
Design Tool To Express Failure Detection Protocols

Vincenzo De Florio and Chris Blondia
University of Antwerp, Department of Mathematics and Computer Science

Performance Analysis of Telecommunication Systems group
Middelheimlaan 1, 2020 Antwerp, Belgium

Interdisciplinary institute for BroadBand Technology
Gaston Crommenlaan 8, 9050 Ghent-Ledeberg, Belgium

June 22, 2021

Abstract

Failure detection protocols—a fundamental building block for crafting
fault-tolerant distributed systems—are in many cases described by their au-
thors making use of informal pseudo-codes of their conception. Often these
pseudo-codes use syntactical constructs that are not available in COTS pro-
gramming languages such as C or C++. This translates into informal descrip-
tions that call for ad hoc interpretations and implementations. Being infor-
mal, these descriptions cannot be tested by their authors, which may translate
into insufficiently detailed or even faulty specifications. This paper tackles
this problem introducing a formal syntax for those constructs and a C library
that implements them—a tool-set to express and reason about failure detec-
tion protocols. The resulting specifications are longer but non ambiguous,
and eligible for becoming a standard form.

1 Introduction

Failure detection constitutes a fundamental building block for crafting fault-tolerant
distributed systems, and many researchers have devoted their efforts on this direc-
tion during the last decade. Failure detection protocols are often described by their
authors making use of informal pseudo-codes of their conception. Often these
pseudo-codes use syntactical constructs such as repeat periodically [1, 2, 3],
at time t send heartbeat [4, 3], at time t check whether message has ar-
rived [4], or upon receive [2], together with several variants (see Table 1). We
observe that such syntactical constructs are not often found in COTS programming
languages such as C or C++, which brings to the problem of translating the protocol

1

ar
X

iv
:1

50
4.

03
44

9v
1

 [
cs

.D
C

]
 1

4
A

pr
 2

01
5

Construct NFD-E [4] ϕ [5] FD [3] GMFD [6] D ∈ ♦P [1] HB [2] HB-pt [2]
Repeat no no yes no yes yes yes
periodically
Upon t = yes no yes yes no no no
current time
Upon receive yes yes yes yes yes yes yes
message
Concurrency yes yes no no yes yes yes
management

Table 1: Syntactical constructs used in several failure detector protocols. ϕ is
the accrual failure detector [5]. D is the eventually perfect failure detector of [1].
HB is the Heartbeat detector [2]. HB-pt is the partition-tolerant version of the
Heartbeat detector. By “Concurrency management” we mean coroutines, threading
or forking.

specifications into running software prototypes using one such standard language.
Furthermore the lack of a formal, well-defined, and standard form to express failure
detection protocols often leads their authors to insufficiently detailed descriptions.
Those informal descriptions in turn complicate the reading process and exacerbate
the work of the implementers, which becomes time-consuming, error-prone and at
times frustrating.

Several researchers and practitioners are currently arguing that failure detection
should be made available as a network service [7, 8]. To the best of our knowledge
no such service exists to date. Lacking such tool, it is important to devise methods
to express in the application layer of our software even the most complex failure
detection protocols in a simple and natural way.

In the following we introduce one such method—a class of “time-outs”, i.e.,
objects that postpone a certain function call by a given amount of time. This feature
converts time-based events into non time-based events such as message arrivals
and easily expresses the constructs in Table 1 in standard C. In some cases, our
class removes the need of concurrency management requirements such as corou-
tines or thread management libraries. The formal character of our method allows
rapid-prototyping of the algorithms with minimal effort. This is proved through a
Literate Programming [9] framework that produces from a same source file both
the description meant for dissemination and a software skeleton to be compiled in
standard C or C++.

The rest of this article is structured as follows: Section 2 introduces our tool.
In Sect. 3 we use it to express three classical failure detectors. Section 4 is a case

2

1. /* declarations */
TOM *tom;
timeout t t1, t2, t3;
int my alarm(TOM*), another alarm(TOM*);

2. /* definitions */
tom← tom init(my alarm);
tom declare(&t1, TOM CYCLIC, TOM SET ENABLE, TIMEOUT1, SUBID1, DEADLINE1);
tom declare(&t2, TOM NON CYCLIC, TOM SET ENABLE, TIMEOUT2, SUBID2, DEADLINE2);
tom declare(&t3, TOM CYCLIC, TOM SET DISABLE, TIMEOUT3, SUBID3, DEADLINE3);
tom set action(&t3, another alarm);

3. /* insertion */
tom insert(tom, &t1), tom insert(tom, &t2), tom insert(tom, &t3);

4. /* control */
tom enable(tom, &t3);
tom set deadline(&t2, NEW DEADLINE2);
tom renew(tom, &t2);
tom delete(tom, &t1);

5. /* deactivation */
tom close(tom);

Table 2: Usage of the TOM class. In 1. a time-out list pointer and three time-out
objects are declared, together with two alarm functions. In 2. the time-out list and
the time-outs are initialized, and a new alarm is associated to time-out t3. Insertion
is carried out at point 3. At 4. t3 is enabled and a new deadline value is specified
for t2. The latter is renewed and t1 is deleted. The list is finally deactivated in 5.

study describing a software system built with our tool. Our conclusions are drawn
in Sect. 5.

