
ar
X

iv
:0

90
1.

48
35

v4
 [

cs
.D

M
]

 1
0

Fe
b

20
10

A Mathematical Basis for

the Chaining of Lossy Interface Adapters∗

Yoo Chung Dongman Lee

November 8, 2018

Abstract

Despite providing similar functionality, multiple network services may

require the use of different interfaces to access the functionality, and this

problem will only get worse with the widespread deployment of ubiqui-

tous computing environments. One way around this problem is to use

interface adapters that adapt one interface into another. Chaining these

adapters allows flexible interface adaptation with fewer adapters, but the

loss incurred due to imperfect interface adaptation must be considered.

This paper outlines a matrix-based mathematical basis for analyzing the

chaining of lossy interface adapters. We also show that the problem of

finding an optimal interface adapter chain is NP-complete with a reduc-

tion from 3SAT.

1 Introduction

Similar network services can have different interfaces for providing equivalent
functionality, akin to the way there are a myriad of infrared remote control
protocols for televisions from different manufacturers. Multiple web services
running over SOAP [20] may provide different interfaces for the same func-
tionality, and the same thing can happen for different embedded devices that
essentially do the same thing. Even the same service from the same provider
may end up with different interfaces as newer versions are developed [10].

One way to solve the problem of having a myriad of interfaces for the same
functionality is to standardize on a single interface. This is not always feasible
due to economical or political considerations, so another way is to develop and
use adapters that can convert one interface to another [7]. This approach allows
multiple competing interfaces to coexist without constraining a network client
to one manufacturer or API standard, which would be required in ubiquitous
computing environments so as to allow a large number of diverse computing
devices interoperate with each other seamlessly.

∗This paper is a preprint of a paper accepted by IET Software and is subject to Institution
of Engineering and Technology Copyright. When the final version is published, the copy of
record will be available at IET Digital Library.

1

http://arxiv.org/abs/0901.4835v4

The simplest way to adapt an unusable interface into a usable one is to use
a singe adapter to convert from one to the other. This can easily be extended so
that multiple adapters are chained to adapt interfaces [15], which can reduce the
number of interface adapters that are required. However, it is not always feasible
for an adapter to perfectly convert one interface to another, since interfaces
are almost never created with conversion to other interfaces in mind, and the
problem is only worse when adapters are chained [11].

This paper outlines a mathematical basis for analyzing lossy interface adap-
tation through the chaining of interface adapters. In section 2, we describe the
background behind interface adaptation. Section 3 describes a matrix-based
mathematical basis for analyzing lossy interface adapter chaining. We show
that optimal interface adapter chaining is NP-complete in section 4 using our
mathematical basis, so an exponential-time algorithm for the problem is sug-
gested in section 5. We discuss related work in section 6, and the paper concludes
in section 7.

2 Interface adaptation

In this paper, we take the approach that services that provide similar function-
ality can be accessed through different interfaces than that used by the service
itself through the use of pre-existing interface adapters. Each interface is ac-
cessed through methods, and an interface adapter can provide an alternative
interface by implementing external methods through the methods available in
the original interface. This is the same view as taken in [11].1

There can be various approaches to creating the interface adapters them-
selves, from manual development of an adapter to automatic generation through
semantic or code analysis. While manual development of interface adapters is
probably the most reliable method, the mathematical framework described in
this paper does not preclude the use of alternative methods [1, 14, 21], and the
generation of interface adapters themselves is outside the scope of this paper, as
our mathematical framework assumes a fixed set of interfaces and pre-existing
interface adapters.

As a concrete example, we will describe how the web service XWebCheckOut
could be accessed using the Google Checkout API, an example we based on one
from [14]. In figure 1, we can see how XWebCheckOut has a different interface
from that of Google Checkout. For a network client that only knows how to
use the Google Checkout API, it would need an adapter which can convert the
source interface for XWebCheckOut to the target interface for Google Checkout.

A developer could implement methods for the Google Checkout interface
by using methods available in the XWebCheckOut interface. For example, the
Place-Order method in the Google Checkout interface could be implemented
using the AddOrder and UpdateOrder methods in the XWebCheckOut in-

1Contrary to how we call the original and converted interfaces as source and target in-
terfaces, respectively, [11] calls the original and converted interfaces as target and source
interfaces, respectively.

2

XWebCheckOut

LoadOrder

AddOrder

UpdateOrder

DeleteOrder

ProcessPayment

Google Checkout

Place-Order

...

Cancel-Order

Charge-Order

New-Order-
Notification

Figure 1: Example of service interface adaptation.

terface. Doing this for each method in the Google Checkout interface will result
in an interface adapter that adapts the XWebCheckout interface to the Google
Checkout interface.

However, interface adaptation might not be perfect as some methods in the
target interface simply cannot be implemented using only methods in the source
interface, resulting in lossy interface adaptation. We can see this in figure 1,
where there is no feasible way to implement the New-Order-Notification

method using only methods available from the XWebCheckOut interface, assum-
ing that the method cannot be implemented independently of XWebCheckOut.

