
See	discussions,	stats,	and	author	profiles	for	this	publication	at:	http://www.researchgate.net/publication/224160532

Including	both	static	and	dynamic	typing	in	the
same	programming	language

ARTICLE		in		IET	SOFTWARE	·	SEPTEMBER	2010

Impact	Factor:	0.54	·	DOI:	10.1049/iet-sen.2009.0070	·	Source:	IEEE	Xplore

CITATIONS

7

DOWNLOADS

119

VIEWS

139

4	AUTHORS,	INCLUDING:

Francisco	Ortin

University	of	Oviedo

64	PUBLICATIONS			196	CITATIONS			

SEE	PROFILE

Baltasar	García	Perez-Schofield

University	of	Vigo

47	PUBLICATIONS			86	CITATIONS			

SEE	PROFILE

Miguel	García	Rodríguez

University	of	Oviedo

16	PUBLICATIONS			22	CITATIONS			

SEE	PROFILE

Available	from:	Baltasar	García	Perez-Schofield

Retrieved	on:	10	July	2015

http://www.researchgate.net/publication/224160532_Including_both_static_and_dynamic_typing_in_the_same_programming_language?enrichId=rgreq-fa31ffc0-2330-475d-966f-acb85676635e&enrichSource=Y292ZXJQYWdlOzIyNDE2MDUzMjtBUzo5OTE0OTA4OTM0NTU0M0AxNDAwNjUwMzkzMjEw&el=1_x_2
http://www.researchgate.net/publication/224160532_Including_both_static_and_dynamic_typing_in_the_same_programming_language?enrichId=rgreq-fa31ffc0-2330-475d-966f-acb85676635e&enrichSource=Y292ZXJQYWdlOzIyNDE2MDUzMjtBUzo5OTE0OTA4OTM0NTU0M0AxNDAwNjUwMzkzMjEw&el=1_x_3
http://www.researchgate.net/?enrichId=rgreq-fa31ffc0-2330-475d-966f-acb85676635e&enrichSource=Y292ZXJQYWdlOzIyNDE2MDUzMjtBUzo5OTE0OTA4OTM0NTU0M0AxNDAwNjUwMzkzMjEw&el=1_x_1
http://www.researchgate.net/profile/Francisco_Ortin2?enrichId=rgreq-fa31ffc0-2330-475d-966f-acb85676635e&enrichSource=Y292ZXJQYWdlOzIyNDE2MDUzMjtBUzo5OTE0OTA4OTM0NTU0M0AxNDAwNjUwMzkzMjEw&el=1_x_4
http://www.researchgate.net/profile/Francisco_Ortin2?enrichId=rgreq-fa31ffc0-2330-475d-966f-acb85676635e&enrichSource=Y292ZXJQYWdlOzIyNDE2MDUzMjtBUzo5OTE0OTA4OTM0NTU0M0AxNDAwNjUwMzkzMjEw&el=1_x_5
http://www.researchgate.net/institution/University_of_Oviedo?enrichId=rgreq-fa31ffc0-2330-475d-966f-acb85676635e&enrichSource=Y292ZXJQYWdlOzIyNDE2MDUzMjtBUzo5OTE0OTA4OTM0NTU0M0AxNDAwNjUwMzkzMjEw&el=1_x_6
http://www.researchgate.net/profile/Francisco_Ortin2?enrichId=rgreq-fa31ffc0-2330-475d-966f-acb85676635e&enrichSource=Y292ZXJQYWdlOzIyNDE2MDUzMjtBUzo5OTE0OTA4OTM0NTU0M0AxNDAwNjUwMzkzMjEw&el=1_x_7
http://www.researchgate.net/profile/Baltasar_Garcia_Perez-Schofield?enrichId=rgreq-fa31ffc0-2330-475d-966f-acb85676635e&enrichSource=Y292ZXJQYWdlOzIyNDE2MDUzMjtBUzo5OTE0OTA4OTM0NTU0M0AxNDAwNjUwMzkzMjEw&el=1_x_4
http://www.researchgate.net/profile/Baltasar_Garcia_Perez-Schofield?enrichId=rgreq-fa31ffc0-2330-475d-966f-acb85676635e&enrichSource=Y292ZXJQYWdlOzIyNDE2MDUzMjtBUzo5OTE0OTA4OTM0NTU0M0AxNDAwNjUwMzkzMjEw&el=1_x_5
http://www.researchgate.net/institution/University_of_Vigo?enrichId=rgreq-fa31ffc0-2330-475d-966f-acb85676635e&enrichSource=Y292ZXJQYWdlOzIyNDE2MDUzMjtBUzo5OTE0OTA4OTM0NTU0M0AxNDAwNjUwMzkzMjEw&el=1_x_6
http://www.researchgate.net/profile/Baltasar_Garcia_Perez-Schofield?enrichId=rgreq-fa31ffc0-2330-475d-966f-acb85676635e&enrichSource=Y292ZXJQYWdlOzIyNDE2MDUzMjtBUzo5OTE0OTA4OTM0NTU0M0AxNDAwNjUwMzkzMjEw&el=1_x_7
http://www.researchgate.net/profile/Miguel_Rodriguez36?enrichId=rgreq-fa31ffc0-2330-475d-966f-acb85676635e&enrichSource=Y292ZXJQYWdlOzIyNDE2MDUzMjtBUzo5OTE0OTA4OTM0NTU0M0AxNDAwNjUwMzkzMjEw&el=1_x_4
http://www.researchgate.net/profile/Miguel_Rodriguez36?enrichId=rgreq-fa31ffc0-2330-475d-966f-acb85676635e&enrichSource=Y292ZXJQYWdlOzIyNDE2MDUzMjtBUzo5OTE0OTA4OTM0NTU0M0AxNDAwNjUwMzkzMjEw&el=1_x_5
http://www.researchgate.net/institution/University_of_Oviedo?enrichId=rgreq-fa31ffc0-2330-475d-966f-acb85676635e&enrichSource=Y292ZXJQYWdlOzIyNDE2MDUzMjtBUzo5OTE0OTA4OTM0NTU0M0AxNDAwNjUwMzkzMjEw&el=1_x_6
http://www.researchgate.net/profile/Miguel_Rodriguez36?enrichId=rgreq-fa31ffc0-2330-475d-966f-acb85676635e&enrichSource=Y292ZXJQYWdlOzIyNDE2MDUzMjtBUzo5OTE0OTA4OTM0NTU0M0AxNDAwNjUwMzkzMjEw&el=1_x_7

NOTICE: This paper is a postprint of a paper submitted to and accepted for

publication in IET Software and is subject to Institution of

Engineering and Technology Copyright. The copy of record is

available at IET Digital Library.

Including both Static and Dynamic Typing in the

same Programming Language

Francisco Ortin∗ Daniel Zapico∗

J. Baltasar G. Perez-Schofield† Miguel Garcia∗

December 1, 2009

Abstract

Dynamic languages are becoming increasingly popular for differ-

ent software development scenarios such as Web engineering, rapid

prototyping, or the construction of applications that require runtime

adaptiveness. These languages are built on the idea of supporting

reasoning about (and customizing) program structure, behaviour and

environment at runtime. The dynamism offered by dynamic languages

is, however, counteracted by two main limitations: no early type error

detection and fewer opportunities for compiler optimizations. To ob-

tain the benefits of both dynamically and statically typed languages,

we have designed the StaDyn programming language that provides

both approaches. StaDyn keeps gathering type information at compile

time, even when dynamic variables are used. This type information is

used to offer early type error detection, direct interoperation between

static and dynamic code, and better runtime performance. Follow-

ing the Separation of Concerns principle, it is possible to customize

the trade-off between runtime flexibility of dynamic typing, and safety,

performance and robustness of static typing. A runtime performance

∗Computer Science Department, University of Oviedo, Calvo Sotelo s/n, 33007, Oviedo,
Spain, ortin@lsi.uniovi.es
†Computer Science Department, University of Vigo, As Lagoas s/n, 32004, Orense,

Spain, jbgarcia@uvigo.es

1

assessment is presented to show an estimate of the benefits of combin-

ing dynamic and static typing in the same programming language.