2 Time-out Management System

This section briefly describes the architecture of our time-out management system
(TOM). The TOM class appears to the user as a couple of new types and a library
of functions. Table 2 provides an idea of the client-side protocol of our tool.

To declare a time-out manager, the user needs to define a pointer to a TOM
object and then call function tom init. Argument to this function is an alarm,
i.e., the function to be called when a time-out expires:

int alarm(TOM *); tom = tom init(alarm);

3

The first time function tom init is called a custom thread is spawned. That thread
is the actual time-out manager.

Now it is possible to define time-outs. This is done via type timeout t and
function tom declare; an example follows:

timeout t t; tom declare(&t,TOM CYCLIC, TOM SET ENABLE,
TID, TSUBID, DEADLINE).

In the above, time-out t is declared as:

• A cyclic time-out (renewed on expiration; as opposed to TOM NON CYCLIC,
which means “removed on expiration”),

• enabled (only enabled time-outs “fire”, i.e., call their alarm on expiration; an
alarm is disabled with TOM SET DISABLE),

• with a deadline of DEADLINE local clock ticks before expiration.

A time-out t is identified as a couple of integers—TID and TSUBID in the
above example. This is done because in our experience it is often useful to distin-
guish instances of classes of time-outs. We use then TID for the class identifier and
TSUBID for the particular instance. A practical example of this is given in Sect. 4.

Once defined, a time-out can be submitted to the time-out manager for insertion
in its running list of time-outs—see [10] for further details on this. From the user
point of view, this is managed by calling function

tom insert(TOM *, timeout t *).

Note that a time-out might be submitted to more than one time-out manager.
After successful insertion an enabled time-out will trigger the call of the de-

fault alarm function after the specified deadline. If that time-out is declared as
TOM CYCLIC the time-out would then be re-inserted.

Other control functions are available: a time-out can be temporarily suspended
while in the time-out list via function

tom disable(TOM *, timeout t *)

and (re-)enabled via function

tom enable(TOM *, timeout t *).

Furthermore, the user can specify a new alarm function via tom set action)
and a new deadline via tom set deadline; can delete a time-out from the list
via

4

tom delete(TOM *, timeout t *),

and renew1 it via

tom renew(TOM *, timeout t *).

Finally, when the time-out management service is no longer needed, the user
should call function

tom close(TOM *),

which also halts the time-out manager thread should no other client be still active.

2.1 System assumptions, building blocks, and algorithms

This section is to provide the reader with a clear definition of

• the system assumptions our tool builds upon,

• the architectural building blocks of our system,

• the algorithms managing the list of time-outs.

2.1.1 System assumptions

Our tool is built in C for a generic Unix-like system with threads and standard inter-
process communication facilities. Two implementation exists to date—one based
on Embedded Parix [11], the other using the standard Posix threads library [12]. A
fundamental requirement of our model is that processes must have access to some
local physical clock giving them the ability to measure time. The availability of
means to control the priorities of processes is also an important factor to reducing
the chances of late alarm execution. We also assume that the alarm functions are
small grained both in CPU and I/O usage so as not to interfere “too much” with
the tasks of the TOM. Finally, we assume the availability of asynchronous, non-
blocking primitives to send and receive messages.

2.1.2 Architectural building blocks

Figure 1 portrays the architecture of our time-outs manager: in

(1), the client process sends requests to the time-out list manager; in
1Renewing a time-out means removing and re-inserting it.

5

(2), the time-out list manager accordingly updates the time-out list with the server-
side protocol described in Sect. 2.1.3.

(3) Each time a time-out reaches its deadline, a request for execution of the cor-
responding alarm is sent to a task called alarm scheduler.

(4) The alarm scheduler allocates an alarm request to the first available process
out of those in a circular list of alarm processes, possibly waiting until one
of them becomes available.

Figure 2 shows the sequence diagram corresponding to the initialization of the
system and the management of the first time-out request.

The presence of an alarm scheduler and of the circular list of alarm processes
can have great consequences on performance and on the ability of our system to
fulfil real-time requirements. Such aspects have been studied in [10]. Our system
may also operate in a simpler mode, without the above mentioned two components
and with the time-out list manager taking care of the execution of the alarms.

2.1.3 Algorithms

The server-side protocol is run by a component called time-out list manager (TLM).
The TLM implements a well-known time-out queuing strategy that is described
e.g. in [13]. TLM basically checks every TM CYCLE for the occurrence of one of
these two events:

• A request from a client has arrived. If so, TLM serves that request.

• One or more time-outs have expired. If so, TLM executes the corresponding
alarms.

Each time-out t is characterized by its deadline t.deadline, a positive integer
representing the number of clock units that must separate the time of insertion or
renewal from the scheduled time of alarm execution. This field can only be set by
functions tom declare and tom set deadline. Each time-out t holds also a field,
t.running, initially set to t.deadline.

Each time-out list object, say tom, hosts a variable representing the origin of
the time axis. This variable, tom.start time, regards in particular the time-out at
the top of the time-out list—the idea is that the top of the list is the only entry
whose running field needs to be compared with current time in order to verify the
occurrence of the time-out-expired event. For the time-outs behind the top one, that
field represents relative values, viz., distances from expiration time of the closest,
preceding time-out. In other words, the overall time-out list management aims at

6

isolating a “closest to expiration” time-out, or head time-out, that is the one and
only time-out to be tracked for expiration, and at keeping track of a list of “relative
time-outs.”

