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On Optimality of Greedy Policy for a Class of

Standard Reward Function of Restless

Multi-armed Bandit Problem

Quan Liu, Kehao Wang, Lin Chen

Abstract

In this paper,we consider the restless bandit problem, which is one of the most well-studied generaliza-

tions of the celebrated stochastic multi-armed bandit problem in decision theory. However, it is known be

PSPACE-Hard to approximate to any non-trivial factor. Thusthe optimality is very difficult to obtain due to

its high complexity. A natural method is to obtain the greedypolicy considering its stability and simplicity.

However, the greedy policy will result in the optimality loss for its intrinsic myopic behavior generally.

In this paper, by analyzing one class of so-called standard reward function, we establish the closed-form

condition about the discounted factorβ such that the optimality of the greedy policy is guaranteed under

the discounted expected reward criterion, especially, theconditionβ = 1 indicating the optimality of the

greedy policy under the average accumulative reward criterion. Thus, the standard form of reward function

can easily be used to judge the optimality of the greedy policy without any complicated calculation. Some

examples in cognitive radio networks are presented to verify the effectiveness of the mathematical result

in judging the optimality of the greedy policy.

Index Terms

Partially observed Markov decision process (POMDP), multi-armed restless bandit problems, optimal-

ity, greedy policy, cognitive radio

I. INTRODUCTION

We consider the system consisting ofn uncontrolled Markov chains evolving independently

in the discrete time. Each of those chains is an independent identically-distributed (iid) two-state

Markov process. The two states will be denoted as ”good” state (state 1) and ”bad” state (state
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0). The transition probabilities ispij, i, j = 0, 1. In each time instance of the system, a user is

allowed to selectk out of the n process according to its strategy, and to observe their states

(assuming the precise observation), while those processesnot selected by the user will evolve

according to their rules. The user would obtain some reward determined by the combination of

those observed states of thek selected processes, i.e. collecting no reward if those states of k

processes are observed ”bad”. The above selecting, observing, and collecting process repeats until

the user does not access the system. Obviously, it is a multi-armed bandit (MAB) problem [1] as

well as partially observed Markov decision process (POMDP)problem which has been used and

studied in the [?] [2]. Unfortunately, obtaining optimal solutions to a general restless bandit process

is PSPACE-Hard [3], and analytical characterizations of the performance of the optimal policy are

often intractable. Hence the greedy policy governing the channel selection is the suitable choice

because it only focuses on maximization of the immediate reward ignoring its affect on the future

reward. However, the greedy policy is not optimal generally.

Thus, recently arise two main research directions addressing the greedy policy of this kind

of MAB problem. The first one is to seek the constant-factor approximation algorithm, such as

68-approximation [4] developed via the linear programmingrelaxation under the condition of

p11 > 0.5 > p01 for each arm, and 2-approximation policy for a class of monotone restless bandit

problem [5]. The relevant application in dynamic multichannel access is the paper [6], where the

authors established the indexability and obtained Whittleindex in closed form for both discounted

and average reward criteria. Another research direction isto explore the optimal condition of

greedy policy corresponding to a concrete application or scenario. Our work follows on this line.

Although many literatures have studied this problem, the immediate reward function in those wroks

only focuses on the linear combination of those observed states, i.e. in [7], the optimality of the

greedy policy was proved in choosingk = 1 of N channels in the case of positively correlated

channels, and then extended to arbitraryk channels in [8]. In our previous work [9], nevertheless,

we have extended the work in [7] on another line to the scenario where the immediate reward

function is the simplest non-linear combination of observed states, and proved that the greedy

policy is not optimal generally, which is contrary to the result of [8] where the immediate reward

function is the linear combination of observed states. The contrary conclusion make it necessary

to study affect of the immediate reward function on the optimality of greedy policy, which is one

of the major incentives for this paper.
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From the technical perspective, the optimality of greedy policy needs user prefer to exploit rather