1 Introduction

Dynamic languages have recently turned out to be really suitable for specific

scenarios such as Web development, application frameworks, game script-

ing, interactive programming, rapid prototyping, dynamic aspect-oriented

programming, and any kind of runtime adaptable or adaptive software.

The main benefit of these languages is the simplicity they offer to model

the dynamicity that is sometimes required to build high context-dependent

software. Common features of dynamic languages are meta-programming,

reflection, mobility, and dynamic reconfiguration and distribution.

In the Web engineering area, Ruby [1] has been successfully used together

with the Ruby on Rails framework for creating database-backed web appli-

cations [2]. This framework has confirmed the simplicity of implementing

the DRY (Don’t Repeat Yourself) [3] and the Convention over Configura-

tion [2] principles with this kind of languages. Nowadays, JavaScript [4] is

being widely employed to create interactive Web applications with AJAX

(Asynchronous JavaScript And XML) [5], while PHP (PHP Hypertext Pre-

processor) is one of the most popular languages to develop Web-based views.

Python [6] is used for many different purposes, being the Zope application

server [7] (a framework for building content management systems, intranets

and custom applications) and the Django Web application framework [8]

two well-known examples. Due to its small size, portability and ease of

integration, Lua [9] has gained great popularity for extending games [10].

Finally, a wide range of dynamic aspect-oriented tools has been built over

dynamic languages [11, 12, 1, 13], offering a higher runtime adaptiveness

2

than the common static ones.

Due to the recent success of dynamic languages, other statically typed

ones –such as Java or C#– are gradually incorporating more dynamic fea-

tures into their platforms. Taking Java as an example, the Reflection API

became part of core Java platform with its release 1.1. This API offers in-

trospection services to examine structures of object and classes at runtime,

plus object creation and method invocation –involving a substantial perfor-

mance overhead. The Dynamic Proxy Class API was added to Java 1.3. It

allows defining a class at runtime that implements any interface, funnelling

all its method calls to an InvocationHandler. In Java 1.6, the new Java

Scripting API permits dynamic scripting programs to be executed from,

and have access to, the Java platform [14]. Finally the Java Specification

Request 292 [15], expected to be included in Java 1.7, incorporates the new

invokedynamic opcode to the Java Virtual Machine (JVM) in order to sup-

port the implementation of dynamically typed object-oriented languages.

Since the computational model of dynamic languages requires extending the

JVM semantics, Sun Microsystems launched the Da Vinci Machine project

in January 2008 [16]. This project is aimed at prototyping a number of

enhancements to the JVM, so that it can run non-Java languages, especially

dynamic ones, with a performance level comparable to that of Java itself.

This trend has also been appreciated in the .Net platform. This plat-

form was initially released with introspective and low-level dynamic code

generation services. Version 2.0 included dynamic methods and the CodeDom

namespace to model and generate the structure of a high-level source code

document. The Dynamic Language Runtime (DLR), first announced by

Microsoft in 2007, adds to the .Net platform a set of services to facilitate

the implementation of dynamic languages [17]. Finally, Microsoft has just

3

included a dynamic typing feature in C# 4.0, as part of the Visual Stu-

dio 2010 [18]. This new feature of C# 4.0 is the Microsoft response to the

emerging use of dynamic languages such as Python [6] or Ruby [1]. C#

4.0 offers a new dynamic keyword to support dynamically typed C# code.

When a reference is declared as dynamic, the compiler performs no static

type checking, making all the type verifications at runtime. With this new

characteristic, C# 4.0 will offer direct access to dynamically typed code in

IronPython, IronRuby and the JavaScript code in Silverlight. Dynamic code

in C# 4.0 makes use of the DLR services [17].

The great flexibility of dynamic languages is, however, counteracted by

limitations derived by the lack of static type checking. This deficiency im-

plies two major drawbacks: no early detection of type errors, and commonly

a considerable runtime performance penalty. Static typing offers the pro-

grammer the detection of type errors at compile time, making possible to

fix them immediately rather than discovering them at runtime –when the

programmer’s efforts might be aimed at some other task, or even after the

program has been deployed [19]. Moreover, since runtime adaptability of dy-

namic languages is mostly implemented with dynamic type systems, runtime

type inspection and checking commonly involves a significant performance

penalty.

Since both approximations offer different benefits, there have been for-

mer works on providing both typing approaches in the same language (see

Section 6). Meijer and Drayton maintained that instead of providing pro-

grammers with a black or white choice between static or dynamic typing, it

could be useful to strive for softer type systems [20]. Static typing allows

earlier detection of programming mistakes, better documentation, more op-

portunities for compiler optimizations, and increased runtime performance.

4

Dynamic typing languages provide a solution to a kind of computational

incompleteness inherent to statically-typed languages, offering, for example,

storage of persistent data, inter-process communication, dynamic program

behaviour customization, or generative programming [21]. Hence, there are

situations in programming when one would like to use dynamic types even

in the presence of advanced static type systems [22]. That is, static typing

where possible, dynamic typing when needed [20].

Our work breaks the programmers’ black or white choice between static

or dynamic typing. The programming language presented in this paper,

called StaDyn, supports both static and dynamic typing. This program-

ming language permits straightforward development of adaptable software

and rapid prototyping, without sacrificing application robustness, perfor-

mance and legibility of source code. The programmer may specify those

parts of the code where high adaptability is required (dynamic) and those

where correct1 execution (static) should be guaranteed –i.e. StaDyn sepa-

rates the dynamism concern [23]. This separation facilitates turning rapidly

developed prototypes into a final robust and efficient application. It is also

possible to combine both approaches, making parts of an application more

flexible, whereas the rest of the program maintains its robustness and run-

time performance.

In this paper, we present an overview of the techniques we used to design

and implement our programming language in order to support both dynamic

and static typing. The rest of this paper is structured as follows. In the next

section, we provide the motivation and background of dynamic and static

languages. Section 3 describes the features of the StaDyn programming

language and a brief identification of the techniques employed. Section 4

1We use correct to indicate programs without runtime type errors.

5

Compilable
with runtime
type errors

Statically Typed Programming Languages

Compilable and no
runtime type error

No runtime type error

Not compilable and no
runtime type error

Compilable

Not compilable

Compilable
with runtime
type errors

Compilable and no
runtime type error

No runtime type error

Compilable

Dynamically Typed Programming Languages

Figure 1: Program execution in statically and dynamically typed languages.

presents the key implementation decisions, an initial runtime performance

assessment is presented in Section 5, and Section 6 discusses related work.

Finally, Section 7 presents the ending conclusions and future work.

2 Static Typing vs. Dynamic Typing

2.1 Statically Typed Languages

A language is said to be safe if it produces no execution errors that go

unnoticed and later cause arbitrary behaviour [24], following the notion

that well-typed programs should not go wrong (i.e., reach a stuck state on its

execution) [19]. Statically typed languages ensure type safety of programs by

means of static type systems. However, these type systems do not compile

some expressions that do not produce any type error at runtime (e.g., in

.Net and Java it is not possible to pass the m message to an Object reference,

although the object actually implements a public m method). This happens

because their static type systems require ensuring that compiled expressions

do not generate any type error at runtime. Left part of Figure 1 illustrates

this situation (the not compilable and no runtime type error region).