Since a network client is using the target interface to access a service, the
lossiness in the target interface is of more interest than the inability to provide
access to the full range of functionality provided in the source interface. For
example, for a network client that only knows how to use the Google Checkout
API, it is more relevant that an interface adapter may not be able to provide the
New-Order-Notification method in the Google Checkout interface, rather
than that the functionality provided by the LoadOrder method in the XWe-
bCheckOut interface is missing.

If we require that all available interfaces for similar services must be adapted
between each other with only a single adapter in between, then the number of
interface adapters required is in the order of n2. Developing all the required
adapters can be impractical, so interface adapters can be chained to adapt a
source interface to one interface, this interface adapted to another interface, and
so on until we get a target interface that a network client knows how to use [15].
In the best case, we can even get away with only n adapters given n interfaces.

However, different chains of interface adapters result in different lossiness
in the interface adaptation, so we need a way to analyze the chaining of lossy
interface adapters. We will look at another example in figure 2, where there are
four interfaces and six interface adapters, each of the latter represented by an
arrow from the source interface to the target interface it converts from and to.

Each interface may have the following characteristics:

• Video1 can play both video and audio files.

• Video2 can only play video files, but can stop playback, skip over a fixed

3

playVideo
playAudio

Video1

play
stop
skip
caption

Video2

play
getVolume
setVolume
setEqualizer

Video3

play
adjustAudio

Audio

Figure 2: Multiple interfaces related by interface adapters.

amount of time, and select captions.

• Video3 can only play video files, but can get and set the volume and set
the equalizer for the audio output.

• Audio can only play video files, but can set audio properties, which are
the volume and the equalizer.

And each interface adapter may be implemented as in the following, where
methods in a target interface not mentioned are not adapted to:

• The adapter Video1toVideo2, which converts Video1 to Video2, may im-
plement the play method of Video2 by using the playVideo method of
Video1.

• The adapter Video2toVideo3, which converts Video2 to Video3, may im-
plement the play method of Video3 by using the play method of Video2.

• The adapter Video1toAudio, which converts Video1 to Audio, may imple-
ment the play method of Audio by using the playAudio method of Video1.

• The adapter AudiotoVideo3, which converts Audio to Video3, may im-
plement the setVolume and setEqualizer methods of Video3 by using the
adjustAudio method of Audio.2

2While it may seem odd to have an adapter from Audio to Video3 which cannot adapt a
playback method, it can still be useful when someone wishes to reduce loud noises from an
audio device with interface Audio using a remote control that only understands the interface
Video3.

4

• The adapter Video3toAudio, which converts Video3 to Audio, may im-
plement the adjustAudio method of Audio by using the setVolume and
setEqualizer methods of Video3.

• The adapter Video3toVideo1, which converts Video3 to Video1, may im-
plement the playVideo method of Video1 using the play method of Video3.

A service with interface Video1 may be available, and we may want to
access it using a client that only understands interface Video3. There is no
interface adapter which directly converts interface Video1 to Video3, but there
are interface adapter chains which can indirectly do the conversion. Chain-
ing Video1toVideo2 with Video2toVideo3 or chaining Video1toAudio with Au-
diotoVideo3 can convert interface Video1 to Video3.

Given multiple possible interface adapter chains, we would want to use the
best interface adapter chain that can provide the most methods in the target
interface. Associating a cost with an adapter depending on how well it adapts
the methods in its target interface and using minimum-cost path algorithms
such as Dijkstra’s algorithm [5] would be an obvious approach to choose the
best interface adapter chain. However, this naive approach would not work as
we will see from the example in figure 2.

Video1toAudio and AudiotoVideo3 can adapt one out of two methods in Au-
dio and Video3, respectively. In contrast, Video1toVideo2 and Video2toVideo3
can adapt one out of four methods in Video2 and Video3. One might think
that the Video1toAudio and AudiotoVideo3 chain would be better than the
Video1toVideo2 and Video2toVideo3 chain simply by looking at how lossy each
interface adapter is, but one would be wrong.

AudiotoVideo3 requires the adjustAudio method in Audio to implement the
setVolume and setEqualizer methods in Video3. However, Video1toAudio can-
not implement the adjustAudio method in Audio, so the Video1toAudio and
AudiotoVideo3 chain ends up with no available methods for Video3. In con-
trast, the Video1toVideo2 and Video2toVideo3 chain can provide the method
play for Video3. A single number for each interface adapter cannot express
such dependencies properly, so we need a more precise approach to analyze the
lossiness in interface adapter chains.

In the rest of the paper, we will discuss how to mathematically analyze the
lossiness incurred from the chaining of interface adapters. We will also assume
that interface adapters are implemented as transparently as possible: while an
interface adapter may not be able to provide all of the methods in the target
interface, the methods it will provide will work just as if they were invoked
directly on a service having the target interface.

3 Mathematical basics

We can start formalizing the problem of lossy interface adaptation by defining
an interface adapter graph. This is a directed graph where interfaces are nodes
and adapters are edges. If there are interfaces I1 and I2 with an adapter A that

5

adapts source interface I1 to target interface I2, then I1 and I2 would be nodes
in the interface adapter graph while A would be a directed edge from I1 to I2.

We do not assume that there can be at most one adapter which can adapt one
interface to another. This reflects the fact that there can be multiple adapters
from different developers, similar to how there can be multiple device drivers
available for a graphics card. It also simplifies some of the arguments, although
they would still hold even with such a restriction with only minor changes in
the proofs.

