). This is discussed more fully in
section 3.2. An implicit assumption is that system bottlenecks are only at the
peers in the network – if a peer with sufficient upload transmits to a peer with
sufficient download then no intermediate link in the internet itself will reduce
this capacity. This may not always be the case in reality (for example several
peers who belong to the same ISP may share access network capacity in the
underlying network).

Nodes will then attempt to connect to at most M other peers in order to
download the complete stream (nodes can download all M substreams from a
single partner node). A node i will accept at most ui connections and request
up to M connections. The complete set of connections will be referred to as a
topology on the overlay network. This will be described in the next section.

For this paper ui will be chosen from a random distribution. In addition u0

will be fixed since it has such an important role in the network (naturally it must
be the case that u0 ≥ M . The values used are M = 4 and ui is chosen with
equal probability from the set {1, 5, 10, 16} – in this simulation no nodes are
complete free-riders although some nodes can only produce 1/4 of a complete
stream. The mean value of ui is 8 so the system easily has capacity for every
node to download the stream. As previously stated u0 is a critical parameter
in the system so u0 = 16 for all simulations – the peercaster is always assumed
to have a reasonable amount of bandwidth. This is to prevent the simulation
results being greatly dependent on this single random selection (a simulation
where u0 = 1 might get very different results from one with u0 = 16 even if all
else was the same).

3 Topology construction and metrics

For the purposes of this paper a topology is defined as a graph of the connections
in the peer-to-peer network annotated with the number of connections between
each pair of peers and the upload bandwidth of each peer. No peer is “special”

5

apart from the peercaster. The peers have no characteristics apart from an
upload bandwidth and a position which gives rise to a fixed delay between each
pair of peers.

3.1 Topology definitions

Definition 1. A feasible topology is one where

1. all peers have M connections from which they download,

2. no peers exceed their upload bandwidth,

3. all peers can find M edge distinct paths from the peercaster to themselves.

A feasible connection policy is a policy for making connections which, if followed
repeatedly, will connect a set of nodes into a topology which obeys the condi-
tions above. A feasible connection is a connection made according to a feasible
connection policy.

Remark. Requirement 3 arises because it is necessary to ensure that, for exam-
ple, in a substreaming system each peer can download M substreams from the
peercaster. This requirement is equivalent (by the max-flow/min-cut theorem)
to requiring that the minimum cut set to cut each peer from the peercaster is
at least M edges. Without this requirement, a policy where node A and node
B each send M substreams to the other and neither connect to the peercaster
would be a feasible topology.

Definition 2. The feasible connection policy used in this paper is as follows.

1. Initialise the system assuming only the peercaster is connected. Let F :=
u0 −M be the spare upload bandwidth which will remain in the system
after the next peer joins.

2. Choose a peer i which has ui such that ui + F ≥ M . The choice is made
according to some topology policy (see next section). This guarantees that
the system will have sufficient free bandwidth to make all M connections
required by the next peer.

3. Make all M upload connections to peer i from already connected peers
(with remaining upload capacity) according to some topology policy (see
next section).

4. Let F := F + ui −M .

5. If more peers remain to be connected then go to step (2) above.

It is easy to show that this policy will meet the requirements of definition 1.
Steps (2) and (4) ensure that requirement (2) is met by checking that the new
peer has sufficient upload bandwidth. Step (3) ensures that requirement (1) is
met.

6

Requirement (3) must be met by step (3) of the algorithm. The proof is
by induction. Requirement (3) is clearly satisfied when only the peercaster
is connected. Assume that requirement (3) is true of the first n peers to be
connected. When the next peer n + 1 is connected by step (3) then each of
the peers connected has M distinct edge paths to it. Is it possible to form M
edge distinct paths to node n + 1? If this were not the case then there must
be some cut-set with less than M members between the peercaster and node
n+1. Let Ui (i ∈ {1, . . . ,M}) be the set of uploaders to n+1. It is impossible
to cut the connection to any of the Ui by removing fewer than M edges by the
induction hypothesis. By construction there must be exactly M connections
between nodes in the set {U1, . . . , UM} and node n + 1 so to cut between this
set and n + 1 obviously all M connections would need to be removed. No cut
set of less than M members exists between the peercaster and n+ 1 exists and
hence requirement (3) of definition 1 is met.