Static typing is centred on making sure that no type error is produced

at runtime. This is the reason why languages with static typing employ a

pessimistic policy regarding to program compilation. This pessimism causes

6

Object[] v=new Object[10];
for (int i = 0; i < 10; i++) {

v[i] = "String " + i;
int length = v[i].length(); // Compilation error

}

Figure 2: Not compilable C# program that would not produce any runtime
error.

compilation errors in programs that do not produce any runtime error. C#

code shown in Figure 2 is an example program of this scenario. Although

the program does not produce any error at runtime, the C# type system

does not recognize it as a valid compilable program.

At the same time, static languages also permit the execution of programs

that might cause an erroneous execution (e.g. array index out of bounds

or null pointer access) –the compilable with runtime type errors region in

Figure 1.

2.2 Dynamically Typed Languages

The approach of dynamic languages is the opposite one. Instead of making

sure that all valid expressions will be executed without any error, they make

all the syntactic valid programs compilable (right part of Figure 1). This

is a too optimistic approach that causes a high number of runtime type er-

rors that might have been detected at compile time. This situation, where

dynamic languages commonly throw runtime exceptions, is what is repre-

sented in Figure 1 as compilable with runtime type errors. This approach

permits too many runtime type errors, compiling programs that might have

been identified as erroneous statically. The Visual Basic .Net source code

in Figure 3 is an example of this too optimistic approach. This erroneous

program is compilable, although a static type system might have detected

the error before its execution.

7

Public Module MyModule
Sub Main()

Dim myObject
Dim length As Integer
myObject = New Object ()
length = myObject.length() ' No compilation error

End Sub
End Module

Figure 3: Compilable Visual Basic program that generates runtime type
errors.

2.3 Support of both Approaches

The StaDyn programming language performs type inference at compile type,

minimizing the compilable with runtime type errors region of dynamic lan-

guages (right part of Figure 1) and the not compilable and no runtime type

error area of static languages (left part of Figure 1). Consequently, StaDyn

detects the compilation error of the dynamic program shown in Figure 3

(that Visual Basic does not detect) and compiles the valid static code in

Figure 2 (that C# does not compile) –using its own syntax.

For both typing approaches, we use the very same programming lan-

guage, letting the programmer move from an optimistic, flexible and rapid

development (dynamic) to a more robust and efficient one (static). This

change can be done maintaining the same source code, only changing the

compiler settings. We separate the dynamism concern (i.e., flexibility vs.

robustness and performance) from the functional requirements of the appli-

cation (its source code).

3 The StaDyn Programming Language

This section presents the features of the StaDyn programming language,

identifying –but not detailing– the techniques employed. A formal descrip-

tion of its type system is depicted in [25]. Implementation issues are pre-

8

sented in Section 4.

The StaDyn programming language is an extension of C# 3.0 [26]. Al-

though the work presented in this paper could be applied to any object-

oriented statically-typed programming language, we have used C# 3.0 to

extend the behaviour of its implicitly typed local references. In StaDyn, the

type of references can still be explicitly declared, while it is also possible to

use the var keyword to declare implicitly typed references. StaDyn includes

this keyword as a new type (it can be used to declare local variables, fields,

method parameters and return types), whereas C# 3.0 only provides its use

in the declaration of initialized local references. Therefore, var references

in StaDyn are much more powerful than implicitly typed local variables in

C# 3.0.

The dynamism of var references is placed in a separate file (an XML

document). The programmer does not need to manipulate these XML docu-

ments directly, leaving this task to the IDE. When the programmer (un)sets

a reference as dynamic, the IDE transparently modifies the corresponding

XML file. Depending on the dynamism of a var reference, type check-

ing and type inference is performed pessimistically (for static references)

or optimistically (for dynamic ones). Since the dynamism concern is not

explicitly stated in the source code, StaDyn facilitates the conversion of dy-

namic references into static ones, and vice versa. This separation facilitates

the process of turning rapidly developed prototypes into final robust and ef-

ficient applications. It is also possible to make parts of an application more

adaptable, maintaining the robustness and runtime performance of the rest

of the program.

9

using System;
class Test {

public static void Main() {
Console.Write("Your age, please: ");
var age = Console.In.ReadLine();
Console.WriteLine("You are " + age + " years old.");
age = Convert.ToInt32(age);
Console.WriteLine(age.GetType());
age++;
Console.WriteLine("Happy birthday, you are " +

age + " years old now.");
int length = age.Length; // * Compilation error

}
}

Figure 4: A reference with different types in the same scope.

3.1 Multiple Types in the Same Scope

Existing statically typed languages force a variable of type T to have the

same type T within the scope in which it is bound to a value. Even languages

with static type inference (type reconstruction) such as ML [27] or Haskell

[28] do not permit the assignment of different types to the same polymorphic

reference in the same scope.

However, dynamic languages provide the use of one reference to hold

different types in the same scope. This is easily implemented at runtime

with a dynamic type system. However, StaDyn offers this feature statically,

taking into account the concrete type of each reference. The StaDyn pro-

gram shown in Figure 4 is an example of this capability. The age reference

has different types in the same scope. It is initially set to a string, and an

integer is later assigned to it. The static type inference mechanism imple-

mented in StaDyn detects the error in the last line of code. Moreover, a

better runtime performance is obtained because it is not necessary to use

reflection to discover types at runtime.

In order to obtain this behaviour, we have developed an implicit para-

10

using System;
class Test {

public static void Main() {
Console.Write("Your age, please: ");
var age0 = Console.In.ReadLine();
Console.WriteLine("You are " + age0 + " years old.");
age1 = Convert.ToInt32(age0);
Console.WriteLine(age1.GetType());
age2 = age1 + 1;
Console.WriteLine("Happy birthday, you are " +

age2 + " years old now.");
int length = age2.Length; // * Compilation error

}
}}

Figure 5: Corresponding program after the SSA transformation.

metric polymorphic type system [29] that provides type reconstruction when

a var reference is used. We have implemented the Hindley-Milner type infer-

ence algorithm to infer types of local variables [30]. This algorithm has been

modified to perform type reconstruction of var parameters and attributes

(fields) –described in sections 3.4 and 3.5.

The unification algorithm used in the Hindley-Milner type system pro-

vides parametric polymorphism, but it forces a reference to have the same

static type in the scope it has been declared. To overcome this drawback we

have developed a version of the SSA (Single Static Assignment) algorithm

[31]. This algorithm guarantees that every reference is assigned exactly

once by means of creating new temporary references. Since type inference

is performed after the SSA algorithm, we have implemented it as a previous

AST (Abstract Syntax Tree) transformation. The implementation of this

algorithm follows the Visitor design pattern [32].

Figure 5 shows the corresponding program after applying the AST trans-

formation to the source code in Figure 4. The AST represented by the source

code in Figure 5 is the actual input to the type inference system. Each age

reference will be inferred to a single static type.

11

3.2 Duck Typing

Duck typing2 [1] is a property of dynamic languages that means that an

object is interchangeable with any other object that implements the same

dynamic interface, regardless of whether those objects have a related inher-

itance hierarchy or not. This is a powerful feature offered by most dynamic

languages.

There exist statically typed programming languages such as Scala [33]

or OCaml [34] that offer structural typing, providing part of the benefits of

duck typing. However, the structural typing implementation of Scala is not

implicit, forcing the programmer to explicitly declare part of the structure

of types. In addition, intersection types should be used when more than one

operation is applied to a variable, making programming more complicated.

Although OCaml provides implicit structural typing, variables should only

have one type in the same scope, and this type is the most general possible

(principal) type [35]. Principal types are more restrictive than duck typing,

because they do not consider all the possible (concrete) values a variable

may hold.