We will be using a range convention for the index notation used to express
matrixes and vectors [4].

3.1 Method dependencies

The next step is to formally describe each adapter, i.e. each edge in the interface
adapter graph, in a way that would be useful for analyzing lossiness. We should
be able to figure out which methods in the target interface can be provided by an
interface adapter given the methods available in the source interface. We do this
by defining a method dependency matrix, a boolean matrix which describes how
an interface adapter implements methods in the target interface using available
methods in the source interface.

The method dependency matrix aji for an adapter A, where aji represents
either the matrix itself or a single component in the matrix depending on the
context, is defined by how the adapter depends on the availability of a method
in the source interface in order to implement a method in the target interface.
aji is true if and only if method j in the target interface can be implemented
only if method i in the source interface is available. We denote the method
dependency matrix associated with an adapter A as depend(A).

We also define a method availability vector pi for an interface, where each
component pi is true if and only if method i is available. This boolean vector
is not intrinsic to an interface, unlike the method dependency matrix which is
intrinsic to an interface adapter. Instead, it is used to represent the lossiness in
interface adaptation such that method i in the target interface can be used only
if pi is true. For a fully functional service that implements all methods specified
in its interface, the components of its method availability vector should all be
true. We denote the number of true components in method availability vector pi
as ‖pi‖, which is equivalent to the Manhatten norm [19] when true and false
components are replaced by 1 and 0, respectively.

Given method availability vector pi for a source interface and the method
dependency matrix aji for an interface adapter, we can derive the method avail-
ability vector qj for the target interface. A method j in the target interface can
only be implemented if all of the methods it depends on are available in the
source interface. So if qj is to be true for fixed j, then all pi must be true when
aji is true:

qj =
∧

i

(aji → pi) =
∧

i

(¬aji ∨ pi) (1)

6

However, equation (1) is incomplete in that it does not properly distinguish
between methods which can always be implemented and methods which cannot
be implemented given the source interface. For example, a method that returns
the value of π does not need anything from the source interface, whereas there
would be no way to implement a video playback method given only a source
interface specialized exclusively for audio playback. For both cases, all aji are
false for a specific method j, and equation (1) would give the wrong result for
the latter case.

This can be worked around by defining a dummy method that is never avail-
able for every interface. We arbitrarily call this “method 1”, so that p1 will
always be false for any method availability vector. It is easy to see that extend-
ing the definition of the method dependency matrix with the following rules is
consistent with our definitions and equations for the method dependency matrix
and method availability vector:

• a11 is true, while a1i is set to false for all i 6= 1.

• If method j can always be implemented in the target interface, set aji to
false for all i.

• If method j can never be implemented given the source interface, set aj1
to true, while aji is set to false for all i 6= 1.

• If method j depends on the availability of actual methods in the source
interface, then aj1 is false.

For succintness, we denote a method availability vector for interface I which
represents that all methods are available, i.e. when the component for the
dummy method is false while all the other components are true, by 1′

I .
We also define the operator ⊗ for a method dependency matrix as applied

to a method availability vector to represent the operation in equation (1), or in
other words:

aji ⊗ pi ≡
∧

i

(¬aji ∨ pi) (2)

It is easy to see that a square boolean matrix where the diagonals are true
and the rest of the components are false is an identity matrix for the adaptation
operator ⊗. We denote an identity matrix with n rows as In.

3.2 Adapter composition

To analyze the chaining of lossy interface adapters, we are also interested in
how to derive a composite method dependency matrix from the composition of
two method dependency matrixes, which would be equivalent to describing the
chaining of two interface adapters as if they were a single interface adapter.

Given interfaces I1, I2, and I3, let the corresponding method availability
vectors be pi, qj , and rk. In addition, let there be interface adapters A1 and A2,
where A1 converts I1 to I2 and A2 converts I2 to I3, with corresponding method

7

dependency matrixes aji and bkj , respectively. We would like to know how to
derive the method dependency matrix that would correspond to an interface
adapter equivalent to A1 and A2 chained together.

From equation (1) and our assumptions:

rk =
∧

j

(¬bkj ∨ qj)

=
∧

j

(

¬bkj ∨
∧

i

(¬aji ∨ pi)

)

=
∧

j

∧

i

(¬bkj ∨ ¬aji ∨ pi)

=
∧

i

∧

j

(¬bkj ∨ ¬aji ∨ pi)

=
∧

i

∧

j

(¬bkj ∨ ¬aji) ∨ pi

=
∧

i

¬
∨

j

(bkj ∧ aji) ∨ pi

We reuse the operator ⊗ to represent the composition of two method depen-
dency matrixes, and by comparing the above with equation (1), we can define
it as:

bkj ⊗ aji =
∨

j

(bkj ∧ aji) (3)

In from section 3.1 is also an identity matrix for the method dependency
matrix composition operator ⊗.