Let us call TimeNow the system function returning the current value of the
clock register. In an ordered, coherent time-out list, residual time for the head
time-out t is given by

t.running− (TimeNow− tom.start time), (1)

that is, residual time minus time already passed by. Let us call quantity (1) as r1, or
head residual. For time-out n, n > 1, that is for the time-out located n− 1 entries
“after” the top block, let us define

rn = r1 +
n∑

i=2

ti.running (2)

as the n-th residual, or residual time for time-out at entry n. If there are m entries
in the time-out list, let us define rj = 0 for any j > m.

It is now possible to formally define the key operations on a time-out list: in-
sertion and deletion of an entry.

Insertion Three cases are possible, namely insertion on top, in the middle, and
at the end of the list.

Insertion on top. In this case we need to insert a new time-out object, say t, such
that t.deadline < r1, or whose deadline is less than the head residual. Let
us call u the current top of the list. Then the following operations need to be
carried out:{

t.running ← t.deadline + TimeNow− tom.start time
u.running ← r1 − t.deadline.

Note that the first operation is needed in order to verify relation

t.running− (TimeNow− tom.start time) = t.deadline,

while the second operation aims at turning the absolute value kept in the
running field of the “old” head of the list into a value relative to the one
stored in the corresponding field of the “new” top of the list.

Insertion in the middle. In this case we need to insert a time-out t such that

∃ j : rj ≤ t.deadline < rj+1.

7

Let us call u time-out j + 1. (Note that both t and u exist by hypothesis).
Then the following operations need to be carried out:{

t.running ← t.deadline− rj
u.running ← u.running− t.running.

Observation 1 Note how, both in the case of insertion on top and in that of
insertion in the middle of the list, time interval [0, rm] has not changed its
length—only, it has been further subdivided, and is now to be referred to as
[0, rm+1].

Insertion at the end. Let us suppose the time-out list consists of m > 0 items, and
that we need to insert time-out t such that t.deadline ≥ rm. In this case we
simply tail the item and initialize it so that

t.running← t.deadline− rm.

Observation 2 Note how insertion at the end of the list is the only way to prolong
the range of action from a certain [0, rm] to a larger [0, rm+1].

Deletion The other basic management operation on the time-out list is deletion.
As we had three possible insertions, likewise we distinguish here deletion from
top, from the middle, and from the end of the list.

Deletion from top. If the list is a singleton we are in a trivial case. Let us suppose
there are at least two items in the list. Let us call t the top of the list and u
the next element—the one that will be promoted to top of the list. From its
definition we know that

r2 = u.running + r1

= u.running + t.running− (TimeNow− tom.start time). (3)

By (1), the bracketed quantity is the elapsed time. Then the amount of ab-
solute time units that separate current time from the expiration time is given
by u.running + t.running. In order to “behead” the list we therefore need
to update t as follows:

u.running← u.running + t.running.

8

Deletion from the middle. Let us say we have two consecutive time-outs in our
list, t followed by u, such that t is not the top of the list. With a reason-
ing similar to the one just followed we get to the same conclusion—before
physically purging t off the list we need to perform the following step:

u.running← u.running + t.running.

Deletion from the end. Deletion from the end means deleting an entry which is not
referenced by any further item in the list. Physical deletion can be performed
with no need for updating. Only, the interval of action is shortened.

Observation 3 Variable tom.start time is never set when deleting from or insert-
ing entries into a time-out list, except when inserting the first element: in such case,
that variable is set to the current value of TimeNow.

Figure 3 shows the action of the server-side protocol: In 1., a 330ms time-out
called A is inserted in the list. In 2., after 100ms, A has been reduced to 230ms
and a 400ms time-out, called B, is inserted (its value is 170ms, i.e., 400-230ms).
Another 70ms have passed in 3., so A has been reduced to 160ms. At that point,
a 510ms time-out, C is inserted and goes at the third position. In 4., after 160ms,
time-out A occurs—B becomes then the top of the list; its decrementation starts.
In 5. another 20ms have passed and B is at 150ms—at that point a 230ms time-
out, called D is inserted. Its position is in between B and C, therefore this latter is
adjusted. In 6., after 150ms, B occurs and D goes on top.

3 Discussion

In this section we show that the syntactical constructs in Table 1 can be expressed
in terms of our class of time-outs. We do so by considering three classical failure
detectors and providing their time-out based specifications.

Let us consider the classical formulation of eventually perfect failure detector
D [1]. The main idea of the protocol is to require each task to send a “heartbeat”
to its fellows and maintain a list of tasks suspected to have failed. A task identifier
q enters the list of task p if no heartbeat is received by p during a certain amount
of time, ∆p(q), initially set to a default value. This value is increased when late
heartbeats are received.

The basic structure of D is that of a coroutine with three concurrent processes,
two of which execute a task periodically while the third one is triggered by the
arrival of a message:

9

Every process p executes the following:

outputp ← 0

for all q ∈ Π
∆p(q)← default time interval

cobegin
—— Task 1: repeat periodically

send “p-is-alive” to all

—— Task 2: repeat periodically
for all q ∈ Π

if q 6∈ outputp and p did not receive “q-is-alive” during
the last ∆p(q) ticks of p’s clock then

outputp ← outputp ∪ {q}

—— Task 3: when received “q-is-alive” for some q
if q ∈ outputp

outputp ← outputp − {q}
∆p(q)← ∆p(q) + 1

coend.