3.2 Topology policies

In this paper a fixed policy is one where the whole “universe” of peers is available
from the start and connections can choose from this universe. Conversely, a
growing policy is one where peers arrive one by one and each peer makes all
its connects when it arrives. In earlier work on this subject [11] the terms
global and local were used instead. A topology which connects closest peers
is one which chooses the feasible connection which has least delay between the
two peers being connected. A topology which connects least delay peers is
one which chooses the feasible connection which has the smallest value for the
shortest delay path from the peercaster to the peer on the download end of the
new connection.

Remark. The real difference between fixed and growing topologies is that a
growing topology connects nodes in the order in which they appear. A fixed
topology is allowed to choose which node to connect. In theory, a fixed topology
has much more freedom and could perform much better.

In this paper connection diversity refers to topologies which attempt to up-
load from distinct peers wherever possible. If a topology naively selects the
closest peer for example then it is likely to make multiple connections to the
same peer (indeed this will happen unless that peer has its upload bandwidth
exhausted). With connection diversity then a peer will have more than one
connection to the same uploader if and only if no other connection is available.
A small world topology is one which makes N − 1 connections with connection
diversity and the final connection completely at random.

The policies for the fixed topologies are as follows.

• FR – Fixed random.

• FCD – Fixed closest, with connection diversity.

• FCN – Fixed closest, no diversity.

7

• FCS – Fixed closest, small world.

• FDD – Fixed least delay, with connection diversity.

• FDN – Fixed least delay, no diversity.

• FDS – Fixed least delay, small world.

GR, GCD, GCN, GCS, GDD, GDN and GDS are the equivalent topologies
for the “growing” peer sets.

It will help the reader’s understanding to describe two of these policies more
fully. The policy GR (growing random) is implemented using definition 2 as
follows. In step (2) of the policy, only one peer (call it peer i) is available at
a time and therefore this choice is fixed. In step (3) of the policy, a random
peer is chosen from the set of peers which are already connected and which have
spare upload capacity. This peer is connected as an uploader to peer i and its
upload capacity is reduced accordingly. This is repeated M times.

The policy FDD is implemented using definition 2 as follows. Let dj be
the shortest path delay from the peercaster to node j or ∞ if node j is not
yet connected. Let d(i, j) be the delay from peer i to peer j. In step (2) of
the policy, the peer i chosen is the peer with the smallest value for dj + d(i, j)
which has a sufficiently large ui to meet the condition of step (2) (note that
ui = 0 is large enough if F = M). It is now necessary to make M connections
(with diversity) to peer i. This is achieved by connecting to the peer with the
smallest value of dj + d(i, j) and then setting dj := dj + L where L is some
“large” number1. This is repeated until M connections are made.

Remark. It should be noticed that in the FR topology the nodes are selected
in a random order and it is, therefore, effectively the same as the GR topology.

3.3 Metrics for topologies

Because each node has M independent connections, variants on more usual
network metrics are used here. For example, it is not simply the shortest path
from a node to the peercaster to the node which is of interest but the path
length along all paths.

The metrics listed in this session have been created with several consider-
ations in mind. A “good” topology should have all or most of the following
properties.

• Low delay to end nodes – this translates to nodes being able to view
streams with good “liveness”.

• High resilience to churn – a peer-to-peer network is, by its nature, highly
dynamic. The loss of any single node should not greatly affect the network.

1L should be large enough that a second connection to j will only be made if no non-
penalised node is available – N max(d(i, j)) is sufficient.

8

• Diversity of paths – related to the above, an individual peer would want
a diverse set of connections so that the loss of a single intermediate node
will not affect every substream it is downloading.

Let Dk(i) be the shortest path from the node i to the peercaster if the first
hop is the kth uploader to node i.

Definition 3. The minimum delay of a node is the shortest path distance from
the peercaster to the node – it is the minimum over k of Dk(i). The minimum
delay of a system is the mean of this taken over all nodes. This metric gives an
estimate of the minimum possible end-to-end liveness that any of the substreams
a node gets will experience.

Definition 4. The tree delay of a node is the distance from the peercaster to the
node after the removal of M−1 peercasted rooted shortest path trees (that is to
say, remove the shortest path from the peercaster to each peer and repeat this
operation M − 1 times). This metric estimates a pessimistic end-to-end delay if
packets took an extremely favourable path. The tree delay of the system is the
mean of this taken over all nodes.