The StaDyn programming language offers static duck typing. The ben-

efit provided by StaDyn is not only that it supports (implicit) duck typing,

but also that it is provided statically. Whenever a var reference points to

a set of objects that implement a public m method, the m message could be

safely passed. These objects do not need to implement a common interface

or an (abstract) class with the m method. Since this analysis is performed at

compile time, the programmer benefits from both early type error detection

and runtime performance.

We have implemented static duck typing making the static type system

2If it walks like a duck and quacks like a duck, it must be a duck.

12

var exception;
if (new Random().NextDouble()<0.5)

exception = new ApplicationException("An application exception.");
else

exception = new SystemException("A system exception");
Console.WriteLine(exception.Message);

Figure 6: Static duck typing.

of StaDyn flow-sensitive. This means that it takes into account the flow

context of each var reference. It gathers concrete type information (opposite

to classic abstract type systems) [36] knowing all the possible types a var

reference may hold. Instead of declaring a reference with an abstract type

that embraces all the possible concrete values, the compiler infers the union

of all possible concrete types a var reference may point to. Notice that

different types depending on flow context could be inferred for the same

reference, using the type inference mechanism mentioned above.

Code in Figure 6 shows this feature. The reference exception may point

to either an ApplicationException or a SystemException object. Both

objects have the Message property and, therefore, it is statically safe to

access to this property. It is not necessary to define a common interface

or class to pass this message. Since type inference system is flow-sensitive

and uses concrete types, the programmer obtains a safe static duck-typing

system.

The key technique we have used to obtain this concrete-type flow-sensi-

tiveness is union types [37]. Concrete types are first obtained by the above-

mentioned unification algorithm (applied in assignments and method calls).

Whenever a branch is detected, a union type is created with all the possi-

ble concrete types inferred. Type checking of union types depends on the

dynamism concern (next section).

13

3.3 Separation of the Dynamism Concern

StaDyn permits the use of both static and dynamic var references. Depend-

ing on their dynamism concern, type checking and type inference would be

more pessimistic (static) or optimistic (dynamic), but the semantics of the

programming language is not changed (i.e., program execution does not

depend on its dynamism). This idea follows the pluggable type system

approach described in [38] and [39]. Since the dynamism concern is not

explicitly stated in the source code, it is possible to customize the trade-

off between runtime flexibility of dynamic typing, and runtime performance

and robustness of static typing. It is not necessary to modify the application

source code to change its dynamism. Therefore, dynamic references could be

converted into static ones, and vice versa, without changing the application

source code.

Source code in Figure 7 adds another alternative in the assignment of the

exception reference. The ToString message is valid because it is offered by

all the three possible objects. However, the Message property depends on

the level of dynamism the programmer requires. By default, the compiler

uses the everythingStatic option, and the following error message is shown:

Error UnknownMemberError (Semantic error). ‘Message’: no

suitable member found.

However, if the programmer prefers to be more optimistic, she or he

could set all the var references in the module as dynamic. If the program in

Figure 7 is compiled with the everythingDynamic option, the executable file

is generated. In this case, the compiler accepts passing Message, because

there is at least one possibility that the program executes without any er-

ror (i.e., type checking succeeds if at least one of the types that compose

14

var exception;
Random random = new Random();
switch (random.Next(1,4)) {
case 1:

exception = new ApplicationException("An application exception.");
break;

case 2:
exception = new SystemException("A system exception");
break;

case 3:
exception = "This is not an exception";
break;break;

}
Console.WriteLine(exception.ToString());
Console.WriteLine(exception.Message); // * Compilation error?

Figure 7: Static var reference.

<?xml version="1.0" encoding="utf-8"?>
<application name="sample3">

<namespace name="GettingStarted">
<class name="Test">

<method name="Main">
<dynvar name="exception" />

</method>
</class>

</namespace>
</application>

Figure 8: Sample XML document specifying the dynamism of the exception
reference.

the union type is valid). The actual type will be discovered at runtime,

checking that the Message property can be actually accessed, or throwing

MissingMethodException otherwise.

Actually, the programmer does not need to set all the var references in

a program (or assembly) as dynamic. It is possible to specify the dynamism

of each single reference by means of a XML file. As discussed above, the

programmer does not manipulate these XML documents directly, leaving

this task to the IDE. The XML document shown in Figure 8 only sets as

dynamic the exception reference in Figure 7. Each StaDyn source code file

may have a corresponding XML document specifying its dynamism concern.

It is worth noting that setting a reference as dynamic does not imply that

15

var reference;
if (new Random().NextDouble() < 0.5)

reference = "String";
else

reference = 3;
Console.WriteLine(reference.Message);

Figure 9: Dynamic var reference.

every message could be passed to that reference; static type-checking is still

performed. The major change is that the type system is more –but not too–

optimistic when dynamic var references are used. The dynamism concern

implies a modification of type checking over union types. If the implicitly

typed var reference inferred with a union type is static, type checking is

performed over all its possible concrete types. However, if the reference is

dynamic, type checking is performed over those concrete types that do not

produce a type error; if none exists, a type error is shown.

Figure 9 shows how dynamic references may produce static errors as

well. Even though its code is compiled with the everythingDynamic option,

the compiler shows the following static error:

Error NoTypeHasMember (Semantic error). The dynamic type

‘\/([Var(6)=6=string], [Var(5)=5=int])’ has no valid type with

‘Message’ member.

This example shows how static typing is performed even in dynamic

scenarios, providing early type error detection (runtime performance im-

provement is discussed in Section 5). This limitation of dynamic languages

is shown in the Visual Basic code in Figure 3, which StaDyn detects as

erroneous, whereas Visual Basic does not.

16

public static var upper(var parameter) {
return parameter.ToUpper();

}
public static var getString(var parameter) {

return parameter.ToString();
}

Figure 10: Implicitly typed parameters.

3.4 Implicitly Typed Parameters

Concrete type reconstruction is not limited to local variables. StaDyn per-

forms a global flow-sensitive analysis of implicit var references. The result

is an implicit parametric polymorphism [29] more straightforward for the

programmer than the one offered by Java, C# (F-bounded) and C++ (un-

bounded) [40].

Implicitly typed parameter references cannot be unified to a single con-

crete type. Since they represent any actual type of an argument, they cannot

be inferred the same way as local references. This necessity is shown in the

source code of Figure 10. Both methods require the parameter to implement

a specific method, returning its value. In the getString method, any object

could be passed as a parameter because every object accepts the ToString

message. In the upper method, the parameter should be any object capable

of responding to the ToUpper message. Depending on the type of the actual

parameter, the StaDyn compiler generates the corresponding compilation

error.

For this purpose we have enhanced the StaDyn type system to be constraint-

based [41]. Types of methods in our object-oriented language have an or-

dered set of constraints specifying the set of restrictions that must be fulfiled

by the parameters. In our example, the type of the upper method is:

∀αβ.α→ β|α : Class (ToUpper : void→ β)

17

This means that the type of the parameter (α) should implement a public

ToUpper method with no parameters, and the type returned by ToUpper (β)

will be also returned by upper. Therefore, if an integer is passed to the upper

method, a compiler error is shown. However, if a string is passed instead,

the compiler reports not only any error, but it also infers the resulting type

as a string. Type constraint fulfilment is, thus, part of the type inference

mechanism (the concrete algorithm could be consulted in [25]).