We call the repeat periodically in Task 1 a “multiplicity 1” repeat, because
indeed a single action (sending a “p-is-alive” message) has to be tracked, while we
call “multiplicity q” repeat the one in Task 2, which requires to check q events.

Our reformulation of the above code is as follows:

Every process p executes the following:

timeout t ttask1, ttask2[NPROCS];
task t p, q;
for (q=0; q<NPROCS; q++) {

∆p[q] = DEFAULT TIMEOUT;
outputp[q] = TRUST;

}

/* “;” is our symbol for the “address-of” operator */
tom declare(;ttask1, TOM CYCLIC, TOM SET ENABLE, p, 0, ∆p[q]);
tom set action(;ttask1, action Repeat Task1);
tom insert(;ttask1);

10

for (q=0; q<NPROCS; q++) {
if (p 6= q) {
tom declare(ttask2+q, TOM CYCLIC, TOM SET ENABLE, q, 0, ∆p[q]);
tom set action(ttask2+q, action Repeat Task2);
tom insert(;ttask2);

}
}

do {
getMessage(;m);
switch (m.type) {
TASK1;
TASK2;
TASK3;

}
} forever;

where tasks and actions are defined as follows:

TASK1 ≡ case REPEAT TASK1:
sendAll(I AM ALIVE);

break;
TASK2 ≡ case REPEAT TASK2:

q = m.id;
if (outputp[q] ≡ TRUST)

outputp[q] = SUSPECT;
break;

TASK3 ≡ case I AM ALIVE:
q = m.sender;
if (outputp[q] ≡ SUSPECT) {

outputp[q] = TRUST;
∆p(q) = ∆p(q) + 1;

}
break;

action Repeat Task1() {
message t m;
m.type = REPEAT TASK1;
Send(m, p);

11

}
action Repeat Task2(timeout t *t) {

message t m;
m.type = REPEAT TASK2;
m.id = t->id;
Send(m, p);

}

We can draw the following observations:

• Our syntax is less abstract than the one adopted in the classical formulation.
Indeed we have deliberately chosen a syntax very similar to that of program-
ming languages such as C or C++. Behind the lines, we assume also a similar
semantics.

• Our syntax is more strongly typed: we have deliberately chosen to define
(most of) the objects our code deals with.

• We have systematically avoided set-wise operations such as union, comple-
ment or membership by translating sets into arrays as, e.g., in

outputp ← outputp ∪ {q},

which we changed into

outputp[q] = PRESENT.

• We have systematically rewritten the abstract constructs repeat perio-
dically as one or more time-outs (depending on their multiplicity). Each
of these time-out has an associated action that sends one message to the
client process, p. This means that

1. time-related event “it’s time to send p-is-alive to all” becomes event
“message REPEAT TASK1 has arrived.”

2. time-related events “it’s time to check whether q-is-alive has arrived”
becomes event “message (REPEAT TASK2, id=q) has arrived.”

• Due to the now homogeneous nature of the possible events (that now are all
represented by message arrivals) a single process may manage those events
through a multiple selection statement (a switch). In other words, no corou-
tine is needed anymore.

12

Through the Literate Programming approach and a compliant tool such as
CWEB [14, 9] it is possible to further improve our reformulation. As well known,
the CWEB tool allows a pretty printable TEX documentation and a C file ready for
compilation and testing to be produced from a single source code. In our experi-
ence this link between these two contexts can be very beneficial: testing or even
simply using the code provides feedback on the specification of the algorithm,
while the improved specification may reduce the probability of design faults and in
general increase the quality of the code.

Figure 4 and Figure 5 respectively show a reformulation for the HB failure
detector for partitionable networks [2] and for the group membership failure detec-
tor [6] produced with CWEB. In those reformulations, symbols such as τ and Dp

are caught by CWEB and translated into legal C tokens via its “@f” construct [14].
Note also that the expression m.path[q] ≤PRESENT in Fig. 5 means “q appears
at most once in path”. A full description of these protocols is out of the scope
of this paper—for that we refer the reader to the above cited articles. The focus
here is mainly on the syntactical constructs used in them and our reformulations,
which include simple translations for the syntactical constructs in Table 1 in terms
of our time-out API. A case worth noting is that of the group membership failure
detector: here the authors mimic the availability of a cyclic time-out service but in-
trude its management in their formulation. This management code can be avoided
altogether using our approach.

4 A development experience: the DIR net

What we call “DIR net” [15] is the distributed application at the core of the software
fault tolerance strategy realized through several European projects [15, 16]. In this
section we describe the DIR net and report on how we designed and developed it
by means of the TOM system.

The DIR net is a fault-tolerant network of failure detectors connected to other
peripheral error detectors (called “Dtools” in what follows). Objective of the DIR
net is to ensure consistent fault tolerance strategies throughout the system and play
the role of a backbone handling information to and from the Dtools [18].