than to explorer. One simplest approach to implement this mechanism is to adjust the balance

between exploitation and exploration by the discounted factor β. On the other hand, noticing the

different conclusion resulting from the nuance of immediate reward functions [8] [9], then we only

focus on one generic and basic class of immediate reward function formulated bythe combination of

variables of order 1, referred to asstandardreward function. Therefore, our objective is to derive the

sufficient condition of the discounted factor such that the greedy policy is guaranteed to be optimal

for the so-calledstandardreward function under the discounted accumulative reward criterion. If

the discounted factorβ = 1, the optimality of greedy policy for the discounted accumulative reward

can be promoted to the optimality for the average expected reward on the time horizon of interest.

Therefore, we can judge the optimality of the greedy policy for the discounted accumulative and

average expected reward according to the closed-form condition of β. To the best of our knowledge,

very few results been reported from this perspective.

Compared with other existing works on the optimality of greedy policy in MAB problem, and

our contribution is three-fold:

• We analyze one special class of MBA problem where the immediate reward function is

so-called standard one, and derive that the discounted accumulative reward function also is

standard reward function. Furthermore, we establish the optimality of greedy policy under the

discounted accumulative reward criterion whenp11 > p01. The theoretical results demonstrate

that the greedy policy choosing the best 1 orN − 1 out of N channels is optimal when

0 < β ≤ 1. For the case of choosingk (1 < k < N − 1) channels, the greedy policy is

optimal only when the discounted factor satisfies a simple closed-form condition.

• The major technique developed in this paper is largely basedon the analytic properties of

standard reward function, completely different from [7] [8] relying on the coupling argument.

Besides significant and practical application in cognitiveradio networks, this technique serves

as the key criterion to judge the optimality of greedy policywhen the immediate reward

function is the combination of the standard functions in other scenarios.

• We analyze two practical models in the cognitive radio networks. The first model in cognitive

radio networks involves the sensing order problem where thesecondary user selectsk (1 <

k < N) of N channels in order to maximize the probability of finding an idle channel. It

is obvious that the immediate reward function is the order 1 non-linear combination of the
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availability probabilities of selected channels. The result demonstrates that the greedy policy

is not optimal generally under the average expected reward,which is coherent with [9]. The

second model is that a user choosesk(1 ≤ k < N) channels to access and receive a reward

on the channel in good state. The immediate reward function is the linear combination of the

availability of those selected channels. Our derived result is consistent with that in [7] [8]

where the myopic policy choosing any number of channels is optimal.

The rest of the paper is organized as follows: Our model is formulated in Section II. Section III

analyzes standard reward function. Section IV gives the optimality theorem of the myopic policy.

Three applications are given in Section V. Finally, our conclusions are summarized in Section VI.

II. PROBLEM FORMULATION

As outlined in the introduction, we consider a user trying toaccess the system consisting of

n independent and statistically identical channels, each given by a two state Markov chain. The

set of n channels is denoted byN , each indexed byi = 1, 2, ..., n, and the state of channeli

denoted bySi(t) = {1 (good), 0 (bad)}. The system operates in discrete time steps indexed byt

(t = 1, 2, ..., T ), whereT is the time horizon of interest (or the user gives up accessing the system).

Specifically, we assume that channels go through state transition at the beginning of slott and then

at timet the user makes the channel selection decision. Limited by hardware or sensing policy, at

time t the user is allowed to choosek (1 ≤ k < n) of then channels to sense, the chosen channel

set denoted byak(t) ⊂ N , |ak(t)| = k.