Let V (i) be the substreams connecting node i to the peercaster which could
potentially be disrupted by the removal of a single node (not including the
peercaster). It is zero if and only if every node is directly connected to the
peercaster. It is M if all of the paths Dk(i) go through a single node (that is
every path to i could be cut by the removal of a single node).

Definition 5. The mean node vulnerability for the system is
∑N

i=1
(Vi)/(NM)

– this is one if every node has a single node which could cut all M substreams
(every node is vulnerable to the loss of all substreams) and is zero if every node
has all connections directly to the peercaster (every node cannot be cut off).

Let Si be the vulnerability of the system to the removal of node i. It is, in
a sense, the dual of Vi. It is the total number of streams Dj(k) (where j 6= i)
which could be broken if node i were removed from the system.

Definition 6. The maximum system vulnerability is given by maxi Si/(NM)
– this is the proportion of paths which could potentially be damaged by the
removal of a single node. It will be one if there is a single node (apart from the
peercaster) which can disrupt every transmission path and zero if there are no
nodes which can damage paths (only possible if every node connects directly
to the peercaster). This measure is similar to finding the node with maximum
Betweenness-Centrality [12]. It is a measure of the worst case damage a single
peer leaving the network can cause (one meaning a single peer leaving can
disconnect every path and zero meaning no peer leaving can disconnect any
paths).

4 Results

Each topology is run three times for each of the three node distributions and
for each of the fourteen topology algorithms. The algorithms are run on 10, 20,

9

50, 100, 200, 500, 1000, 2000, 5000, 10000, 20000 and 50000 nodes. This gives
a total of 1,512 total simulation runs.

Figure 1 shows the effects of the node distribution algorithms. The scale is
delay in milliseconds. Each dot on the plots represents a node in the distribution.
The cartesian distance between any pair of points is the delay between them.

Figures 2–5 show various metrics versus number of nodes for each of the
topologies. Each point on the graphs is a mean over the three runs and the three
node distributions and the error bars represent a 95% confidence interval. The
top left plot shows the fixed topologies optimised by delay and the fixed random
topology. The top right shows the fixed topologies optimised by closeness. The
bottom plots show the same for the growing topologies. The scales on the graph
are kept the same for each metric for ease of comparison. The error bars are
shifted slightly left and right of their true x position to prevent them overlapping.

Figure 2 shows the results for minimum delay. Somewhat surprisingly the
fixed topologies where the algorithm has a free choice of which node to connect,
have larger delays than the growing topologies where the nodes are connected
in order of arrival. Of all the policies the small world policies have low delay in
almost all circumstances. Those policies which do not attempt to introduce any
diversity into connections perform very poorly. Somewhat surprisingly many
policies actually perform worse than random including many of those which
connect using closeness not delay and many of the policies which use no diversity.
The best policy overall is FCS.

Figure 3 shows the results for tree delay which is a measure of the maximum
likely delay for the topology. These results are sometimes the opposite of those
in Figure 2 in the sense that those policies with no diversity perform well. In
this case, the best policies are almost always those which connect using no
diversity. The definition of tree delay explains why these results are so different
for those for minimum delay. The tree delay definition is pessimistic about
network performance almost to the same degree that the minimum delay is
optimistic. Any long link is likely to be taken into acocunt in the calculation and
this is why overall the random topologies perform worst in most circumstances.
The small world topologies perform better than random in most cases. In this
case it is less clear whether growing topologies are better or worse overall than
random. However, the expectation that the extra freedom in the fixed topologies
would provided better performance is not met in general. The best performing
topology is FDN followed by GDN.

Figure 4 shows the results for node vulnerability. As might be expected
random and small world topologies have the lowest vulnerability and those with
no diversity have the highest vulnerability. Figure 5 shows the results for system
vulnerability. The error bars on these measurements are large showing that this
measure is extremely dependent on the precise details of the simulation. In
general it seems that the random and small world topologies are slightly better
than those with no diversity but the high variability of the results makes it hard
to say more.

Figure 6 shows the minimum delay plotted against node vulnerability. Every
point on the graph represents the mean for a given topology and a given node

10

distribution averaged over the three runs. As can be seen, the three points for
each topology are generally close (although vary in the y axis) indicating that
the node distribution has little effect on the minimum delay metric. The best
topology policies for the combination of node vulnerability and minimum delay
are FCS and GCS. FDS and GDS also perform relatively well.

