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Abstract

The cost of state-of-the-art supercomputing resources makbsreticidual pur-
chase an expensive and, in many cases, lengthy process. Oftecagaidate ar-
chitecture will need to be benchmarked using a variety of tools to asses#ipb
performance. However, benchmarking alone often provides only liniitsight
into the potential scalability and suitability of each architecture for procunéme

In this paper we present a case study applying two recently developked-pe
mance models to the Chimaera benchmarking code written by the Unitedd¢mgd
Atomic Weapons Establishment (AWE) with a view to analysing how the code will
perform and scale on a medium sized, commodity based InfiniBand rcl@te
models are validated with average accuracies of 90% against an exisfiinig |
Band machine and then used as the basis for predicting code perf@roara
variety of hardware configurations including changes in the underlyétgark,
faster processors and high core density per processor.

The results of our experimentation with machine performance paraswsteron-
strate the compute-bound nature of Chimaera and its sensitivity to netvenkya
atincreased processor counts. By using these insights we are ableussditen-
tial strategies which may be employed during the procurement of futisceange
clusters for a wavefront-code rich workload.

1 Introduction

Modern supercomputing resources are constantly evolvii¢here once a ‘super-
computer’ may have been a shared memory machine compri§itens of proces-
sors housed in a single structure, today supercomputirguress commonly utilise
multiple sub-structures such as cabinets, multiple-msaenodes and more recently
multiple-core processors. When combined with the compléwaork interconnects
found in modern systems, identifying and analysing theqrernce properties of the
machine as a whole becomes a significant challenge. Withriheirmg core counts



of modern machines and the ever increasing complexity dfi sgstem the task of
procuring the ‘right’ computing machinery for purpose istfg becoming a lengthy
and intricate process. Pure benchmarking of applicationsamdidate architectures
serves only limited purpose - the results will only highlighe performance of spe-
cific codes and often only for specific inputs. For organsaiwho want the very
best machine performance, a deeper knowledge of code loeinavith respect to each
prospective platform is needed.

Performance modelling has been used as a basis for machimgadson [8, 14]
and post-installation performance verification [15], ard Ibeen shown in a number
of examples to address many of the questions which may anisegdprocurement.
Whilst serving as a showcase for many performance mode#iclgniques, the focus
has been on very large emerging architectures and not tHetemeedium sized com-
modity or near-commodity clusters used in a number of rebearganisations. In
these procurement activities similar issues must be asielddsut with hardware which
may have lower specification, be arranged differently orehalternative behaviour to
the expensive components that are common place in supeutimgigystems.

In this paper we utilise two recently developed performamoelels to explore the
performance of the Chimaera neutron transport benchmadajeed and maintained
by the United Kingdom Atomic Weapons Establishment (AWE)ge#ting a process-
ing element count of up to 4096 cores. The direct use and-casparison of predic-
tions from two performance modelling techniques aids nét amelucidating specific
code and machine behaviour but also in increasing the agesraf our observations.
This work is not intended to comment on the respective cdstésch strategy but to
provide some degree of quantitative exploration of varibasdware and application
configurations, which can in turn support the queries that erégse during the early
stages of a procurement activity. The specific contributiofithis work are:

e The presentation of a performance study for the AWE Chimaenafimark on
commodity or near-commodity hardware. This is the first ssithdy for the
Chimaera benchmark and is designed to support future prowmt activities
for mid-range supercomputing resources at AWE. We use twooappes in
verifying our predictions: (1) based on analytic methodBsirig the recently
developed “plug and play” reusable wavefront model [18] &)dusing a new
discrete even simulation toolkit. Both approaches showliptige accuracies of
over 90% and provide higher confidence in the conclusionaiioéd from our
performance engineering study.

e A guantitative exploration of the key parameters which @ftae performance
of wavefront codes on modern commodity HPC systems, supgdiie explo-
ration of prospective machine configurations for procuneime

e An exploration of the contention costs arising on a CMP-pssor-based cluster
when executing Chimaera and the implications for code mmtand machine
procurement.