Obviously, the user cannot observe the whole statesS(t) = [0, 1]n of the underlying system (i.e.,

the states ofn channels). We know that a sufficient statistic of such a system for optimal decision

making, or the information state of the system, is given by the conditional probabilities of the

state each channel is in given all past actions and observations [?]. We denote this information

state (also called belief vector) byΩ(t) = [ω1(t), ..., ωn(t)] ∈ [0, 1]n, whereωi(t) is the conditional

probability that channeli is in state 1 at timet given all past states, actions and observations. In the

rest of the paper,ωi(t) will be referred to as the information state of channeli at timet, or simply

the channel probability ofi at time t. Due to the Markovian nature of the channel model, the

future information state is only a function of the current information state and the current action,

i.e., it is independent of past history given the current information state and action. Given that the

information state at timet is Ω(t) , {ωi(t), i ∈ N} and the sensing policyak(t) ⊂ N is taken,
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the state at timet+ 1 can be updated using Bayes Rule as shown in (1).

ωi(t+ 1) =





p11, i ∈ ak(t), Si(t) = 1

p01, i ∈ ak(t), Si(t) = 0

τ(ωi(t)), i 6∈ ak(t)

. (1)

where,τ(ωi(t)) = ωi(t)p11 + [1− ωi(t)]p01.

The objective is to maximize the discounted accumulative reward over a finite horizon given in

the following problem:

max
π

Eπ[

T∑

t=1

βtRπt
(Ω(t))|Ω(1)] (2)

whereRπt
(Ω(t)) is the reward collected under stateΩ(t) when channels in the setak(t) = πt(Ω(t))

are selected,πt specifies a mapping from the current information stateΩ(t) to a channel selection

actionak(t) = πt(Ω(t)) ⊂ N .

Let Vt(Ω) be the value function, which represent the maximum expecteddiscounted accumulative

reward obtained fromt to T given the initial belief vectorΩ. Let p01[x] andp11[x] denote the vector

[p01, · · · , p01] and [p11, · · · , p11] of lengthx. Thus, we arrive at the following optimality equation:

VT (Ω(t)) = max
ak(t)⊂N

E[R(Ω(t))] = max
ak(t)⊂N

F (Ω(t)) (3)

Vt(Ω(t)) = max
ak(t)⊂N

[F (Ω(t)) + βKt(Ω(t))] (4)

Kt(Ω(t)) =
∑

e∈P(ak(t))

∏

i∈e

ωi

∏

j∈ak(t)\e

(1− ωj)Vt+1(p11[|e|], τ(ωk+1(t)), · · · , τ(ωn(t)), p01[k − |e|])(5)

where,P(ak(t)) represents the power set generated by the setak(t), the expected immediate reward

F (Ω(t)) isF : Ω(t) → R, ande is the cardinality of sete. On right side of the above formulation (4),

the reward that can be collected from slott consists of two parts: the expected immediate reward

F (Ω(t)) and the future discounted accumulative rewardβKt(Ω(t)) calculated by summing over all

possible realizations of thek selected channels. InKt(Ω(t)), the channel state probability vector

consists of three parts: a sequence ofp11’s indicating those channels sensed to be in state1 at time

t; a sequence of valuesτ(ωj) for all j /∈ ak; and a sequence ofp01’s indicating those channels

sensed to be in state0 at time t.

Considering the computational complexity of the recursivestructure (4), we should seek other

policies but not optimal policy. One of the simplest approach is a greedy policy where at each

time step the objective is to maximize the expected immediate rewardF (Ω(t)). Thus, the greedy
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policy is given as follows:
âk(t) = arg max

ak(t)⊂N
F (Ω(t)) (6)

Note we always assume that the greedy policy,âk(t), is the optimal policy at slott in the rest

of paper, and then derive the sufficient condition ofβ to guarantee the optimality of the greedy

policy. Without introducing ambiguity,̂ak(t) andak(t) would be used alternatively in the rest.