The ⊗ operator is “associative”3 when applied to method dependency ma-
trixes and a method availability vector, i.e. bkj ⊗ (aji ⊗ pi) = (bkj ⊗ aji) ⊗ pi,
which shows that in terms of lossiness, chaining adapters and then applying it
to a source interface is equivalent to applying each adapter one by one to the
source interface:

bkj ⊗ (aji ⊗ pi) =
∧

j

(

¬bkj ∨
∧

i

(¬aji ∨ pi)

)

=
∧

j

∧

i

(¬bkj ∨ ¬aji ∨ pi)

=
∧

i

∧

j

(¬bkj ∨ ¬aji ∨ pi)

3It is not technically associative in this context as the ⊗ operator as applied to method
dependency matrixes is not really the same as the ⊗ operator as applied to a method depen-
dency matrix and a method availability vector, similarly to how × for numbers is different
from × for sets.

8

=
∧

i

∧

j

(¬(bkj ∧ aji) ∨ pi)

=
∧

i

∧

j

¬(bkj ∧ aji) ∨ pi

=
∧

i

¬
∨

j

(bkj ∧ aji) ∨ pi

= (bkj ⊗ aji)⊗ pi

Likewise, method dependency matrix composition is associative:

clk ⊗ (bkj ⊗ aji) =
∨

k

clk ∧
∨

j

(bkj ∧ aji)

=
∨

k

∨

j

(clk ∧ bkj ∧ aji)

=
∨

j

∨

k

(clk ∧ bkj ∧ aji)

=
∨

j

(

∨

k

(clk ∧ bkj) ∧ aji)

)

= (clk ⊗ bkj)⊗ aji

However, method dependency matrix composition is not commutative, as
can be easily seen by considering the composition of method dependency ma-
trixes that are not square matrixes.

We can also formalize the somewhat vague intuition that a longer interface
adapter chain is worse in terms of lossiness. If A1 and A2 are interface adapters,
where A1 converts I1 to I2 and A2 converts I2 to I3, with aji = depend(A1) and
bkj = depend(A2) in which a11 and b11 are both true as in section 3.1, then for
pi = bkj ⊗ 1′

I2
and p′i = bkj ⊗ aji ⊗ 1′

I1
:

pk = (¬bk1 ∨ f) ∧
∧

j 6=1

(¬bkj ∨ t) = ¬bk1

p′k =
∧

j

¬bkj ∨

(¬aj1 ∨ f) ∧
∧

i6=1

(¬aji ∨ t)

=
∧

j

(¬bkj ∨ ¬aj1)

= ¬bk1 ∧
∧

j 6=1

(¬bkj ∨ aj1)

9

I
1

I
2

I
3

I
4

A
1 A

2

A
3

A
4

A
5

A
6

Figure 3: Interface adapter graph for figure 2.

∴ p′k → pk (4)

With I1 and I2 being the source interfaces for the interface adapters that
aji and bkj represent, respectively, we can also infer from equation (4) that

‖bkj ⊗ 1′
I2
‖ ≥ ‖bkj ⊗ aji ⊗ 1′

I1
‖ (5)

which, along with the associativity of method dependency matrix composition,
formalizes the notion that extending an interface adapter chain is worse in terms
of lossiness.

The definitions of the method dependency matrix and the method availabil-
ity vector in section 3.1, along with the associativity rules proven in this section,
provide a succinct way to mathematically express and analyze the chaining of
lossy interface adapters.

3.3 An example

As an example, we apply the mathematical framework to the interfaces and
adapters in figure 2. We will denote interfaces Video1, Video2, Video3, and
Audio as I1, I2, I3, and I4, respectively, while A1, A2, A3, A4, A5, and A6

denote the interface adapters Video1toVideo2, Video2toVideo3, Video1toAudio,
AudiotoVideo3, Video3toAudio, and Video3toVideo1, respectively. We also in-
dex each method in the order they appear in figure 2 along with an extra dummy
method with index 1, and let akji = depend(Ak). Figure 2 is already an interface
adapter graph, which is simplified and labeled in figure 3.

10

Some method dependency matrixes would be:

a1ji =

t f f

f t f

t f f

t f f

t f f

a2ji =

t f f f f

f t f f f

t f f f f

t f f f f

t f f f f

a5ji =

t f f f f

t f f f f

f f f t t

Given a fully functional service which conforms to interface Video1, we would
expect that only the play method would be available for interface Video3 after
going through the adapter chain A1 and A2, which can be verified by computing
the method availability vector a2kj ⊗ a1ji ⊗ 1′

I1
:

a2kj ⊗ a1ji ⊗ 1′
I1

= [f, t, f, f, f]

One can also verify the following by hand, which would be expected from
the associativity of ⊗. Associativity can be very useful in developing algorithms
analyzing chains of lossy interface adapters, since fragments of an interface
adapter chain can be assembled independently and still give the same method
dependency matrix for the whole chain.

a5lk ⊗ a2kj ⊗ a1ji ⊗ 1′
I1

= a5lk ⊗ (a2kj ⊗ (a1ji ⊗ 1′
I1
))

= ((a5lk ⊗ a2kj)⊗ a1ji)⊗ 1′
I1

= (a5lk ⊗ a2kj)⊗ (a1ji ⊗ 1′
I1
)

= [f, f, f]

We can also verify the following, which is consistent with equations (4) and
(5), and is in line with the intuition that extending an adapter chain can only be
worse in terms of lossiness, although this does not mean that a longer adapter
chain is always worse than a shorter adapter chain.

a5lk ⊗ 1′
I3

= [f, f, t]

a5lk ⊗ a2kj ⊗ 1′
I2

= [f, f, f]

11

S T

setting
variables

setting
clauses

filter

Figure 4: General form of a boolean expression reduced to an interface adapter
graph.