The remainder of this paper is organized as follows, Se&immvides a brief overview
of the two main approaches to application modelling - amnedystudies and simula-
tion. We introduce the Chimaera benchmark in Section 3 namtg our discussion in
Section 4 by describing the development of two performanodeis using analytical
techniques and a new simulation-based toolkit. Sectiomgl%aontain our case study



in which we benchmark an existing 11.5 TFLOP/s InfiniBandeysand project run-
times for a variety of alternative application and machioafigurations. Our paper
concludes in Section 7 with a summary of the results and a&wewif the implica-
tions for procuring a small to medium size cluster for sumdiwavefront-dominated
computations.

2 Performance Modelling

Application performance modelling is principally chargeith the derivation of mod-
els by which code behaviour can be analysed and predicteithelmain, the interest
in such models is in analysing how the computational and conication structures in
a code will change with respect to an increased processoit cowchange in applica-
tion problem size. By developing a deeper insight of theimatfluctuations resulting
from such changes, an understanding of code bottlenedikaase optimisation and in
many cases optimal configuration can be developed.

Current techniques for developing application models radantly fall into two
distinct categories - those based on analytical studiestaosk based on simulation.
Although some conceptual work on a binding of the two is dised in the POEMS
framework [1], there has been little practical demonstrateported in academic litera-
ture. Analytical studies [11, 13, 21] which seek to représede behaviour by a series
of mathematical formula, are often developed within somelelimg framework or
methodology (e.g. LogP[4], LogGP[2] and LoPC[5]). The ug&gid frameworks for
modelling helps to alleviate some of the complexity involwe modeling and provide
a generic basis upon which code behaviour can be judged. Rdiierges of using an
analytical approach are identifying the key applicatiorapaeters which affect runtime
behaviour and how best to represent each parameter matbaitgatThe analysis of
code for modelling is often based on manual code inspecttdohyalthough time con-
suming, allows the performance modeller to develop a daamerstanding of specific
code behaviour from which further behavioural insights rhayarnered.

A brief overview of the recently developed “plug and playusable wavefront
model [18], which serves as the basis for our analytical @gbion of Chimaera, is
presented in Section 4.1. Note that the development of abézisnodel serves to
reduce the time required to model future wavefront codesesa flexible framework
can now be applied to any wavefront application; this apghnoaso permits cross-
application comparisons to be made within a highly alganitpecific framework.

Simulation-based performance systerag.(Wisconsin Wind Tunnel [19], PRO-
TEUS [3] and the PACE toolkit [7, 12] ) were originally envigad as a mechanism to
lower the burden of performance modelling by eliminatingtieed to manually inspect
application source code. The automated replay of appbicateither in source or bi-
nary form allowed developers and performance modelleks &b experiment with per-
formance by making direct changes to the application andlsiting execution without
requiring direct access to the specific machine in questiopractice, the simulation
environments developed to date have attempted to dirdotiylate individual applica-
tion instructions making the simulation of large indudtdades infeasible in realistic
time frames. When the increase of modern application contplesxcompounded with
increasing core counts of emerging cluster platforms, g af simulation quickly
becomes intractable as a source of fast and efficient pesfmcenevaluation. In Sec-
tion 4.2 we present the development of a prototype simuiatiolkit which seeks to
overcome some of the problems discussed, in particular $keofi coarser grained
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Figure 1: Sweep execution through the data array in Chimaera.
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computational timings (as opposed to individual instrsi timings) and a ‘layered
network modelling system, significantly reduce simulatiames, whilst providing pre-
diction accuracies commensurate with leading analyticaders.

3 The Chimaera Benchmark

The Chimaera benchmark is a three-dimensional neutrosgoehcode developed and
maintained by the United Kingdom Atomic Weapons Establishn{AWE). On first
inspection the code shares a similar structure with the noigyuitous Sweep3D ap-
plication described in numerous analytical performanceiss [13, 14, 17]. Unlike
Sweep3D, however, the code employs a different internaépveedering and utilises
a complex convergence criteria to decide when executionrigptete. In this section
of the paper we present a concise description of the waviefidgiorithm employed
by both Sweep3D and Chimaera. Our discussion is purpogdftikf as a number
of existing works describe the behaviour of the wavefrogbathm [16] and a short
overview is sufficient to enable an understanding of the lggfieation behaviours.