3.5 Implicitly Typed Attributes

Using implicitly typed attribute references, it is possible to create the generic

Wrapper class shown in Figure 11. The Wrapper class can wrap any object

of any type. Each time the set method is called, the new concrete type of

the parameter is saved as the attribute type. By using this mechanism,

the two lines with comments report compilation errors. This coding style

is polymorphic and it is more legible that the parametric polymorphism

used in C++ and much more straightforward than the F-bounded polymor-

phism offered by Java and C#. At the same time, runtime performance

is equivalent to explicit type declaration (see Section 5). Since possible

concrete types of var references are known at compile time, the compiler

has more opportunities to optimize the generated code, improving runtime

performance.

Implicitly typed attributes extend the constraint-based behaviour of pa-

rameter references in the sense that the concrete type of the implicit object

parameter (the object used in every non-static method invocation) could

be modified on a method invocation expression. In our example, the type

of the wrapper attribute is modified each time the set method (and the

constructor) is invoked. This does not imply a modification of the whole

18

class Wrapper {
private var attribute;
public Wrapper(var attribute) {

this.attribute = attribute;
}
public var get() {

return attribute;
}
public void set(var attribute) {

this.attribute = attribute;
}}

}
class Test {

public static void Main() {
string aString;
int aInt;
Wrapper wrapper = new Wrapper("Hello");
aString = wrapper.get();
aInt = wrapper.get(); // * Compilation error
wrapper.set(3);
aString = wrapper.get(); // * Compilation error
aInt = wrapper.get();

}
}

Figure 11: Implicitly typed attributes.

19

Wrapper type, only the type of the single wrapper object –thanks to the

concrete type system employed.

For this purpose we have added a new kind of assignment constraint to

the type system [25]. Each time a value is assigned to a var attribute, an

assignment constraint is added to the method being analyzed. This con-

straint postpones the unification of the concrete type of the attribute to be

performed later, when an actual object is used in the invocation. Therefore,

the unification algorithm is used to type-check method invocation expres-

sions, using the concrete type of the actual object (a detailed description of

the unification algorithm can be consulted in [25]).

3.6 Interaction between Static and Dynamic Types

StaDyn performs static type checking of both dynamic and static var ref-

erences. This makes possible the combination of static and dynamic code

in the same application, because the compiler gathers type information in

both scenarios.

Code in Figure 12 uses the getString and upper methods of Figure 10.

reference may point to a string or integer. Therefore, it is safe to invoke

the getString method, but a dynamic type error might be obtained when

the upper method is called.

Since type-checking of dynamic and static code is different, it is neces-

sary to describe interoperation between both types of references. In case

reference had been set as a dynamic, the question of whether or not it

could have been passed as an argument to the upper or getString methods

(Figure 10) arises. That is, how optimistic (dynamic) code could interoper-

ate with pessimistic (static) one. An example is shown in Figure 12.

The first invocation is correct regardless of the dynamism of parameter.

20

var reference;
string aString;
if (new Random().NextDouble() < 0.5)

reference = "String";
else

reference = 3;
aString = getString(reference); // * Correct!
aString = upper(reference); // * Compilation error

// * (correct if we set parameter to dynamic)

Figure 12: Dynamic and static code interoperation.

Being either optimistic or pessimistic, the argument responds to the ToString

method correctly. However, it is not the same in the second scenario. By

default, a compilation error is obtained, because the parameter reference

is static and it may point to an integer, which does not implement a public

ToUpper method. However, if we set the parameter of the upper method as

dynamic, the compilation will succeed.

This type-checking is obtained taking into consideration the dynamism

of references in the subtyping relation of the language. A dynamic reference

is a subtype of a static one when all the concrete types of the dynamic

reference promote to the static one [25]. Promotion of static references to

dynamic ones is more flexible: static references should fulfil at least one

constraint from the set of alternatives.

3.7 Alias Analysis for Concrete Type Evolution

The problem of determining if a storage location may be accessed in more

than one way is called Alias Analysis [42]. Two references are aliased if

they point to the same object. Although alias analysis is mainly used for

optimizations, we have used it to know the concrete types of the objects a

reference may point to.

Code in Figure 13 uses the Wrapper class previously shown. Initially,

the wrapper reference points to a string object. Then a Test object that

21

class Test {
private var testField;
public void setField(var param) {

this.testField = param;
}
public var getField() {

return this.testField;
}
public static void Main() {

var wrapper = new Wrapper("hi");
var test = new Test();
test.setField(wrapper);
string s = test.getField().get(); // * Correct!
wrapper.set(true);
bool b = test.getField().get(); // * Correct!bool b = test.getField().get(); // * Correct!
string s = test.getField().get(); // * Compilation Error

}
}

Figure 13: Alias analysis.

references to the original Wrapper object is created. If we get the object

inside the wrapper object inside the test object, we get a string object.

Then a bool attribute is set to the wrapper object. Repeating the previous

access to the object inside the wrapper object inside the test object, a bool

object is then obtained.

The alias analysis algorithm implemented is type-based (uses type infor-

mation to decide alias) [43], inter-procedural (makes use of inter-procedural

flow information) [42], context-sensitive (differentiates between different calls

to the same method) [44], and may-alias (detects all the objects a reference

may point to; opposite to must point to) [45].

Alias analysis is an important tool for our type-reconstructive concrete

type system, and it is the key technique to implement the next (future)

stage: structural reflective type evolution –see Section 7.

22

4 Implementation

All the programming language features described in this paper have been

implemented over the .Net Framework 3.5 platform, using the C# 3.0 pro-

gramming language. Our compiler is a multiple-pass language processor

that follows the Pipes and Filters architectural pattern [46]. We have used

the AntLR language processor tool to implement lexical and syntactic anal-

ysis [47]. Abstract Syntax Trees (ASTs) have been implemented following

the Composite design pattern [32] and each pass over the AST implements

the Visitor design pattern [32].

Currently we have developed the following AST visits: two visitors for

the SSA algorithm; two visitors to load types into the types table; one visitor

for symbol identification [48] and another one for type inference; and two

visitors to generate code. Once the final compiler is finished, the number

of AST visits will be reduced to optimize the implementation. The type

system has been implemented following the guidelines described in [49].

We generate .Net intermediate language and then assemble it to produce

the binaries. At present, we use the CLR 2.0 as the unique compiler’s back-

end. However, we have designed the code generator module following the

Bridge design pattern to add both the DLR (Dynamic Language Runtime)

[17] and the zRotor [50] back-ends in the future.

5 Runtime Performance Assessment

We have done an initial assessment of the runtime performance benefits ob-

tained with the inclusion of dynamic and static typing in the same program-

ming language. The aim of the evaluation is to obtain an initial estimate

of what is the performance improvement obtained with the combination

23

of both typing approaches. For that purpose we have developed a simple

micro-benchmark that takes the following scenarios into account:

1. Explicit static type declaration. No var references are used at all,

explicitly stating the type of every variable.

2. Implicit dynamic type reference declaration, when the compiler man-

ages to infer types. Although dynamic var references are used, the

compiler could infer possible types statically. Figure 4 is a basic ex-

ample of this kind of type inference, when the exact concrete type can

be inferred. In the case of the code in Figure 7, three possible types

could be inferred by the compiler. In this micro-benchmark we have

developed this scenario when 1, 5, 10, 50 or 100 possible types could

be inferred statically.

3. Implicit dynamic type reference declaration, when the compiler cannot

infer any type at all. In this scenario, dynamic references are used as

parameters. The argument reference randomly holds an object from

100 different types.

We have selected the most commonly used operation in object oriented

programs: method invocation. A polymorphic method that performs a basic

arithmetical operation is called in a loop of 100,000 iterations. Its imple-

mentation depends on the type of its parameters, local variables, object

fields and the object itself (it is polymorphic). Since the difference of our

approach is the type information gathered by the compiler, the primitive to

measure is not really significant because, excluding reflection services, most

low-level operations in .Net are statically typed.