4 Optimal adapter chaining

One of the things that could be hoped from the mathematical framework in
section 3 is that it could help with the development of an efficient algorithm for
optaining an optimal interface adapter chain from an actual service to a target
interface that incurs the least loss in terms of functionality. Unfortunately, the
problem is NP-complete, as will be shown in this section, dashing hopes for such
an algorithm.

First, we must formally describe the problem, which we will call CHAIN. Let
us have an interface adapter graph ({Ii}, {Ai}), where {Ii} is the set of interfaces
and {Ai} is the set of interface adapters. Let ak be the method dependency
matrix associated with adapter Ak. Let S ∈ {Ii} be the source interface and
T ∈ {Ii} be the target interface. Then the problem is whether there is an
interface adapter chain [AP (1), AP (2), . . . , AP (m)] such that the source of AP (1)

is S, the target of AP (m) is T , and ‖vT ‖ = ‖aP (m) ⊗ · · · ⊗ aP (2) ⊗ aP (1) ⊗ 1′
S‖

is at least as large as some parameter N .
Informally, this is an optimization problem which tries to maximize the

number of methods that can be used in a fixed target interface, obtained by
applying an interface adapter chain on a fully-functional service which conforms
to the source interface. We show that the problem is NP-complete by reducing
3SAT [3] to CHAIN.

Based on the conjunctive normal form of a boolean expression E with exactly
3 literals in each clause, we will construct an interface adapter graph G in three
parts and the corresponding method dependency matrixes. One part will model
the setting of each variable to true or false, another part will model the value
of each clause once the variable values are set, and the last part will serve as a
filter so that E is satisfiable if and only if there is a chain in G such that ‖vT ‖
equals the number of clauses in E.

Figure 4 shows what a reduction from an instance of 3SAT to an instance
of CHAIN would generally look like.

12

4.1 Representing values

We will represent values of literals and clauses using the method availability vec-
tor for each interface, where all but one of the nodes in the constructed interface
adapter graph will contain the same set of methods. At certain points in the
interface adapter graph, a true or false component in the method availability
vector would directly map to the value of a literal or a clause.

For almost all nodes, including the source, the set of methods will be fixed
with one dummy method, one method for each clause, and one method for
each literal, so almost all method dependency matrixes will be square matrixes.
As the method dependency matrixes will have large parts in common with the
identity matrix, we will only be mentioning how each matrix differs from the
identity matrix.

Each method will be labeled as follows:

• The dummy method will be labeled d.

• For each clause ci, the method will be labeled ci.

• For each variable vi, the method for the variable itself will be labeled li,
while the method for the negation of the variable will be labeled li.

There is a single method dependency matrix used in the filter part of the
graph that will not be a square matrix.

4.2 Handling literals

The basic approach of this part of the graph, which we will call the variable
handling subgraph, is to set the value for each variable depending on which
adapters are chosen to be included in the chain. For each variable v1, v2, . . . ,
vv, we define nodes V1, V2, . . . , Vv, and we let V0 = S. Between each Vi−1 and
Vi, we define two adapters which will leave everything about the method avail-
ability vector unchanged from one node to the next except for the components
corresponding to the literals for vi. One will make the variable effectively true,
while the other will make the variable effectively false.

For each Vi for i > 0, we will define a positive literal adapter Ali with
method dependency matrix ali and a negative literal adapter Ali

with method

dependency matrix ali . For the positive literal adapter, alilij is false for all j,

ali
lid

is true, and ali
lij

is false for all j other than d. Similarly for the negative

literal adapter, ali
lij

is false for all j, alilid is true, and alilij is false for all j other

than d.
It should then be easy to see that for a method availability vector pi with

a false pd, all components of ali ⊗ pi should be the same as pi except for the
components corresponding to li and li, which will be true and false, respectively.

Likewise, all components of ali ⊗ pi should be the same as pi except for the
components corresponding to li and li, which will be false and true, respectively.

13

S
V
0

V
1

V
2

V
3

Figure 5: Choosing a variable assignment.

The rest of the interface adapter graph will be the descendant of Vv, so any
adapter chain from S to T must go through all of V0, V1, . . . , Vv in order, and
for every variable one and only one of the positive literal adapter or the negative
literal adapter must be chosen as in figure 5 due to the structure of the variable
handling subgraph. This is equivalent to choosing a variable assignment, and
at Vv, the method availability vector pi will be such that for each variable vi,
pli and pli will have opposite values, so that it would be the same as setting the
value of vi to pli .

4.3 Handling clauses

Based on the variable assignment that is taken care of by the variable handling
subgraph in section 4.2, this part of the graph, which we will call the clause
handling subgraph, is responsible for determining the value of each clause.