3.1 The Generic Wavefront Algorithm

The generic three-dimensional wavefront algorithm operatver a data array of size
N, x N, x N,. The data array is decomposed over a two-dimensional (socasray
sizedm x n. Each processor receives a ‘column’ of data si2edm x N,/n x N..
For the purposes of our discussion it helps to consider tiisnn as a stack ¥, tiles
eachN,/m x N,/n x 1in size. The algorithm proceeds by executiageps through
the data which pass from one vertex to its opposite. For Ciienand Sweep3D eight
sweeps are used - one for each vertex of the three-dimehsioaece.

A sweep originates at a vertex of the processor array (tlyggnesrof each sweep for
Chimaera are shown in Figure 2). The computation requiredlige the first tile in the
originating processor’s stack is completed and bounddoyrimation is exchanged with
the two neighbouring processors. Once exchanges are campéetwo neighbour-
ing processors solve the first tile in their stack whilst thigioating processor solves
its second tile. On completion, boundary information isiagessed downstream to
neighbouring processors. A sweep completes once all tilése last processor have
been solved. Figure 1 shows a partially complete sweep veith grey tiles having
been solved in previous stages, light grey tiles are cugrexecuting and white tiles
are awaiting boundary information from upstream procesgmrows are used to show
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Figure 2: Starting locations for sweep within the two-dimensionaqassor array
employed by Chimaera.

visible communications to downstream processors). A fidration’ of the wavefront
algorithm in Chimaera requires all eight sweeps to have ¢eteqb.

4 Modelling Chimaera

The modelling of Chimaera has been conducted using two appes - analytical mod-
elling based on the “plug and play” reusable model [18] aridgithe new WARwick

Performance Prediction (WARPP) simulation toolkit depeld by the University of
Warwick.

4.1 Plug and Play Analytical Model

Model Parameter Chimaera Value
Ny, Ny, N, Input size
W, measured
Wy.pre 0
Hyjpe(cells) 1
Nsweeps 3
N full 4
Ndiag 2
Message 8Hyjie
Sizepw X #angles
(Bytes) XN, /m
Message 8Hyj1e
Sizens X #angles
(Bytes) XN /n

Table 1: Reusable Wavefront Model Application Parameters.

The “Plug-and-play” reusable wavefront model developdd &) represents the culmi-
nation of three individual application performance stgdi@ the Sweep3D, Chimaera
and NAS-LU benchmarks. By using the insights obtained in eflod) these three
wavefront codes, Mudalige, Vernon and Jarvis have extlegntel abstracted the com-
mon parameters (shown in Table 4.1) which affect applicatimtime into a generic



Wore = Wy pre X Hyije X Ny /n x Ny/m (rla)

W =Wy X Hyjie X Np/nx Ny/m (rib)

StCLTtPLl = I/V;m«e (r2a)

StartP; ; = max(StartPi_y j; + Wi_1 ; + Total_commpg + Receivey,
StartP; ;1 + W; j—1 + Sendg + Total_Commyg) (r2b)

Tdiagfill = Startpl,m (r‘?’a)

Trunpin = StartPy, m, (r3b)

Tstack = (Receivey + Receivey + W + Sendg + Sendg (rd)
+Wpre)Nz/Htile - Wpre (r4)

Time per iteration = ndiagTdiagfill + ’rlfu”Tfu”ﬁ” (r5)
+nsweepsTstack + Tnonwavefront (r5)

Table 2: Plug-and-play LogGP Model: Single Core Per Node.

model. The computational time requirédfy, and the computational time per cell prior
to the algorithm kernellV, ..., are the only machine specific values for which bench-
marking of the application is required.. For our study thisvobtained by using a
manually instrumented version of the benchmark which tithescore computational
kernel of the wavefront algorithmiW, ... is unused in Chimaera since there are no
computational sections in the sweep algorithm prior to tlaérkernel.