III. STANDARD REWARD FUNCTION

A. Feature of Immediate Reward Function

For simplicity, we assume thatω1(t) ≥ ω2(t) ≥ · · · ≥ ωk(t), and then useak(t) = {1, · · ·k} and

ak(t) = {ω1(t), ..., ωk(t)} alternatively. The immediate rewardF (Ω(t)) = F (ω1(t), ..., ωk(t), ..., ωn(t)) =

F (ω1(t), ..., ωk(t)) means choosing the firstk channels. Especially, we drop the time slot index of

ωi(t), and abuseωi(t) andωi alternatively without introducing ambiguity.

Three fundamental while natural assumptions about the immediate reward functions are listed

as follows:

Assumption 1. (symmetry) The immediate reward functionF (Ω(t)) is symmetric about any two

different channels inak(t), that is,i, j ∈ ak(t), such that

F (ω1(t), ...ωi(t), ..., ωj(t), ...ωn(t)) = F (ω1(t), ...ωj(t), ..., ωi(t), ...ωn(t)), 1 ≤ i 6= j ≤ k (7)

Assumption 2. (affine) The immediate reward functionF (Ω(t)) is order 11 polynomial ofωi(t), 1 ≤

i ≤ n, that is,

F (ω1(t), ..., ωi−1(t), ωi(t), ωi+1(t), ..., ωn(t)) =

ωi(t)F (ω1(t), ..., ωi−1(t), 1, ωi+1(t), ..., ωn(t))

+ (1− ωi(t))F (ω1(t), ..., ωi−1(t), 0, ωi+1(t), ..., ωn(t)) (8)

Assumption 3. (monotonicity) The immediate reward functionF (Ω(t)) increases monotonically

with ωi(t), 1 ≤ i ≤ k, that is,

ω′
i(t) ≥ ωi(t) ⇒ F (ω1(t), ..., ω

′
i(t), ...ωn(t)) ≥ F (ω1(t), ..., ωi(t), ...ωn(t)) (9)

Note these assumptions are necessary and non-redundant. Moreover, these three assumptions are

used to define a class of general functions, referred to asstandardimmediate reward functions.

Definition 1. A reward function is standard one if it satisfies the aforementioned three assumptions.

1
F (Ω(t)) is affine in each variable if all other variables hold constant
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In order to see the intrinsic structure of the standard immediate reward function, we give three

basic examples.

Example 1. Considering the scenario in [8] where the user gets one unit of reward for each channel

sensed good. In this example, the expected slot reward function isF (Ω) =
∑k

i=1 ωi. It can be easily

verified thatF satisfies the above three assumptions and thus isstandard.

Example 2. Considering the scenario where the user gets one unit of reward only if all the channels

are sensed to be good. Thus the immediate reward is formulated by F (Ω) =
∏k

i=1 ωi, which is

standardone.

Example 3. Consider the scenario in [9] where the user gets one unit of reward if at least one

channel is sensed good. In this case, the expected slot reward function isF (Ω) = 1−
∏k

i=1(1−ωi),

which is standardby satisfying the three assumptions.

B. Feature of Accumulative Reward Function

In this part, some important features of the accumulative reward functionVt(Ω(t)) (also called

value function) will be proved, which consists of the proof base of the optimality of greedy policy

in the next section.

Lemma 1. (symmetry)Vt(Ω(t)) is symmetric aboutωi(t), ωj(t), 1 ≤ i, j ≤ k, that is,

Vt(ω1(t), ...ωi(t), ..., ωj(t), ...ωn(t)) = Vt(ω1(t), ...ωj(t), ..., ωi(t), ...ωn(t)), 1 ≤ i 6= j ≤ k

Proof: (1)According to assumption 1, for any1 ≤ i 6= j ≤ k in time slotT , since,VT (Ω(T )) =

F (Ω(T )), then it is easy to verifyVT (Ω(T )) is symmetric.

(2)AssumeVT−1(Ω(t)), ..., Vt+2(Ω(t)), Vt+1(Ω(t)) are true, then at timet

Vt(Ω(t)) = F (Ω(t)) + βKt(Ω(t))

Based on assumption 1,F (Ω(t)) is symmetric. By Lemma 9 (Appendix A), the second term,

Kt(Ω(t)) of the above formulation is symmetric. Hence,Vt(Ω(t)) is symmetric.