The DIR net consists of four classes of components. Each processing node in
the system runs an instance of a so-called “I’m Alive Task” (IAT) plus an instance
of either a “DIR Manager” (DIR-M), or a “DIR Agent” (DIR-A), or a “DIR Backup
Agent” (DIR-B). A DIR-A gathers all error detection messages produced by the
Dtools on the current processing node and forwards them to the DIR-M and the
DIR-B’s. A DIR-B is a DIR-A which also maintains its messages into a database
located in central memory. It is connected to DIR-M and to the other DIR-B’s and

13

Time-out Caller Action Cyclic?
tIA SET DIR-x On TimeNow + dIA SET do send mIA SET ALARM to Caller Yes
tIA CLR IAT On TimeNow + dIA CLR do send mIA CLR ALARM to IAT Yes

Table 3: Description of messages mIA SET ALARM and mIA CLR ALARM.

Message Receiver Explanation Action
mIA SET ALARM DIR-x Time to set IAF IAF← TRUE
mIA CLR ALARM IAT k Time to check IAF if (IAF ≡ FALSE) SendAll(mTEIF, k)

else IAF← FALSE,

Table 4: Description of time-outs tIA SET and tIA CLR.

is eligible for election as a DIR-M. A DIR-M is a special case of DIR-B. Unique
within the system, the DIR-M is the one component responsible for running error
recovery strategies—see [15] for a description of the latter. Let us use DIR-x to
address any non-IAT component (i.e. the DIR-M, or a DIR-B, or a DIR-A.)

An important design goal of the DIR net is that of being tolerant to physical
and design faults, both permanent or intermittent, affecting up to all but one DIR-B.
This is accomplished also through a failure detection protocol that we are going to
describe in the rest of this section.

4.1 The DIR net failure detection protocol

Our protocol consists of a local part and a distributed part. Each of them is realized
through our TOM class.

4.1.1 DIR net protocol: local component

As we already mentioned, each processing node hosts a DIR-x and an IAT. These
two components run a simple algorithm: they share a local Boolean variable, the
“I’m Alive Flag” (IAF). The DIR-x has to periodically set the IAF to TRUE while
the IAT has to check periodically that this has indeed occurred and reverts IAF to
FALSE. If the IAT finds the IAF set to FALSE it broadcasts message mTEIF (“this
entity is faulty”).

The cyclic tasks mentioned above can be easily modeled via two time-outs,
tIA SET and tIA CLR, described in Table 3 and Table 4 (TimeNow being the system
function returning the current value of the clock register.)

Note that the time-outs’ alarm functions do not clear/set the flag—doing so
a hung DIR-x would go undetected. On the contrary, those functions trigger the

14

transmission of messages that once received by healthy components trigger the
execution of the meant actions.

The following is a pseudo-code for the IAT algorithm:

The IAT k executes as follows:

timeout t tIA CLR;
msg t activationMessage, m;

tom declare(;tIA CLR, TOM CYCLIC,
TOM SET ENABLE, IAT CLEAR TIMEOUT, 0, dIA CLR);

tom set action(;tIA CLR, actionSendmIA CLR ALARM);
tom insert(;tIA CLR);

Receive(activationMessage);

forever {
Receive(m);
if (m.type ≡ mIA CLR ALARM)

if (IAF ≡ TRUE) IAF ← FALSE;
else SendAll(mTEIF, k); delete timeout(;tIA CLR);

}

actionSendmIA CLR ALARM() { Send(mIA CLR ALARM, IAT k); }

The time-out formulation of the IAT algorithm is given in next section.

4.1.2 DIR net protocol: distributed component

The resilience of the DIR net to crash faults comes from the DIR-M and the
DIR-B’s running the following distributed algorithm of failure detection:

Algorithm DIR-M Let us call mid the node hosting the DIR-M and b the num-
ber of processing nodes that host a DIR-B. The DIR-M has to send cyclically a
mMIA (“Manager-Is-Alive”) message to all the DIR-B’s each time time-out tMIA A

expires—this is shown in the right side of Fig. 6. Obviously this is a multiplicity
b “repeat” construct, which can be easily managed through a cyclic time-out with
an action that signals that a new cycle has begun. In this case the action is “send a
message of type mMIA A ALARM to the DIR-M.”

The manager also expects periodically a (mTAIA, i) message (“This-Agent-Is-
Alive”) from each node where a DIR-B is expected to be running. This is easily

15

accomplished through a vector of (tTAIA A, i) time-outs. The left part of Fig. 6 shows
this for node i. When time-out (tTAIA A, p) expires it means that no (mTAIA, p) mes-
sage has been received within the current period. In this case the DIR-M enters
what we call a “suspicion period”. During such period the manager needs to dis-
tinguish the case of a late DIR-B from a crashed one. This is done by inserting a
non-cyclic time-out, namely (tTEIF A, p).

During the suspicion period only one out of the following three events may
occur:

1. A late (mTAIA, p) is received.

2. A (mTEIF, p) from IAT at node p is received.

3. Nothing comes in and the time-out expires.

In case 1. we get out of the suspicion period, conclude that DIR-B at node p
was simply late and go back waiting for the next (mTAIA, p).

It is the responsibility of the user to choose meaningful values for the time-outs’
deadlines. By “meaningful” we mean that those values should match the charac-
teristics of the environment and represent a good trade-off between the following
two risks:

overshooting, i.e., choosing too large values for the deadlines. This decreases the
probability of false negatives (regarding a slow process as a failed process;
this is known as accuracy in failure detection terminology) but increases the
detection latency;

undershooting, namely under-dimensioning the deadlines. This may increase
considerably false negatives but reduces the detection latency of failed pro-
cesses.