The sweep ordering parametensceps, 7 ruir aNdngqaq represent the total num-
ber of sweeps per iteration, the number of full sweeps anditineber of half sweeps
respectively. The concept of ‘full’ and ‘half’ sweeps rasatto the ability of sweeps
within the application to overlap. Recall the sweep ordgimesented in Figure 2.
Sweep 2 originates on the processor located in the top rigimec of the processor
array. Once this sweep has successfully passed througlottoerbright (the starting
location for sweep 3) the next sweep can begin. If this stanits to sweep 2 fin-
ishing on the bottom left processor, overlapping occurschvisierves to increase the
efficiency of the code. Overlapping can only occur if swedimishes at the starting
location for sweep + 1 whilst other downstream processors are still processirgpw
i. This occurs twice in Chimaera (sweep pairs 2,3 and 6, 7hgiginn ;.4 value of 2.
The full reusable model is presented in Table 2 with the cetegéquation for runtime
given in (r5). Explanations of each sub-equation are givef18]. Note that in the
original paper describing the reusable wavefront modelatithors develop a complex
LogGP communications model for the Cray XT4 architectunehls work we develop
a simpler regionalised least squares regression modetaindbmes for MPI send and
receive operations (these are presented in Section 5.1.1).

4.2 Simulation using the WARPP Toolkit

The WARwick Performance Prediction (WARPP) toolkit presehin this paper is a
prototype performance prediction toolkit and evaluatioigire, which has been de-
signed to support performance prediction and code anatysimachines containing
thousands of processors. More specifically, we intend fotaalkit to provide accu-

rate simulations for modern Massive Parallel ProcessoRMRachines which might
consist of multi-core, multi-processor cabinet strucsueach having their own com-
plex interconnect or protocol. As the sizes of future maetsrchitectures to continue
to grow, we expect that additional sub-structures will lguieed to support increasing
core counts, again each is likely to have its own performamoperties adding further



complexity to modelling activities. With this in mind, thérscture of a machine is
relayed to the simulator by a series of ‘profiles.” Each pedfihs unique performance
properties such as network latency, outbound bandwidthv@ten developing a sim-
ulation the user is required to specify the respective walaeeach performance prop-
erty and a mapping of MPI processes to profiles for the speu#iichine configuration
being analysed. By providing a generic basis for the desoripf a machine, arbitrar-
ily complex hardware models can be developed enabling thebeation not only of
modern machine structures but also future multi-structe@mputing resources.

Simulations developed using the WARPP toolkit build upoa tibservation that
parallel codes are ordered executions of basic blocks atguhby control flow, calls
to network transmissions or 1/0O operations. Like previonsutators we recreate ap-
plication behaviour by replaying the code’s control flomugiag during execution to
directly simulate computation, communication and 1/0 @genCommunication be-
tween processes are simulated fully ensuring that trassonis between nodes block
when the transmissive partner is otherwise engaged. Catigutis, however, mod-
elled quite differently to existing work in that it does ndinsilate each application
instruction directly. Instead, the toolkit jumps over wlddasic blocks within the
control-flow recording the time that the block requires feeeution on the target plat-
form. The switch to coarser grained computational timirigsificantly reduces the
time required for individual simulations aiding in improg the scalability of the sim-
ulator to considerably higher processor counts than pusvioolkits. The issue which
arises in moving to coarser grained computational timisgsécisely how the time for
the block is extracted from the application. To alleviate thanual instrumentation of
code to obtain such timings the toolkit includes an autothatele analyser which in-
jects timing routines into the application source codedlliyecreating an instrumented
benchmark version of the code. The analyser also generatastil flow represen-
tation of the code detailing where each block can be foundhavd to identify it's
associated execution time from the instrumented apptinatutput.

4.2.1 Developing a Simulation in WARPP

Developing a WARPP simulation involves three stages. Infits¢ the application
source code is analysed using automated code analysis thelse are responsible for
diagnosing the ‘basic blocks’ of the application and extraca control flow graph for
each process in the parallel application. Basic blocks ansidered to be separated by
either a change in the address counter (as would be causetfaypehing statement
or loop) or a communication (such as BRI _Send or MPl _Recv). Once the basic
blocks have been found, each is instrumented with timindimes to record the wall
time that is required for execution. Two outputs are prodwdghis stage of simulation
- an instrumented version of the application’s source catkabasic performance
model which describes the control flow of the applicatiorg #iirangement of basic
blocks within this control flow and the points at which comnmation and I/O occurs.