The same programs (previous enumeration) have been compiled with the

following compilers:

24

• C# 3.0. We have run our benchmark in the production C# version

3.0 that is shipped with Visual Studio 2008. Since C# 3.0 does not

support dynamic typing, we only run the explicit type declaration test.

• The C# 4.0 implementation of Visual Studio 2010 Beta 1. The final

product is expected to be released in March 2010. It combines static

and dynamic typing (see Section 6). Its back-end is the final version of

the DLR that is also released together with SilverLight and IronPython

2.0.

• Visual Basic 10. The Visual Basic (VB) programming language also

supports dynamic typing [20]. A dynamic reference is declared with

the Dim reserved word, without setting a type. With this syntax, the

compiler does not gather any type information statically, and type

checking is performed at runtime. The main difference between VB

10 and C# 4.0 is that the former uses the CLR, whereas the latter

employs the DLR.

• StaDyn. The same programs coded in C# 4.0 are simply translated

into StaDyn by replacing the dynamic reserved work with var. We

compile the four programs with the everythingDynamic option.

We have not included other dynamic programming languages such as

Python or Ruby to avoid the introduction of a bias in the translation of

source code (translation of C# to VB is direct). At the same time, all the

languages we have used generate code for the .Net framework, so it facil-

itates the comparison of performance results. This way, the measurements

obtained show the performance improvement of gathering type information

of dynamic code at compile time.

25

1,000,000

1,500,000

2,000,000

2,500,000

E
xe

cu
ti

o
n

T
im

e
 (

m
ic

ro
se

co
n

d
s)

Explicit 1 5 10 50 100 None

C# 3.0 629

VB 10 629 1,593,581 1,653,572 1,598,797 1,658,285 1,639,422 1,646,244

StaDyn 687 686 2.014 3.410 17.840 39.840 557.300

C# 4.0 625 2,192,900 2,197,500 2,287,200 2,294,500 2,290,800 2,460,800

0

500,000

E
xe

cu
ti

o
n

Figure 14: Execution time in C# 3.0, Visual Basic 10, StaDyn and C# 4.0.

All the programs have been executed over the .Net framework 4.0 Beta

1 on a lightly loaded 2.67 GHz Core 2 Duo system with 2 GB of RAM

running Windows 2008 Server Standard, build 6001. Every test has been

compiled without debugging information and full optimized.

Figure 14 shows the results expressed in microseconds. Tests with ex-

plicit type declaration reveal that the four implementations offer quite simi-

lar runtime performance. C# 4.0 offers the best runtime performance, being

C# 3.0 and VB 10 almost as fast as C# 4.0 (C# 4.0 is only 0.64% better

than VB and C# 3.0). Finally, runtime performance of StaDyn, when vari-

ables are explicitly typed, is 9.22% lower than C# 3.0 and VB, and 9.92%

in comparison with C# 4.0. This difference is caused by the greater number

of optimizations that these production compilers perform in relation to our

implementation.

26

The performance assessment of StaDyn when the exact single type of a

var reference is inferred shows the repercussion of our approach. Runtime

performance is the same as when using explicitly typed references3 (in fact,

the code generated is exactly the same). In this special scenario, StaDyn

shows a huge performance improvement. If the compiler infers the exact

type of var references, StaDyn is more than 2,322 and 3,195 times faster

than VB and C# 4.0 respectively (notice that C# 3.0 does not support this

feature). This vast difference is caused by the lack of static type inference

of both VB and C# 4.0. When a reference is declared as dynamic, every

operation over that reference is performed at runtime using reflection. Since

the usage of reflective operations in the .Net platform has an important

performance cost [51], the execution time is significantly incremented.

Figure 14 shows the progression of runtime performance when the com-

piler infers 1, 5, 10, 50 or 100 possible types. In the case of VB, runtime

performance is almost constant: the mean value is 1,628,731 microseconds

with a standard derivation of 1.876%. In the case of C# 4.0, runtime per-

formance slightly raises from 2.193 seconds (1 possible type) to 2.290 (100

possible types). When there is no type information at all, it reaches the

highest execution time: 2.46 seconds.

The runtime performance of StaDyn programs evolve in a different way.

Execution time shows a linear raising regarding to the number of types

inferred by the compiler. Therefore, the performance benefit drops while the

number of possible types increases. As an example, StaDyn is more than 40

and 56 times faster than VB and C# respectively, when the compiler infers

100 possible types for a var reference.

3Actually, there is one microsecond improvement, but it may be due to any assessment
bias such as the load of the operating system.

27

The final comparison to be established is when the compiler gathers

no static type information at all. In this case, runtime performance is the

worst in the three programming languages, because method invocation is

performed using reflection. However, StaDyn requires 33.85% and 22.65%

the time that VB and C# employ to run the same program.

Differences between our approach and both C# 4.0 and VB are justi-

fied by the amount of type information gathered by the compiler. StaDyn

continues collecting type information even when references are set as dy-

namic. Nevertheless, both C# 4.0 and VB perform no static type inference

once a reference has been declared as dynamic. This is the reason why

StaDyn offers the same runtime performance with explicit type declaration

and inference of the exact single type, involving a remarkable performance

improvement.

6 Related Work

Although several theoretical works exist, there have been few implementa-

tion approaches to include static and dynamic typing in the same program-

ming language.

6.1 Programming Languages Implementation

Strongtalk was one of the first programming language implementation that

included both dynamic and static typing in the same programming language.

Strongtalk is a major re-thinking of the Smalltalk-80 programming language

[52]. It retains the basic Smalltalk syntax and semantics [53], but a type sys-

tem is added to provide more reliability and a better runtime performance.

The Strongtalk type system is completely optional. This assumes that it is

the programmer’s responsibility to ensure that types are sound in regard to

28

dynamic behaviour. Type checking is performed at compile-time, but it does

not guarantee an execution without type errors. Although its type system

is not completely safe, it implies a significant performance improvement.

Dylan is a high-level programming language, designed to allow efficient

compilation of features commonly associated with dynamic languages [54].

Dylan permits both explicit and implicit variable declaration. It also sup-

ports two compilation scenarios: production and interactive. In the interac-

tive mode, all the types are ignored and no static type checking is performed.

This behaviour is similar to the one offered by dynamic languages. When the

production configuration is selected, explicitly typed variables are checked

using a static type system. However, types of generic references (references

without type declaration) are not inferred at compile type –they are always

checked at runtime.

The Visual Basic .Net programming language incorporates both dy-

namic and static typing [55]. Compiled applications run over the .Net

platform using the same virtual machine. The main benefit of its dynamic

type system is that it supports duck typing. However, there are interopera-

tion lacks between dynamic and static code because no static type inference

is performed over dynamic references. Every type can be converted to a

dynamic one, and vice versa. Therefore, all the type checking over dynamic

references is performed at runtime. At the same time, dynamic references

do not produce any type error at compile time. Another limitation of Visual

Basic .Net is that it does not separate the dynamism concern: it forces the

programmer to explicitly state in the source code which references are static

and which ones are dynamic.

Boo is a recent object-oriented programming language that is both stat-

ically and dynamically typed with a Python inspired syntax [56]. In Boo,

29

references may be declared without specifying its type and the compiler per-

forms type inference. However, references could only have one unique type

in the same scope. Moreover, fields and parameters could not be declared

without specifying its type. Boo offers dynamic type inference with a special

type called duck. Any operation could be performed over a duck reference

–no static typing is performed. It is allowed to convert any dynamic refer-

ence to a static one without any cast. Although this behaviour is similar to

the one offered by Visual Basic .Net, the Boo compiler provides the ducky

option that interprets the Object type as if it was duck. Turning on the

ducky option allows the programmer to test out the code more quickly, and

makes coding in Boo feel much more like coding in a dynamic language. So,

when the programmer has tested the application, she may wish to turn the

ducky option back off and add various type declarations and casts.