In order to model disjunction, not only do we define a node Ci for each
clause ci, we also define three subnodes Cij , for j from 1 to 3, for each of the
literals in the clause. These nodes are separate from those defined in section 4.2.
The idea is that if any of the literals are true, then at least one of the nodes will
end up with a method availability vector marking the clause as true, so we can
use this to mark the same for Ci itself. We also set C0 = Vv for convenience of
notation, and c will be the number of clauses.

For each clause ci, there are edges from Ci−1 to each of the subnodes Cij ,
and in turn there are edges from each subnode Cij to Ci. So there will be three
alternate paths from Ci−1 to Ci.

For edge (Ci−1, Cij), if l corresponds to the literal for Cij , the method de-
pendency matrix a for the edge is defined by setting acil to true and acik to false
for all k other than l. Then it should be easy to see that a ⊗ p is the same as
the method availability vector p except for the component pci , which would be
true if and only if pl is also true. For edge (Cij , Ci), the corresponding method
dependency matrix is simply the identity matrix.

If clause ci is true, then one of the literals must be true. Then the path
through the subnode Cij for the true literal will result in a true component for
the clause in the method availability vector at Ci. If the clause is not true, then
the same component will be false no matter the path taken, since it will be false
for all subnodes Cij .

T will be the descendant of Cc, and since the source is in the variable han-
dling subgraph, which is only connected to the clause handling subgraph by C0,

14

!
0

C
1

C
2

Figure 6: Disjunction through alternate paths.

any interface adapter chain from S to T must go through each of the nodes
C0, C1, . . . , Cc in order as in figure 6. And if all clauses are true with the
variable assignment done in the variable handling subgraph, which is equivalent
to choosing which adapters to include from the subgraph, only then will there
be a path from C0 to Cc which will result in true components for all clauses in
the method availability vector at Cc.

4.4 Filtering

The last part of the constructed interface adapter graph is the filtering part,
which discards all methods corresponding to literals from the method availability
vector so that only the dummy method and methods corresponding to clauses
remain.

The filtering subgraph is made up of only two nodes and a single edge.
One of the nodes is the target T , and its interface only contains the dummy
method and all the methods corresponding to clauses. The other node is Cc

from section 4.3. The (c+ 1)× (2v + c+ 1) method dependency matrix aji for
the edge from Cc to T defined as follows accomplishes the filtering:

• For all clauses ci, acici is true.

• For the dummy method, add is true.

• All other compenents are false.

4.5 Analysis of the reduction

The constructed interface adapter graph has v + 4c + 2 nodes and 2v + 6c +
1 edges, where v is the number of variables and c is the number of clauses. Also,
each method dependency matrix has at most (1 + c+ 2v)2 components, so the
reduction of a candidate for 3SAT to a candidate for CHAIN can be done in
polynomial time. So we just need to verify that there is a positive answer for
CHAIN with N = c if and only if there is a positive answer for 3SAT.

If the boolean expression is satisfiable, then there is a variable assignment
that makes it true. Consider the following interface adapter chain. In the
variable handling subgraph, include edges that correspond to the variable as-
signment. In the clause handling subgraph, there is guaranteed to be a path

15

where all components corresponding to clauses in the method availability vec-
tor at the target end up being true, given the path in the variable handling
subgraph, so use this path in the chain. Then ‖vT ‖ will be exactly c.

Conversely, suppose there is an adapter chain such that ‖vT ‖ = c. Then
assigning values to variables according to the path through the variable handling
subgraph results in a satisfying variable assignment for the boolean expression.
This is because the clause handling subgraph and the fact that ‖vT ‖ = c together
imply that all clauses are true for the derived variable assignment. And given
an arbitrary interface adapter chain and an optimal chain, it is easy to verify
whether the arbitrary adapter chain is not optimal, so CHAIN is NP-complete.

5 A greedy algorithm

As shown in section 4, the problem of finding an optimal interface adapter
chain that would make available the most methods in the target interface is an
NP-complete problem. Short of developing a polynomial-time algorithm for an
NP-complete problem, practical systems will have to use a heuristic algorithm
or an exponential-time algorithm with reasonable performance in practice.

Algorithm 1 is a greedy algorithm that finds an optimal interface adapter
chain between a given source interface and a target interface. Given an interface
adapter graphG, it works by looking at every possible acyclic adapter chain with
an arbitrary source that results in the target interface t in order of increasing
loss, taking advantage of equation (5), until we find a chain that starts with the
desired source interface s. In this context, loss means the number of methods
unavailable in the target interface given a fully functional service with the source
interface, which is computed in algorithm 2, so the algorithm is guaranteed
to find the optimal interface adapter chain. In the worst case, however, the
algorithm takes exponential time since there can be an exponential number of
acyclic chains in an interface adapter graph.

While algorithm 1 may take exponential time in the worst case, results with
a similar algorithm from [11] based on a small randomly generated interface
adapter graph suggest that the greedy algorithm has acceptable performance in
practice.

Algorithm 1 can easily be extended to support the selection of an optimal
source interface with weights associated with methods expressing their impor-
tance as in algorithm 3. This can be done by checking that the starting point of
an interface adapter chain is included in a set of possible source interfaces, in-
stead of just comparing it to a single source interface, and summing the weights
for the available methods in the target interface as in algorithm 4 and using
equation (4), instead of just counting the methods.