Under the hypotheses of properly chosen time-outs’ deadlines, and that of a
single, stable environment2, the occurrences of late (mTAIA, p) messages should
be exceptional. This event would translate in a false deduction uncovered in the
next cycle. Further late messages would postpone a correct assessment, but are
considered as an unlikely situation given the above hypotheses. An alternative and
better approach would be to track the changes in the environment. For the case at
hand this would mean that the time-outs’ deadlines should be adaptively adjusted.
This could be possible, e.g., through an approach such as in [19].

2We call an environment “stable” when it does not change drastically its characteristics except
under erroneous and exceptional conditions. Single environments are typical of fixed (non-mobile)
applications.

16

If 2. is the case we assume the remote component has crashed though its node is
still working properly as the IAT on that node still gives signs of life. Consequently
we initiate an error recovery step. This includes sending a “WAKEUP” message to
the remote IAT so that it spawns another DIR-B on that node.

In case 3. we assume the entire node has crashed and initiate node recovery.
Underlying assumption of our algorithm is that the IAT is so simple that if it

fails then we can assume the whole node has failed.

Algorithm DIR-B This algorithm is also divided into two concurrent tasks. In the
first one DIR-B on node i has to cyclically send (mTAIA, i) messages to the manager,
either in piggybacking or when time-out tTAIA B expires. This is represented in the
right side of Fig. 7.

The DIR-B’s in turn periodically expect a mMIA message from the DIR-M. As
evident when comparing Fig. 6 with Fig. 7, the DIR-B algorithm is very similar to
the one of the manager: also DIR-B enters a suspicion period when its manager
does not appear to respond quickly enough—this period is managed via time-out
tTEIF B, the same way as in DIR-M. Also in this case we can get out of this state in
one out of three possible ways: either

1. a late (mMIA B ALARM,mid) is received, or

2. a (mTEIF,mid) sent by the IAT at node mid is received, or

3. nothing comes in and the time-out expires.

In case 1. we get out of the suspicion period, conclude that the manager was simply
late, go back to normal state and start waiting for the next (mMIA,mid) message.
Also in this case, a wrong deduction shall be detected in next cycles. If 2. we
conclude the manager has crashed though its node is still working properly, as
its IAT acted as expected. Consequently we initiate a manager recovery phase
structured similarly to the DIR-B recovery step described in Sect. 4.1.2. In case 3.
we assume the node of the manager has crashed, elect a new manager among the
DIR-B’s, and perform a node recovery phase.

Table 5 summarizes the DIR-M and DIR-B algorithms.
We have developed the DIR net using the Windows TIRAN libraries [16] and

the CWEB system of structured documentation.

4.2 Special services

4.2.1 Configuration

The management of a large number of time-outs may be an error prone task. To
simplify it, we designed a simple configuration language. Figure 8 shows an ex-

17

Time-out Caller Action Cyclic?
tMIA A DIR-M Every dMIA A do send mMIA A ALARM to DIR-M Yes
tTAIA A[i] DIR-M Every dTAIA A do send (mTAIA A ALARM, i) to DIR-M Yes
tTEIF A[i] DIR-M On TimeNow + dTEIF A do send (mTEIF A ALARM, i) to DIR-M No
tTAIA B DIR-B j Every dTAIA B do send mTAIA B ALARM to DIR-B j Yes
tMIA B DIR-B j Every dMIA B do send mMIA B ALARM to DIR-B j Yes
tTEIF B DIR-B j On TimeNow + dTEIF B do send mTEIF B ALARM to DIR-B j No
Message Receiver Explanation Action
(mTAIA, i) DIR-M DIR-B i is OK (Re-)Insert or renew tTAIA A[i]
mMIA A ALARM DIR-M A new heartbeat is required Send mMIA to all DIR-B’s
mTAIA A ALARM DIR-M Possibly DIR-B i is not OK Delete tTAIA A[i], insert tTEIF A[i]
(mTEIF, i) DIR-M DIR-B i crashed Declare DIR-B i crashed
(mTEIF A ALARM, i) DIR-M Node i crashed Declare node i crashed
mMIA DIR-B j DIR-M is OK Renew tMIA B

mTAIA B ALARM DIR-B j A new heartbeat is required Send (mTAIA, j) to DIR-M
mMIA B ALARM DIR-B j Possibly DIR-M is not OK Delete tMIA B, insert tTEIF B

mTEIF DIR-B j DIR-M crashed Declare DIR-M crashed
mTEIF B ALARM DIR-B j DIR-M’s node crashed Declare DIR-M’s node crashed

Table 5: Time-outs and messages of DIR-M and DIR-B.

ample of configuration script to specify the structure of the DIR net (in this case,
a four node system with three DIR-B’s deployed on nodes 1–3 and the DIR-M on
node 0) and of its time-outs. A translator produces the C header files to properly
initialize an instance of the DIR net (see Fig. 9).

4.2.2 Fault injection

Time-outs may also be used to specify fault injection actions with fixed or pseudo-
random deadlines. In the DIR net this is done as follows. First we define the
time-out:

#ifdef INJECT
tom_declare(&inject, TOM_NON_CYCLIC, TOM_SET_ENABLE,

INJECT_FAULT_TIMEOUT, i, INJECT_FAULT_DEADLINE);
tom_insert(tom, &inject);

#endif

The alarm of this time-out sends the local DIR-x a message of type “INJE-
CT FAULT TIMEOUT”. Figure 10 shows an excerpt from the actual main loop of
the DIR-M in which this message is processed.