Figure 7 shows the tree delay plotted against node vulnerability. Again the
three points for each topology are close on the plots (the main exception being
FR and GR) showing that the node distribution has little impact on the results
in most cases. The best policy here is less clear. If system vulnerability is
considered most important then FCS, FR and GR would be the best. If tree
delay is the most important then FDN and GDN are better. For a compromise
between the two, FDS, GDS, GCS and GDD perform well.

5 Conclusions and further work

The work presented here shows some initial results for topology creation algo-
rithms for peer-to-peer networking which are aware of delays between peers.
The results here show that naive policies which connect networks according to
delays or closeness are not always successful. Indeed, those policies often do not
perform well at all. Overall, policies involving a random component (the so-
called small-world policies) perform well over a variety of metrics. The results
show that there is great benefit to be had in arranging topologies according to
delay. However, they also show that naive policies to do this can do more harm
than good.

An interesting outcome of this research is that, for the parameters used
here, the system seemed extremely insensitive to the node distribution used.
The node distribution policies were chosen so that the nodes were laid out in
a delay space of approximately the same size. However, only for the global
closest topology policy were significant differences found in metrics due to a
change in the node distribution. This is important since, if this conclusion is
more widely applicable, it could free modellers from the (possibly extremely
time consuming) task of attempting to validate a peer-to-peer model against a
realistic distribution of global delay.

There are many other simulation parameters which could be investigated.
The choice of four substreams here and the distribution of upload capacities was
somewhat arbitrary. However, it is difficult to run simulations with too many
“degrees of freedom”. A repeated experiment with only one node distribution
topology but differences in the distributions of upload bandwidths might gen-
erate some interesting results. Indeed a large problem with this research is that
the state space to explore is extremely large even in this simple simulation.

The metrics used here are far from perfect. Testing the algorithms in a more
detailed peer-to-peer simulation is an obvious next step.

11

References

[1] H. Deshpande, M. Bawa, and H. Garcia-Molina, “Streaming live media over
a peer-to-peer network,” Tech. Rep. Stanford Database Group 2001-20, CS
Department, Stanford University, August 2001.

[2] E. K. Lua and X. Zhou, “Bos: Massive scale network-aware geometric over-
lay multicast streaming network,” Global Telecommunications Conference,

2007. GLOBECOM ’07. IEEE, pp. 253–258, Nov. 2007.

[3] V. Padmanabhan, H. Wang, P. Chou, and K. Sripanidkulchai, “Distribut-
ing streaming media content using cooperative networking,” 2002.

[4] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker, “Topologically-aware
overlay construction and server selection,” 2002.

[5] R. Bindal, P. Cao, W. Chan, J. Medved, G. Suwala, T. Bates, and A. Zhang,
“Improving traffic locality in Bittorrent via biased neighbor selection,” Dis-

tributed Computing Systems, 2006. ICDCS 2006. 26th IEEE International

Conference on, pp. 66–66, 2006.

[6] D. Ren, Y.-T. Li, and S.-H. Chan, “On reducing mesh delay for peer-to-
peer live streaming,” INFOCOM 2008. The 27th Conference on Computer

Communications. IEEE, pp. 1058–1066, April 2008.

[7] R. Cox, F. Dabek, F. Kaashoek, J. Li, and R. Morris, “Practical,
distributed network coordinates,” SIGCOMM Comput. Commun. Rev.,
vol. 34, no. 1, pp. 113–118, 2004.

[8] F. Dabek, R. Cox, F. Kaashoek, and R. Morris, “Vivaldi: a decentralized
network coordinate system,” SIGCOMM Comput. Commun. Rev., vol. 34,
no. 4, pp. 15–26, 2004.

[9] Y. Shavitt and T. Tankel, “The curvature of the Internet and its usage
for overlay construction and distance estimation,” in INFOCOM 2004.

Twenty-third Annual Joint Conference of the IEEE Computer and Com-

munications Societies, vol. 1, pp. – 384, Proc. of IEEE Infocom, April 2004.,
2004.

[10] J. Ledlie, P. Gardner, and M. I. Seltzer, “Network coordinates in the wild.,”
in NSDI, USENIX, 2007.

[11] R. G. Clegg, D. Griffin, R. Landa, E. Mykoniati, and M. Rio, “The per-
formance of locality-aware topologies for peer-to-peer live streaming,” in
Proceedings of UK Performance Engineering Workshop, 2008.