Unlike algorithm 1, which would find an interface adapter chain after a single
service was presumably found by a service discovery process, algorithm 3 can
be used in the service discovery process itself to search for the best service, not
just in terms of what is required from the service, but also considering how
well the client could use the service. And by weighting the methods in the

16

Algorithm 1 A greedy algorithm for interface adapter chaining.

procedure Greedy-Chain(G = (V,E), s, t)
C ← {[]} ⊲ chains to extend
M = ∅ ⊲ discarded chains
D ← {[] 7→ Idim(1′

t
)} ⊲ method dependency matrixes

while C 6= ∅ do
c← element of C minimizing Loss(c,D)
if c 6= [] ∧ source(c[1]) = s then

return c

else if no acyclic chain not in C ∪M extends c then

C ← C − {c}
M ←M ∪ {c}

else

if c = [] then
B ← {[e] | e ∈ E, target(e) = t}

else

B ← {e : c | e ∈ E, target(e) = source(c[1])}
end if

remove cyclic chains from B

C ← C ∪B

D ← D ∪ {e : c 7→ D[c]⊗ depend(e) | e : c ∈ B}
end if

end while

end procedure

Algorithm 2 Computing the lossiness of an interface adapter chain.

function Loss(c, D)
s← source(c[1])
t← target(c[|c|])
return dim(1′

t)− ‖D[c]⊗ 1′
s‖

end function

17

Algorithm 3 Greedy discovery for weighted interface adapter chaining.

procedure Greedy-Chain(G = (V,E), S, t, W)
C ← {[]} ⊲ chains to extend
M = ∅ ⊲ discarded chains
D ← {[] 7→ Idim(1′

t
)} ⊲ method dependency matrixes

while C 6= ∅ do
c← element of C maximizing Weight(c,D,W)
if c 6= [] ∧ source(c[1]) ∈ S then

return (source(c[1]), c)
else if no acyclic chain not in C ∪M extends c then

C ← C − {c}
M ←M ∪ {c}

else

if c = [] then
B ← {[e] | e ∈ E, target(e) = t}

else

B ← {e : c | e ∈ E, target(e) = source(c[1])}
end if

remove cyclic chains from B

C ← C ∪B

D ← D ∪ {e : c 7→ D[c]⊗ depend(e) | e : c ∈ B}
end if

end while

end procedure

Algorithm 4 Computing the weight of an interface adapter chain.

function Weight(c, D, W = wi)
s← source(c[1])
t← target(c[|c|])
pi ← D[c]⊗ 1′

s

return
∑

pi
wi

end function

18

target interface, it can take into account the importance of each method. By
having sufficiently large weights for essential methods compared to those of non-
essential methods, algorithm 3 can also guarantee that an adapter chain which
makes all essential methods available will always be preferred over those which
do not.

6 Related work

The mathematics in this paper was motivated by the interface adapter frame-
work [11] used by the Active Surroundings middleware for ubiquitous computing
environments [12]. In order to support a transparent computing experience de-
spite a user moving around locations where similar services may have different
interfaces, the framework uses interface adapters to adapt interfaces. [11] de-
fines the problem informally and shows the effectiveness of a greedy algorithm
based on uniform cost search [16].

Other work have also used interface adapters to resolve service interface
mismatches. Some attempt to aid developers create interface adapters using
template-based approaches [1, 14] or mapping specifications [21]. Others reduce
the number of required interface adapters by chaining them together [15], while
others use a chain of interface adapters to provide backwards compatibility as
interfaces evolve [9, 10]. These chaining approaches ignore that one chain may
be worse than others in terms of lossiness.

Analyzing the chaining of lossy interface adapters is in many ways similar
to depedency analysis in software architecture [6, 13, 8, 18]. These are designed
to support maintenance of large software systems and usually consider a lossy
connection between software components to be the exception and not the norm.
Techniques used in software architecture such as code analysis [17] or fault
injection [2] could also be the basis for deriving the method dependency matrixes
for interface adapters.

7 Conclusions

By chaining a series of interface adapters, it is possible for a single-interface
client use a much wider variety of services with heterogeneous interfaces without
requiring an explosive number of interface adapters. However, as an interface
adapter may not be able to convert one interface to another perfectly, we have
developed a mathematical framework which can be used to analyze the lossiness
incurred during chained interface adaptation.

The mathematical framework defines the method dependency matrix, the
method availability vector, and the composition operation for describing the
properties of composed adapters, which was also proved to be associative. The
framework could be used to analyze the lossiness in interface adapter chains and
develop algorithms for finding such chains.

19

However, finding an optimal interface adapter chain is an NP-complete prob-
lem, which can be proven by reducing 3SAT to CHAIN. A greedy algorithm for
finding an optimal interface adapter chain requiring exponential time in the
worst case was suggested.

This paper has only considered the all-or-nothing case where a method in
a target interface can be completely implemented using methods in the source
interface. However, in certain cases the method could only be implemented
partially. One possible extension to the mathematical framework is to con-
sider partial adaptation of such methods. Extending it so that it can analyze
the lossiness when services are composed is another possibility. Heuristic al-
gorithms with provable approximation bounds is another topic that would be
worth looking into in the future.