The second stage of simulation requires the user to beng&himaimachine using
the instrumented version of the code and some reliable MiRilarking utility (such
as MPPTest [22] or the Intel MPI Benchmark [9]). The outputhdse benchmarks,
which takes the form of a ‘work time’ for each sequential Bl@nd a set of network
latencies and bandwidths, is then fed into the third stageadlation where the control
flow is replayed using the wall clock times of each block toculdte the compute
resources required and the communication points in theécgtioin directly simulated
to obtain a communication model.
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Network Profile Message Size ny
(Bytes) (microsec) | (GBytes/s)

on-chip >0 0.655 2.70

(core to core)
off-processor < 2048 0.69 2.80
(processor to processor) > 2048 0.91 3.83
off-node < 2048 2.64 0.46
(node to node) > 2048 3.63 0.73

Table 3: Benchmarked Network Performance for the CSC-FranceschilNac

(measurements taken using the Intel MPI benchmarkingyutirsion 3.0 [9]. The

Intel C compiler version 10 was used with default system Nitfthties.)

Core | Problem | Actual | Analytical | Sim. | Analytical | Sim.
Count Size Runtime Pred. Pred. Error Error
(sec) (sec) (sec) (%) (%)
32 1203 107.18 88.76 89.58 -17.19 | -16.42
64 1203 56.72 47.59 48.75 -16.09 | -14.04
128 1203 32.56 28.20 28.98 -13.40 | -11.01
81 2403 342.33 326.45 | 330.46 -4.64 -3.47
96 2403 297.03 268.71 | 277.56 -9.54 -6.55
100 2403 278.37 243.36 | 248.32| -12.58 | -10.79
128 2403 225.65 205.50 | 207.18 -8.93 -8.18
169 2403 174.35 174.35 | 177.09 -0.88 1.57
256 2403 129.65 115.58 | 117.98| -10.85 -9.01

Table 4: Model Validations on the CSC-IBM Francesca Machine - (Cdempilntel
Fortran 10.0 with- O2 optimisation setting, OpenMPI 1.2.5, All runtimes givee ar
wall time for sweeping components in seconds, Negativeegilndicate
under-predictions)

During a simulation, data relating to the application’sfpemance and machine
utilisation is recorded enabling performance modellenefay the simulated execu-
tion at a later date and analyse where execution time was §peaxample, time spent
in communication, computation, idle etc). As our studide e applications used at
AWE deepen we intend to use the simulation data to direct fiatémprovements in
code structure and resource allocation.

5 Modelling Code Performance on a Commodity High
Performance Cluster

In this section we present the results of a benchmarking asdketiing exercise con-
ducted on the recently installed Centre for Scientific CotimguCSC)Francesca ma-
chine operated by the University of Warwick. The benchmankaues from this ma-
chine serve two purposes - firstly to allow us to verify ourfpenance models against a
set of known runtimes ensuring accuracy, and secondly to fbe basis of projections



for alternative machine configurations that may be considieiuring a procurement
exercise.

5.1 The University of Warwick Centre for Scientific Computing
(Francesca) Machine

The recently installed 11.5 TFLOP/s Centre for Scientifiarpating (University of
Warwick) IBM supercomputer is typical of a large, sub-Mili pound commaodity
cluster available today. The system comprises of 240 chtal-Keon 5160 dual-core
nodes each sharing 8GB of memory (giving 1.92TB in total).d&oare connected
via a QLogic InfiniPath 4X, SDR (raw 10Gb/s, 8Gb/s data) QL&Y host channel
adapters (HCASs) connected to a single 288-port Voltaire 93B3 switch. Processor
core to HCA ratio ist : 1. Each compute node runs the SUSE Linux Enterprise Server
10 operating system and has access to the IBM GPFS paradiayitem [20]. For
our study the Intel C/Fortran 10 compiler suite was used imjwtction with OpenMPI
1.2.5 [6] and the PBS Pro scheduler. By default, jobs lautichreler PBS are allo-
cated ‘freely’ in the systemi-e. to any free core which meets the wall time or memory
resources requested by the job. Nodes and processors aed Sieween jobs unless
specifically requested during submission. Runtimes camrethee vary (by as much as
10-15%) between successive runs due to the ‘free’ placeofebcesses within the
machine and the potential sharing of node resources.