As mentioned, C# 4.0 includes the support of dynamically typed objects

[18]. A new dynamic keyword has been added as a new type. The compiler

performs no static type checking over any dynamic reference, making all the

type verifications at runtime. The main objective of this enhancement is to

offer direct access to dynamically typed code in IronPython, IronRuby and

the JavaScript code in Silverlight. Dynamic code in C# 4.0 makes use of

the DLR services [17].

6.2 Theoretical Research

Soft Typing [57] was one of the first theoretical works that applied static

typing to a dynamically typed language such as Scheme [58]. However, soft

typing does not control which parts in a program are statically checked, and

static type information is not used to optimize the generated code either.

The approach in [21] adds a Dynamic type to lambda calculus, including two

30

conversion operations (dynamic and type-case), producing a verbose code

deeply dependent on its dynamism. The works of Quasi-Static Typing [59],

Hybrid Typing [60] and Gradual Typing [61] perform implicit conversion be-

tween dynamic and static code, employing subtyping relations in the case of

quasi-static and hybrid typing, and a consistency relation in gradual typing.

Gradual typing already identified unification-based constraint resolution as

a suitable approach to integrate both dynamic and static typing [62]. How-

ever, with gradual typing a dynamic type is implicitly converted into static

without any static type-checking, because type inference is not performed

over dynamic references. The main difference between these approaches

and the work presented in this paper is that we perform type-checking even

when dynamic types are used, detecting some type errors in dynamic code,

improving its robustness and performance.

7 Conclusions

The StaDyn programming language includes both dynamic and static typing

in the same programming language, improving the runtime flexibility and

simplicity of the statically typed languages, and robustness and performance

of the static ones. StaDyn allows both dynamic and static references in

the same program, and it has been designed to make it easier to convert

dynamically typed code into statically typed one, and vice versa. This

paper describes the key techniques we have used to achieve these objectives.

Dynamic and static code can be seamlessly integrated because they share

the same type system. Type inference is performed over dynamic and static

references, facilitating the interoperation between dynamic and static code.

Currently, IronPython and the Java Scripting API are two examples of the

existing limitations of dynamic and static code interoperation (with C#

31

and Java respectively). Dynamic languages directly access to static ones,

but not the other way round. For instance, if the programmer creates a

class instance in Python, the statically typed code cannot directly retrieve

its type. This lack is due to the fact that Python does not perform any

static type checking at all. Therefore, types created by the programmer in

Python are not included in the type system of the statically typed program.

StaDyn performs type inference over dynamic and static references, im-

proving runtime performance and robustness. An initial runtime perfor-

mance assessment has confirmed how performing type inference over dy-

namic references involves an important performance benefit. Although this

benefit decreases as the number of possible inferred types increases, runtime

performance of StaDyn is still significantly better than C# and VB when

no type information of var references is inferred at all.

Future work will be centred on adding structural reflection to StaDyn.

Structural reflection permits the dynamic addition, deletion and modifica-

tion of members to classes and objects. StaDyn will perform concrete type

evolution by means of its alias analysis mechanism. We are also working on

including the DLR and zRotor back-ends to our current implementation.

Current release of the StaDyn programming language, its source code,

and all the examples presented in this paper are freely available at http:

//www.reflection.uniovi.es/stadyn. A formal description of the StaDyn

type system is detailed in [25].

8 Acknowledgments

This work has been funded by Microsoft Research, under the project enti-

tled Extending dynamic features of the SSCLI, awarded in the Phoenix and

SSCLI, Compilation and Managed Execution Request for Proposals, 2006. It

32

has been also funded by the Department of Science and Technology (Spain)

under the National Program for Research, Development and Innovation;

project TIN2008-00276 entitled Improving Performance and Robustness of

Dynamic Languages to develop Efficient, Scalable and Reliable Software.

References

[1] Thomas, D., Fowler, C., and Hunt, A.: ‘Programming Ruby, 2nd Edi-

tion’. Pragmatic Bookshelf, 2004.

[2] Thomas, D., Hansson, D.H., Schwarz, A., Fuchs, T., Breed, L., and

Clark, M.: ‘Agile Web Development with Rails. A Pragmatic Guide’.

Pragmatic Bookshelf, 2005.

[3] Hunt, A., and D. Thomas, ‘The Pragmatic Programmer’. Addison-

Wesley, 2000.

[4] ECMA-357: ‘ECMAScript for XML (E4X) Specification, 2nd edition’.

European Computer Manufacturers Association, 2005.

[5] Crane, D., Pascarello, E., and James, D.: ‘Ajax in Action’. Manning

Publications, 2005.

[6] van Rossum, G., Fred, L., and Drake, J.R.: ‘The Python Language

Reference Manual’. Network Theory, 2003.

[7] Latteier, A., Pelletier, M., McDonough, C., and Sabaini, P.: ‘The

Zope Book’, 2008. http://www.zope.org/Documentation/Books/

ZopeBook/

[8] Django, the Web framework for perfectionists with deadlines: http:

//www.djangoproject.com, accessed September 2009.

33

[9] Ierusalimschy, R., de Figueiredo, L.H., and Filho, W.C.: ‘Lua –an ex-

tensible extension language’. Software Practice & Experience, 26, (6),

1996, pp. 635–652.

[10] Ierusalimschy, R., de Figueiredo, L.H., Celes, W.: ‘The evolution Lua’.

Proceedings of the third ACM SIGPLAN conference on History of pro-

gramming languages, 2007, pp. 1–26.

[11] The Pythius website: http://pythius.sourceforge.net, accessed

September 2009.

[12] Böllert, K.: ‘On weaving aspects’. European Conference on Object-

Oriented Programming (ECOOP), Workshop on Aspect Oriented Pro-

gramming, 1999, pp. pp. 301–302.

[13] Ortin, F., and Cueva, J.M.: ‘Dynamic Adaptation of Application As-

pects’. Journal of Systems and Software 71, (3), 2004, pp. 229–243.

[14] JSR 223: ‘Scripting for the Java Platform’. http://www.jcp.org/en/

jsr/detail?id=223

[15] JSR 292: ‘Supporting Dynamically Typed Languages on the Java Plat-

form’. http://www.jcp.org/en/jsr/detail?id=292

[16] ‘The Da Vinci Machine, a multi-language renaissance for the Java

Virtual Machine architecture’. Sun Microsystems OpenJDK. http:

//openjdk.java.net/projects/mlvm

[17] Hugunin, J.: ‘Just Glue It! Ruby and the DLR in Silverlight’. MIX

Conference, 2007.

[18] Torgersen, M.: ‘New features in C# 4.0’. Microsoft Corporation, 2009.

34

[19] Pierce, B.C.: ‘Types and Programming Languages’. The MIT Press,

2002.

[20] Meijer, E., and Drayton, P.: ‘Dynamic Typing When Needed: The End

of the Cold War Between Programming Languages’. Proceedings of the

OOPSLA Workshop on Revival of Dynamic Languages, 2004.

[21] Abadi, M., Cardelli, L., Pierce, B.C., and Plotkin, G.: ‘Dynamic typing

in a statically typed language’. ACM Transactions on Programming

Languages and Systems, 13, (2), (1991), pp. 237–268.

[22] Abadi, M., Cardelli, L., Pierce, B.C., and Plotkin, G.: ‘Dynamic typing

in polymorphic languages’, SRC Research Report 120, Digital, 1994.