References

[1] Boualem Benatallah, Fabio Casati, Daniela Grigori, Hamid R. Motahari
Nezhad, and Farouk Toumani. Developing adapters for web services inte-
gration. In Proceedings of the 17th International Conference on Advanced
Information Systems Engineering, volume 3520 of Lecture Notes in Com-
puter Science, pages 415–429, Porto, Portugal, June 2005. Springer-Verlag.

[2] A. Brown, G. Kar, and A. Keller. An active approach to characterizing
dynamic dependencies for problem determination in a distributed environ-
ment. In Proceedings of the 2001 IEEE/IFIP International Symposium on
Integrated Network Management, pages 377–390, May 2001.

[3] Stephen A. Cook. The complexity of theorem-proving procedures. In Pro-
ceedings of the Third Annual ACM Symposium on Theory of Computing,
pages 151–158. ACM Press, 1971.

[4] M. Crampin and F. A. E. Pirani. Applicable Differential Geometry, chap-
ter 0, pages 5–7. Number 59 in London Mathematical Society Lecture Note
Series. Cambridge University Press, March 1987.

[5] E. W. Dijkstra. A note on two problems in connexion with graphs. Nu-
merische Mathematik, 1:269–271, June 1959.

[6] Stuart I. Feldman. Make – a program for maintaining computer programs.
Software Practice and Experience, 9(4):255–265, April 1979.

[7] Erich Gamma, Richard Helm, Ralph Johnson, and John M. Vlissides. De-
sign Patterns: Elements of Reusable Object-Oriented Software. Addison-
Wesley, November 1994.

[8] J. Gao, G. Kar, and P. Kemarii. Approaches to building self healing systems
using dependency analysis. In Proceedings of the 2004 IEEE/IFIP Network
Operations and Management Symposium, volume 1, pages 119–132, April
2004.

20

[9] Sven Moritz Hallberg. Eternal compatibility in theory. The Monad.Reader,
2, May 2005.

[10] Piotr Kaminski, Marin Litoiu, and Hausi Müller. A design technique for
evolving web services. In Proceedings of the 2006 Conference of the Center
for Advanced Studies on Collaborative Research, Toronto, Ontario, Canada,
October 2006. ACM Press.

[11] Byoungoh Kim, Kyungmin Lee, and Dongman Lee. An adapter chaining
scheme for service continuity in ubiquitous environments with adapter eval-
uation. In Proceedings of the Sixth IEEE International Conference on Per-
vasive Computing and Communications, pages 537–542. IEEE Computer
Society Press, March 2008.

[12] Dongman Lee, Seunghyun Han, Insuk Park, Saehoon Kang, Kyungmin
Lee, Soon J. Hyun, Young-Hee Lee, and Geehyuk Lee. A group-aware
middleware for ubiquitous computing environments. In Proceedings of the
14th International Conference on Artificial Reality and Telexistence, pages
291–298, December 2004.

[13] Joseph P. Loyal and Susan A. Mathisen. Using dependence analysis to
support the software maintenance process. In Proceedings of the 1993 Con-
ference on Software Maintenance, pages 282–291, September 1997.

[14] Hamid Reza Motahari Nezhad, Boualem Benatallah, Axel Martens, Fran-
cisco Curbera, and Fabio Casati. Semi-automated adaptation of service
interactions. In Proceedings of the 16th International Conference on World
Wide Web, pages 993–1002, 2007.

[15] Shankar R. Ponnekanti and Armando Fox. Application-service interoper-
ation without standardized service interfaces. In Proceedings of the First
IEEE International Conference on Pervasive Computing and Communica-
tions, 2003.

[16] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Ap-
proach, chapter 3, page 75. Prentice-Hall, 2nd edition, 2003.

[17] Barbara G. Ryder. Constructing the call graph of a program. IEEE Trans-
actions on Software Engineering, 5(3):216–226, May 1979.

[18] Neeraj Sangal, Ev Jordan, Vineet Sinha, and Daniel Jackson. Using de-
pendency models to manage complex software architecture. In Proceedings
of the 2005 ACM SIGPLAN Conference on Object-Oriented Programming
Systems, Languages & Applications, pages 167–176. ACM Press, 2005.

[19] Gilbert W. Stewart. Matrix Algorithms: Basic Decompositions, chapter 1,
page 46. Society for Industrial and Applied Mathematics, 1998.

[20] W3C. Soap version 1.2. http://www.w3.org/TR/soap12, April 2007.

21

http://www.w3.org/TR/soap12

[21] Johannes Maria Zaha, Marco Geisenberger, and Martin Groth. Compat-
ibility test and adapter generation for interfaces of software components.
In Distributed Computing and Internet Technology, volume 3347 of Lec-
ture Notes in Computer Science, pages 318–328. Springer-Verlag, Novem-
ber 2004.

22

	1 Introduction
	2 Interface adaptation
	3 Mathematical basics
	3.1 Method dependencies
	3.2 Adapter composition
	3.3 An example

	4 Optimal adapter chaining
	4.1 Representing values
	4.2 Handling literals
	4.3 Handling clauses
	4.4 Filtering
	4.5 Analysis of the reduction

	5 A greedy algorithm
	6 Related work
	7 Conclusions