5.1.1 Machine Network Benchmarks and Models

The results of machine benchmarking demonstrating raw Isehty and bandwidths
are shown in Table 3. Note that the network benchmarking ittipaed into two
regions by message size. The point at which the split in nétyerformance occurs is
2048 bytes, indicating that the InfiniBand management syst&y be configured for
a maximum transmission unit (MTU) size of 2Kbytes (a maximafdK is supported
by the HCA and switch).

For both performance studies we model the communicatior fion a message
of lengthx bytes astscnq(z) = (1/B)x + n; with the bandwidth B) and latency
(n;) associated with the appropriate region for The time for a receive is mod-
elled by: t,...,(x) = (1/B)x since the receiver does not experience the latency re-
quired to establish the connection but must spend at leagtdtual transmission time
in a locked state accepting data from the network interconnéJsing these val-
ues we can calculate the point at which bandwidth will do@nsetwork transmis-
sions as: (2.62 x 1075)/(1(/0.46 x 1024%)) = 1304 bytes (small messages) and
(3.63 x 1079) /(1/(0.73 x 10243)) = 2846 bytes for large messages. In the context of
Chimaera these values, where each cell contains 10 angldspéwhich is a double
floating point value, equate to message sizelsy@nd36 cells respectively. These val-
ues indicate the “see-saw” point at which the network ogsrajiving some indication
of whether bandwidth or latency is dominant for each MPI afien.

5.2 Performance Model Validation

Table 4 presents validations of both performance modelth®ICSC-Francesca ma-
chine. For the results presented, the average predictionierl0.46% for the analyt-

ical model and 9.03% for the simulation demonstrating tiyh liiegree of accuracy in
the models and the strong correlation between both studies.
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Figure 3: Parallel Efficiency of Large Problem Sizes using the Infimi&a
Interconnect.

Note that the vast majority of the predicted runtimes arewehe actual execution
time - the principle reason being that both performance nsodesume as ‘perfect’
allocation of processor cores within the machine, assurttiagj neighbouring MPI
ranks will be allocated as closely as physically possibigrhctice, the free placement
of processes causes some degree of increased executiatugn@the higher network
costs experienced. Similarly, the natural load and noisitlwhccurs from shared
resources helps to create variation in execution. Addignpredictions are taken
from averaged estimates of machine parameters for whiaiding and measurements
may also occur.

6 Procurement: Assessing the suitability of machine
components

Following the benchmarking of the CSC-Francesca machidevalidation of the per-
formance models, we present several sub-studies explalt@gative machine or ap-
plication configurations. In the following studies we arsayhe effect on code runtime
of a change in (1) anincrease in problem size, (2) moving fgahif ethernet network-
ing solution (3) the installation of InfiniBand resourceghwidentical bandwidth but
increased latency (4) a change in the performance of ingdiigrocessor-cores and (5)
a doubling of processor-core density.

6.1 Large Problem Sizes

New computing machinery is often purchased with the intentif not only running

current codes but also future higher complexity problemfayer input sizes. The
decision of which machine to purchase today may often bergedeby expectations
of how future users intend on using the system. Figure 3 pteske expected parallel
efficiency of an increased input size with increasing precesount. Note that there is
a significant decline in efficiency for each input size as tBecBunt rises. This effect
is attributable to the increasing proportion of runtimeagaed for by communication
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resulting from decreasing computation time per processdram increase number of
network transmissions in the system as a whole.

The measure of parallel efficiency is of particular intetesAWE since parallel
jobs are mandated to be in higher than 50% configurationsevbBepossible with a
number of users specifically choosing PE counts to targsetwhiue. For the 240
problem this point occurs between 1024 and 2048 cores itiicéhe approximate
core count which may be required per job if targeted spetlififar a 50% efficiency.
Depending on how many simultaneous jobs the organisatiarisna execute at this
level of efficiency an approximate core count for procureneam be deduced. For
larger problem sizes a similar form of analysis is also aytlie, however, significantly
more cores will be required before the 50% point is reached.