[23] Hürsch, W.L., and Lopes, C.V.: ‘Separation of Concerns’. Technical

Report UN-CCS-95-03, Northeastern University, Boston, USA, 1995.

[24] Cardelli, L.: ‘Type Systems’. The Handbook of Computer Science and

Engineering, 1997.

[25] Ortin, F:. ‘The StaDyn core Type System’. Technical Report.

Computer Science Department, University of Oviedo. August

2009. http://www.reflection.uniovi.es/stadyn/publications/

stadyn.core.type.system.pdf

[26] ‘The C# 3.0 Language Specification’. Microsoft Developer

Network, http://download.microsoft.com/download/3/8/8/

388e7205-bc10-4226-b2a8-75351c669b09/CSharp\%20Language\

%20Specification.doc

[27] Milner, R., Tofte, M., and Harper, R.: ‘The Definition of Standard

ML’. MIT Press, 1990.

35

[28] Hudak, P., Jones, S.P., and Wadler, P.: ‘Report on the programming

language Haskell version 1.1’. Technical report, Departments of Com-

puter Science, University of Glasgow and Yale Universtiy, 1991.

[29] Cardelli, L.: ‘Basic Polymorphic Typechecking’. Science of Computer

Programming 8, 1998, pp. 147–172.

[30] Milner, R.: ‘A theory of type polymorphism in programming’. Journal

of Computer and System Sciences, 1978, pp. 348–375.

[31] Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., and Zadeck,

F.K.: ‘Efficiently computing static single assignment form and the con-

trol dependence graph’. ACM Transactions on Programming Languages

and Systems 13 , (4), 1991, pp. 451–490.

[32] Gamma, E., Helm, R., Johnson, R., and Vlissides, J.: ‘Design Patterns:

Elements of Reusable Object-Oriented Software’. Addison Wesley, 1995.

[33] Odersky, M., Cremet, V., Röckl, C., and Zenger, M.: ‘A Nominal

Theory of Objects with Dependent Types’. European Conference on

Object-Oriented Programming, 2002, pp. 201–224.

[34] Rémy, D. and Vouillon, J.: Objective ML: ‘An effective object-oriented

extension to ML’. Theory And Practice of Object Systems, 4, (1), 1998,

pp. 27–50.

[35] Freeman, T., Pfenning, F.: ‘Refinement types for ML’. Proceedings of

the ACM SIGPLAN 1991 conference on Programming language design

and implementation, Toronto, Ontario, Canada, 1991, pp. 268–277.

[36] Plevyak, J., and Chien, A.A.: ‘Precise concrete type inference for

object-oriented languages’. SIGPLAN Notices 29, 10, Proceeding of the

OOPSLA Conference (1994), pp. 324–340.

36

[37] Pierce, B.C.: ‘Programming with intersection types, union types, and

polymorphism’. Technical Report CMU-CS-91-106, School of Computer

Science, Carnegie Mellon University, Pittsburgh, PA, 1991.

[38] Bracha, G. ‘Pluggable type systems’. OOPSLA workshop on revival of

dynamic languages, October 2004.

[39] Haldiman, N., Denker, M., and Nierstrasz, O.: ‘Practical, pluggable

types for a dynamic language’. Computer Languages, Systems & Struc-

tures, 35, (1), April 2009, pp. 48–62.

[40] Canning, P., Cook, W., Hill, W., Olthoff, W., and Mitchell, J.C.: ‘F-

bounded polymorphism for object-oriented programming’. Proceedings

of the fourth international conference on Functional programming lan-

guages and computer architecture, ACM Press (1989), pp. 273–280.

[41] Odersky, M., Sulzmann, M., and Wehr, M.: ‘Type inference with con-

strained types’. Theory and Practice of Object Systems 5, 1 (1999).

[42] Landi, W., and Ryder, B.G.: ‘A Safe Approximate Algorithm for In-

terprocedural Pointer Aliasing’. Conference on Programming Language

Design and Implementation, 1992, pp. 473–489.

[43] Diwan, A., McKinley, K.S., and Moss, J.E.B.: ‘Type-Based Alias Anal-

ysis’. SIGPLAN Conference on Programming Language Design and Im-

plementation, 1998, pp. 106–117.

[44] Emami, M., Ghiya, R., and Hendren, L.: ‘Context-sensitive inter-

procedural points-to analysis in the presence of function pointers’. Pro-

ceedings of ACM SIGPLAN’94 Conference on Programming Language

Design and Implementation, 1994, pp. 242–256.

37

[45] Appel, A.W.: ‘Modern Compiler Implementation in ML’, Cambridge

University Press, 1998.

[46] Buschmann, F.: ‘Pattern-Oriented Software Architecture, a System of

Patterns’, John Wiley & Sons, 1996.

[47] Parr, T.: ‘The Definitive ANTLR Reference: Building Domain-Specific

Languages’. Pragmatic Bookshelf, 2007.

[48] Watt, D., and Brown, D.: ‘Programming Language Processors in Java:

Compilers and Interpreters’, Prentice Hall, 2000.

[49] Ortin, F., Zapico, D., and Cueva, J.M.: ‘Design Patterns for Teaching

Type Checking in a Compiler Construction Course’. IEEE Transactions

on Education, 50, (3), 2007, pp. 273–283.

[50] Redondo, J.M., Ortin, F. and Cueva, J.M.: ‘Optimizing Reflective

Primitives of Dynamic Languages’. International Journal of Software

Engineering and Knowledge Engineering, 18, (6), 2008, pp. 759–783.

[51] Ortin, F., Redondo, J.M., Perez-Schofield, J.B.G.: ‘Efficient Virtual

Machine Support of Runtime Structural Reflection’. Science of Com-

puter Programming, 74, (10), 2009, pp. 836–860.

[52] Bracha, G., and Griswold D.: ‘Strongtalk: Typechecking Smalltalk in

a Production Environment’. Proceedings of the OOPSLA’93 Confer-

ence on Object-oriented Programming Systems, Languages and Appli-

cations, 1993, pp. 215–230.

[53] Goldberg, A., and Robson, D.: ‘Smalltalk-80: The Language and its

Implementation’. Addison-Wesley, 1983.

38

[54] Shalit, A.: ‘The Dylan reference manual: the definitive guide to the new

object-oriented dynamic language’. Addison Wesley Longman Publish-

ing Co. (1996).

[55] Vick, P.: ‘The Microsoft Visual Basic Language Specification’. Mi-

crosoft Corporation, 2007.

[56] Boo home page: http://boo.codehaus.org, accessed September 2009.

[57] Cartwright, R., and Fagan, M.: ‘Soft typing’. Proceedings of the ACM

SIGPLAN Conference on Programming language design and implemen-

tation, 1991.

[58] Flanagan, C., Flatt, M., Krishnamurthi, S., Weirich, S., and Felleisen,

M.: ‘Catching bugs in the web of program invariants’. Proceedings of

the ACM SIGPLAN Conference on Programming language design and

implementation, 1996.

[59] Thatte, S.: ‘Quasi-static typing’. Proceedings of the ACM Symposium

on Principles of programming languages, 1990.

[60] Flanagan, C., Freund, S.N., and Tomb, A.: ‘Hybrid types, invariants,

and refinements for imperative objects’. International Workshop on

Foundations and Developments of Object-Oriented Languages, 2006.

[61] Siek, J., and Taha, W.: ‘Gradual Typing for Objects’. Proceedings of

the 21st European Conference on Object-Oriented Programing, Lecture

Notes In Computer Science 4609, 2007.

[62] Siek, J., and Vachharajani, M.: ‘Gradual typing with unification-based

inference’. Proceedings of the Symposium on Dynamic Languages, 2008.

39