[12] L. C. Freeman, “A set of measures of centrality based on betweenness,”
Sociometry, vol. 40, pp. 35–41, 1977.

12

-300

-200

-100

 0

 100

 200

 300

-300 -200 -100 0 100 200 300
-300

-200

-100

 0

 100

 200

 300

-150 -100 -50 0 50 100 150 200 250

Figure 1: Flat (left) and loosely clustered (right) node distributions of 1000
nodes.

13

 1000

 10000

 10 100 1000 10000

M
in

im
um

 d
el

ay

Number of nodes

FDD
FDN
FDS

FR

 1000

 10000

 10 100 1000 10000

M
in

im
um

 d
el

ay

Number of nodes

FCD
FCN
FCS

FR

 1000

 10000

 10 100 1000 10000

M
in

im
um

 d
el

ay

Number of nodes

GDD
GDN
GDS

GR

 1000

 10000

 10 100 1000 10000

M
in

im
um

 d
el

ay

Number of nodes

GCD
GCN
GCS

GR

Figure 2: Minimum delay for the various topologies and all node distributions.

14

 1000

 10000

 10 100 1000 10000

T
re

e
de

la
y

Number of nodes

FDD
FDN
FDS

FR

 1000

 10000

 10 100 1000 10000

T
re

e
de

la
y

Number of nodes

FCD
FCN
FCS

FR

 1000

 10000

 10 100 1000 10000

T
re

e
de

la
y

Number of nodes

GDD
GDN
GDS

GR

 1000

 10000

 10 100 1000 10000

T
re

e
de

la
y

Number of nodes

GCD
GCN
GCS

GR

Figure 3: Tree delay for the various topologies and all node distributions.

15

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 100 1000 10000

N
od

e
vu

ln
er

ab
ili

ty

Number of nodes

FDD
FDN
FDS

FR
 0

 0.2

 0.4

 0.6

 0.8

 1

 10 100 1000 10000

N
od

e
vu

ln
er

ab
ili

ty

Number of nodes

FCD
FCN
FCS

FR

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 100 1000 10000

N
od

e
vu

ln
er

ab
ili

ty

Number of nodes

GDD
GDN
GDS

GR
 0

 0.2

 0.4

 0.6

 0.8

 1

 10 100 1000 10000

N
od

e
vu

ln
er

ab
ili

ty

Number of nodes

GCD
GCN
GCS

GR

Figure 4: Mean node vulnerability for the various topologies and all node dis-
tributions.

16

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 100 1000 10000

S
ys

te
m

 v
ul

ne
ra

bi
lit

y

Number of nodes

FDD
FDN
FDS

FR
 0

 0.2

 0.4

 0.6

 0.8

 1

 10 100 1000 10000

S
ys

te
m

 v
ul

ne
ra

bi
lit

y

Number of nodes

FCD
FCN
FCS

FR

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 100 1000 10000

S
ys

te
m

 v
ul

ne
ra

bi
lit

y

Number of nodes

GDD
GDN
GDS

GR
 0

 0.2

 0.4

 0.6

 0.8

 1

 10 100 1000 10000

S
ys

te
m

 v
ul

ne
ra

bi
lit

y

Number of nodes

GCD
GCN
GCS

GR

Figure 5: Maximum system vulnerability for the various topologies and all node
distributions.

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1000 10000 100000

N
od

e
vu

ln
er

ab
ili

ty

Minimum delay

FCD
FCN
FCS
FDD
FDN
FDS

FR
 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1000 10000

N
od

e
vu

ln
er

ab
ili

ty

Minimum delay

GCD
GCN
GCS
GDD
GDN
GDS

GR

Figure 6: Node vulnerability versus minimum delay for all node distributions.

17

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 10000 100000

N
od

e
vu

ln
er

ab
ili

ty

Tree delay

FCD
FCN
FCS
FDD
FDN
FDS

FR
 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 10000 100000

N
od

e
vu

ln
er

ab
ili

ty

Tree delay

GCD
GCN
GCS
GDD
GDN
GDS

GR

Figure 7: Node vulnerability versus tree delay for all node distributions.

18

	1 Introduction
	1.1 Background and related work

	2 Simulation method
	2.1 Node distributions
	2.2 Modelling assumptions

	3 Topology construction and metrics
	3.1 Topology definitions
	3.2 Topology policies
	3.3 Metrics for topologies

	4 Results
	5 Conclusions and further work