6.2 Choice of Networking Interconnect

For any machine intended to execute high performance phrabes the choice of
interconnect is particularly accute. The precise mix oéaly, bandwidth capacity
and cost must be balanced to support the compute resouraidivering smooth,
consistent performance. At the time of procurement it is mam to want to assess not
only which interconnect will provide the best raw perforroamut also what the effect
of changing the interconnect or choosing a slightly lowezcsfication will have on
overall runtime. We have modelled two such choices - (1) tvneto select a Gigabit
network over an InfiniBand interconnect and (2) the effegiwwtthasing an InfiniBand
network with identical 4x, SDR bandwidths but 25%, 50% an#h#igher latencies.
Figure 4 presents the predicted runtimes for a hypothetizadhine in which we
have replaced the InfiniBand interconnect with a gigabi¢etht network. The gigabit
runtime is consistently over 100 seconds slower than theiBdind system reflecting
the impact of increased latency and a significant decreasaridwidth. In analysing
the results we propose that the reader considers the econ@hpurchasing either
fewer processors and a more expensive InfiniBand network gneater number of
processors and a less expensive gigabit interconnect ia@tyglecision which may be
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Figure 5: Increase in runtime from a 4x SDR InfiniBand network with \iagy
increases in latency.

faced in any procurement activity. For the Chimaera benckratleast, the results
demonstrate that between two and four times as many prasessibbe required to
offset the degradation of using a slower interconnect - aifsggint increase which
will in turn make the machine more expensive to run and patymore difficult to
administer. The runtimes marked in Figure 4 present thistgor the 128 and 512
core cases.

In Figure 5 we demonstrate predictions for the percentagease in runtime re-
sulting from the use of an 4x SDR InfiniBand interconnect v#8%, 50% and 75%
higher latencies. For small processor counts (less tha®)108 increase in runtime is
less than 6% in all cases. After this point - where commuitodtegins to become a
higher proportion of runtime - the runtime begins to inceeeapidly with an increase
of at least 10%. In this scenario the purchase of a lower paiidn system may be
acceptable if the intention is to limit the maximum processmnt of each job to 1024
cores or less.

We also believe that the use of machine configurations foe modnts greater than
288 will cause increases in experienced wire latenciesessldased switch topolo-
gies will need to be employed in order to cope with the extrd pount. These costs
are not included in this work as benchmarked values to stigppredictive model
are not currently available and work completed in [10] pde& some suggestion that
contention within InfiniBand switches may be reduced in fatsystems through the
use of advanced routing algorithms. Figure 5 does howeuprtbagive indication of
how sensitive the structured communication pattern usé&himaera is to even minor
increases in network latency.

6.3 Machine Compute Performance

The compute resources of the machine are usually the featich draws the most
attention. Whilst only part of the picture for parallel systg the computational as-
pects of a code are often better understood by domain exgedtslevelopers. With
increasing variation in processors being offered in thenfof increasing core counts
and arrangements, considerable clock speed differencknasome cases, varying
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cache implementations, choosing the ‘right’ processoafoapplication can be diffi-
cult. We present several studies in this section of the papéh attempt to quantify
the performance benefit of choosing either 10% or 20% fastargssors, 10% slower
processors or making the move from the existing dual-cote Keon 5160 proces-
sors to quad-core chips with the same per-core performautdeidgh core-density per
processor.

6.3.1 Increased Individual Core Performance

Figure 6 presents the predicted change in runtime from udirad core processors
with individual core performances of +10%, +20% and -10%e @hminishing returns

demonstrate the respective points at which communicatgimi to dominate runtime.
In each case the change in runtime performance is approxiynequal to the change
in per core performance for small processor counts. As thegssor count rises the
impact on runtime is reduced due to the increase proporfisargime accounted for

by communication, reducing the contribution of faster catagional resources to the
runtime. Note that at increased processor counts the imgractintime of using a

slower processor is also reduced. The choice of core pedimcmshould therefore be
considered in the context of job size - at small job sizesthéme is improved best by
using the fastest processors possible, as the core cowst iises there are diminishing
returns from employing faster computational resources.

6.3.2 Increased Core Density - Dual versus Quad Core

With an increasing variety of multi-core processors becgaivailable including dual,
guad and oct-core configurations, a common issue arisingpsupement is which core
density to select in designing the machine’s compute archite. On initial consider-
ation the economic advantages of higher core densitiesomsotidation and reduced
power or cooling demands per core, however, the increagngity often impacts on
runtime performance.