18

4.2.3 Fault tolerance

A service such as TOM is indeed a single-point-of-failure in that a failed TOM
in the DIR net would result in all components being unable to perform their fail-
ure detection protocols. Such a case would be indistinguishable from that of a
crashed node by the other DIR net components. As well known from, e.g., [20],
a single design fault in TOM’s implementation could bring the system to a global
failure. Nevertheless, the isolation of a service for time-out management may pave
the way for a cost-effective adoption of multiple-version software fault tolerance
techniques [21] such as the well known recovery block [22], or N -version pro-
gramming [23]. Another possibility would be to use the DIR net algorithm to
tolerate faults in TOM. No such technique has been adopted in the current imple-
mentation of TOM. Other factors, such as congestion or malicious attacks might
introduce performance failures that would impact on all modules that depend on
TOM to perform their time-based processing [10].

5 Conclusions

We have introduced a tentative lingua franca for the expression of failure detection
protocols. TOM has the advantages of being simple, elegant and not ambiguous.
Obvious are the many positive relapses that would come from the adoption of a
standard, semi-formal representation with respect to the current Babel of informal
descriptions—easier acquisition of insight, faster verification, and greater ability to
rapid-prototype software systems. The availability of a tool such as TOM is also
one of the requirements of the timed-asynchronous system model [25].

Given the current lack of a network service for failure detection, the availabil-
ity of standard methods to express failure detectors in the application layer is an
important asset: a tool like the one described in this paper isolates and crystallizes
a part of the complexity required to express failure detection protocols. This com-
plexity may become transparent of the designer, with tangible savings in terms of
development times and costs, if more efforts will be devoted to time-outs config-
uration and automatic adjustments through adaptive approaches such as the one
described in [19]. Such optimizations will be the subject of future research. Fu-
ture plans also include to port our system to AspectJ [24] so as to further enhance
programmability and separation of design concerns.

As a final remark we would like to point out how, at the core of our design
choices, is the selection of C and literate programming, which proved to be invalu-
able tools to reach our design goals. Nevertheless we must point out how these
choices may turn into intrinsic limitations for the expressiveness of the resulting
language. In particular, they enforce a syntactical and semantic structure, that of

19

the C programming language, which may be regarded as a limitation by those re-
searchers who are not accustomed to that language. At the same time we would
like to remark also that those very choices allow us a straightforward translation of
our constructs into a language like Promela [26], which resembles very much a C
language augmented with Hoare’s CSP [27]. Accordingly, our future work in this
framework shall include the adoption of the Promela extension of Prof. Bošnački,
which allows the verification of concurrent systems that depend on timing parame-
ters [28]. Interestingly enough, this version of Promela includes new objects, called
discrete time countdown timers, which are basically equivalent to our non-cyclic
time-outs. Our goal is to come up with a tool that generates from the same literate
programming source (1) a pretty printout in TEX, (2) C code ready to be compiled
and run, and (3) Promela code to verify some properties of the protocol.

Acknowledgment

We acknowledge the work by Alessandro Sanchini, who developed the commu-
nication library used by our tool, and the many and valuable comments of our
reviewers.

References

[1] Chandra, T. D., and Toueg, S.: ‘Unreliable failure detectors for reliable dis-
tributed systems’, Journal of the ACM, 1996, 43, pp. 225–267.

[2] Aguilera, M. K., Chen, W., and Toueg, S.: ‘Using the heartbeat failure de-
tector for quiescent reliable communication and consensus in partitionable
networks’, Theoretical Computer Science, 1999, 1, pp. 3–30.

[3] Bertier, M., Marin, O., and Sens, P.: ‘Implementation and performance of
an adaptable failure detector’. Proceedings of the International Conference
on Dependable Systems and Networks (DSN ’02), June 2002. IEEE Society
Press.

[4] Chen, W., Toueg, S., and Aguilera, M. K.: ‘On the quality of service of failure
detectors’, IEEE Trans. on Computers, 2002, 51, pp. 561–580.

[5] Hayashibara, N.: ‘Accrual Failure Detectors’. PhD thesis, School of Infor-
mation Science, Japan Advanced Institute of Science and Technology, 2004.

20

[6] Raynal, M., and Tronel, F.: ‘Group membership failure detection: a simple
protocol and its probabilistic analysis’, Distributed Systems Engineering,
1999, 6, pp. 95–102.

[7] Hayashibara, N., Défago, X., Yared, R., and Katayama, T.: ‘The ϕ accrual
failure detector’. Proceedings of the 23rd IEEE International Symposium
on Reliable Distributed Systems (SRDS’04). Florianopolis, Brazil, October
2004, pp. pp. 66–78.

[8] van Renesse, R., Minsky, Y., and Hayden, M.: ‘A gossip-style failure de-
tection service’, Proceedings of Middleware ‘98, Davies, N., Seitz, J. and
Raymond, K. (Eds.), The Lake District, UK, September 1998, pp. 55–70.
Springer.

[9] Knuth, D. E.: ‘Literate programming’, The Comp. Journal, 1984, 27, pp.
97–111.

[10] De Florio, V., and Blondia, C.: ‘Dynamics of a time-outs management sys-
tem’, Complex Systems, 2006, 16, pp. 209–223.