In Figures 7(a) and 7(b) we show a set of results obtained framing the Intel
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Total Core | Dual Core | Quad Core | Percentage

Count Runtime (s) | Runtime (s) | Change (%)
32 729.97 726.19 -0.52
64 376.46 373.62 -0.75
128 207.18 207.92 0.36
256 117.98 118.50 0.44
1024 66.64 66.33 7.88
4096 37.29 40.45 8.46

Table 5: Predicted Quad versus Dual Core Performance (The quad:oofiguration
is modelled with an increased in time to send and reducedwidtidto account for
contention).

MPI benchmark in three configurations - one, two and four MiBtpsses per node re-
spectively. The increasing number of processes per nodielfwhthe effect of higher
core densities) reduces the per-core network performafoe.increased time to per-
form an MPI send, and the decreased per core bandwidtht fesul high levels of
contention for the single InfiniBand HCA per node. Each psscaust wait longer
before having exclusive access to the machine network. rf densities continue to
rise then this will continue to impact performance unless igsue of contention is
addressed by increasing the number of networking chaneelaqgle - the economic
effect of this may be a significant addition to procuremerst.co

We have modelled the effect on runtimes of replacing eacdtiagi dual-core pro-
cessor with a quad-core equivalent in which the per-coréopeance of the chip re-
mains identical. The network latency for the InfiniBand nativhas been left the same
for message sizes less than 2048 bytes, increased by 10%e&sage sizes ranging
from 2048 to 4096 bytes and increased by 20% for larger messagetwork band-
width has been changed by the same value but decreased. dmgeshin latency and
bandwidth are drawn from the observed values shown in theefigabove. Table 5
presents our predicted runtimes for the quad core machimpaced with the existing
dual core structure. Initially performance is improveccsithere are more cores utilis-
ing the fast core-to-core transmission speeds. Once corgseeach 1024 processors
the increased latency and reduced bandwidth create up t#andBease in runtime.

7 Conclusions

In this paper we have presented a case study detailing tHeatmgn of two perfor-
mance models - one based on analytical techniques and teekztied on simulation
- in supporting the procurement of a large, sub-Million pgpwommodity cluster for a
wavefront-code rich workload. The study explores the parfoce and scalability of
the Chimaera benchmark code used by the United Kingdom Attveiapons Estab-
lishment.

We demonstrate average predictive accuracies of 90% forietywaf processor
configurations and input sizes. The cross-correlation edligtions from two contrast-
ing performance models serves to increase the confidenceripredictions and the
insights obtained during our subsequent analysis.



More specifically, this paper shows:

e Quantitative estimates for the parallel efficiency of érigtand future problem
sizes that are of interest to AWE;

e That a system with a low performance network will require @ager processor
count to offset the effect of higher latencies and lower pdadth. We demon-
strate this by projecting the performance of a Gigabit etbenetwork in com-
parison to a faster InfiniBand system, showing approxirgatetween two and
four times as many processors are required by the ethera&tnsyto achieve
comparable levels of performance at core counts less thzdy 10

e Improving/reducing the latency performance by a factor ofeaults in up to
10% change in overall runtime;

e For small processor counts the overall runtime varies byfdaber of improve-
ment in per-core performance, but as core counts increlasesantribution of
faster per core performance provides diminishing returns;

e Increasing the core density per processor reduces therpenfice due to con-
tention for memory and network resources. We estimate thetgative degra-
dation of overall runtime when doubling core-density froomtto quad core
processors to be approximately 8% up to 4096 cores on the odityrinfini-
Band system studied.

Our results demonstrate that the selection of machine agatign and processor count
should be directed by the average size of jobs the machiméeisded to execute. For
multiple small jobs, individually faster processors slibhé prioritised over a faster
interconnect, since the code is predominantly compute datithese points. For larger
jobs, the interconnect plays a more significantly role irfgranance indicating that a
more expensive, low latency network should be targetteshgyorocurement.

The predictive models used in this study demonstrate afticiew-cost and rapid
methods to gather quantitative and qualitative insightsguestions which arise during
procurement for both currently available and future systeim contrast, traditional
approaches such as direct benchmarking require signifenrashtexpensive machine
execution time and more effort to arrive at a subset of caichs limited solely to
currently available machine configurations.
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