[11] Anonymous: ‘Embedded Parix Programmer’s Guide’, in Parsytec: ‘Parsytec
CC Series Hardware Documentation’ (Parsytec GmbH, Aachen, Germany,
1996).

[12] http://www-128.ibm.com/developerworks/linux/library/l-posix1.html. Ac-
cessed September 19, 2007.

[13] Tanenbaum, A. S.: ‘Computer Networks’ (Prentice-Hall, London, 1996, 3rd
edn.)

[14] Knuth, D. E., and Levy, S.: ‘The CWEB System of Structured Documenta-
tion’ (Addison–Wesley, Reading, MA, 1993, 3rd edn.)

[15] De Florio, V.: ‘Application-layer Fault-Tolerance Protocols’ (IGI-Global,
Hershey, PA, 2009), ISBN 1-60566-182-1.

[16] Botti, O., De Florio, V., Deconinck, G., Lauwereins, R., Cassinari, F., Do-
natelli, S., Bobbio, A., Klein, A., Kufner, H., Thurner, E., and Verhulst,
E.: ‘The TIRAN approach to reusing software implemented fault tolerance’.
Proc. of the 8th Euromicro Workshop on Parallel and Distributed Processing
(Euro-PDP’00). Rhodos, Greece, January 1999, pp. 325–332, IEEE Comp.
Soc. Press.

21

http://www-128.ibm.com/developerworks/linux/library/l-posix1.html

[17] Deconinck, G., De Florio, V., Dondossola, G., and Szanto, J.: ‘Integrating
recovery strategies into a primary substation automation system’. Proc. of
the International Conference on Dependable Systems and Networks (DSN-
2003). 2003, IEEE Comp. Soc. Press.

[18] De Florio, V., Deconinck, G., and Lauwereins, R.: ‘An algorithm for tolerat-
ing crash failures in distributed systems’. Proc. of the 7th Annual IEEE Inter-
national Conference and Workshop on the Engineering of Computer Based
Systems (ECBS). Edinburgh, Scotland, April 2000, pp. 9–17. IEEE Comp.
Soc. Press.

[19] De Florio, V., and Blondia, C.: ‘Adaptive data integrity through dynamically
redundant data structures’. Proc. of the third international Conference on
Availability, Reliability and Security (ARES 2008). Barcelona, Spain, March
2007, IEEE Computer Society.

[20] http://www.esrin.esa.it/htdocs/tidc/Press/Press96/ariane5rep.html, accessed
April 2009.

[21] Lyu, M. R.: ‘Reliability-oriented software engineering: Design, testing and
evaluation techniques’, IEE Proceedings – Software, 1998, 145, pp. 191–197,
special issue on Dependable Computing Systems.

[22] Randell, B., and Xu, J.: ‘The evolution of the recovery block concept’, in
Lyu, M. (Ed.): ‘Software Fault Tolerance’ (John Wiley & Sons, New York,
1995), Chapter 1, pp. 1–21.

[23] Aviz̆ienis, A.: ‘The methodology of N -version programming’, in Lyu, M.
(Ed.): ‘Software Fault Tolerance’ (John Wiley & Sons, New York, 1995),
Chapter 2, pp. 23–46.

[24] http://www.eclipse.org/aspectj, accessed October 2009.

[25] Cristian, F., and Fetzer, C.: ‘The Timed Asynchronous Distributed System
Model’, IEEE Trans. on Parallel and Distributed Systems, June 1999, 10, 6,
pp. 642–657.

[26] Holzmann, G. J.: ‘Design and Validation of Computer Protocols’ (Prentice-
Hall, 1991).

[27] Hoare, C. A. R.: ‘Communicating sequential processes’, Comm. ACM, 1978,
21, pp. 667–677.

22

http://www.esrin.esa.it/htdocs/tidc/Press/Press96/ariane5rep.html
http://www.eclipse.org/aspectj

[28] Bošnački, D., and Dams, D.: ‘Discrete-time Promela and Spin’. Proc. of
Formal Techniques in Real-Time and Fault-Tolerant Systems (FTRTFT ’98).
1998, Lecture Notes in Computer Science 1486, pp. 307–310, Springer-
Verlag.

23

Figure 1: Architecture of the time-out management system.

24

Figure 2: Sequence diagram for the tasks of the time-outs manager.

25

Figure 3: Operating scenario of the time-out manager.

26

Figure 4: Reformulation of theHB failure detector for partitionable networks [2].

27

Figure 5: Reformulation of the group membership failure detector [6].

28

Figure 6: Algorithm of the DIR-M.

29

Figure 7: Algorithm DIR-B.

30

Figure 8: Excerpt from the configuration script of the DIR net.

31

Figure 9: Configuration tool of the DIR net.

32

Figure 10: Excerpt from the CWEB source of the DIR net.

33

	1 Introduction
	2 Time-out Management System
	2.1 System assumptions, building blocks, and algorithms
	2.1.1 System assumptions
	2.1.2 Architectural building blocks
	2.1.3 Algorithms

	3 Discussion
	4 A development experience: the DIR net
	4.1 The DIR net failure detection protocol
	4.1.1 DIR net protocol: local component
	4.1.2 DIR net protocol: distributed component

	4.2 Special services
	4.2.1 Configuration
	4.2.2 Fault injection
	4.2.3 Fault tolerance

	5 Conclusions