Lemma 2. (affine)Vt(Ω(t)) is an affine function ofωi(t), 1 ≤ i ≤ n when all otherωj(t), j 6= i,

1 ≤ j ≤ n hold constant.

Proof: (1) According to assumption 2, in time slotT , F (Ω(T )) is affine function ofωi(T ),

1 ≤ i ≤ n. Hence,VT (Ω(T )) = F (Ω(T )) is also affine function ofωi(T ).
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(2) AssumeVT−1(Ω(T − 1)),...,Vt+2(Ω(t+ 2)), Vt+1(Ω(t+ 1)) are affine functions, we prove it

also holds for slott. Two cases should be considered as follows:

Case 1: channelωi /∈ ak(t) = {ω1, ..., ωk}:

Vt(Ω(t)) = F (Ω(t)) + β
∑

e∈P(ak(t))

∏

p∈e

ωp

∏

q∈ak(t)\e

(1− ωq)Vt+1(p11[|e|], τ(ωk+1), ..., τ(ωn), p01[k − |e|])

SinceF (Ω(t)) is unrelated withωi, Vt+1(Ω(t + 1)) is the affine function ofωi by the induction

hypothesis andτ(ωi) is an affine transform ofωi, we haveVt(Ω(t)) is the affine function ofωi.

Case 2: channelωi ∈ ak(t), let ak−1(t) = ak(t)− {ωi}, we have

Vt(Ω(t)) = F (Ω(t)) + β
∑

e∈P(ak(t))

∏

p∈e

ωp

∏

q∈ak(t)\e

(1− ωq)Vt+1(p11[|e|], τ(ωk+1), ..., τ(ωn), p01[k − |e|])

= F (ω1, ..., ωi, ..., ωk) + β

k−1∑

m=0

∑

|e|=m

e∈P(ak−1(t))

∏

p∈e

ωp

∏

q∈ak−1(t)\e

(1− ωq){

ωiVt+1(p11[|e|], p11, τ(ωk+1), ..., τ(ωn), p01[k − |e|])

+ (1− ωi)Vt+1(p11[|e|], τ(ωk+1), ..., τ(ωn), p01, p01[k − |e|])

By assumption 2,F (ω1, ..., ωi, ..., ωk) is the affine function ofωi. The second term of the right

hand of the above formulation is also the affine function ofωi. Therefore,Vt(Ω(t)) is the affine

function ofωi. Combining the two cases, we haveVt(Ω(t)) is the affine function ofωi. Lemma 2

is concluded.

Lemma 3. (monotonicity)Vt(Ω(t)) increases monotonically withωi, 1 ≤ i ≤ n, that is,

ω
′

i(t) ≥ ωi(t) ⇒ Vt(ω1(t), ..., ω
′

i(t), ...ωn(t)) ≥ Vt(ω1(t), ..., ωi(t), ...ωn(t)), 1 ≤ i ≤ n

Proof: (1) The lemma holds trivially for slotT consideringVT (Ω(T )) = F (Ω(T )), which is

the increasing function withωi.

(2)AssumeVT−1(Ω(T − 1)),...,Vt+2(Ω(t+ 2)), Vt+1(Ω(t+ 1)) increase monotonically, we prove

it is true for slott by two different cases.

Case 1: channelωi /∈ ak(t):

Vt(Ω(t)) = F (Ω(t)) + β
∑

e∈P(ak(t))

∏

p∈e

ωp

∏

q∈ak(t)\e

(1− ωq)Vt+1(p11[|e|], τ(ωk+1), ..., τ(ωn), p01[k − |e|])

SinceF (Ω(t)) is unrelated withak(t), Vt+1(Ω(t+1)) increases withωi by the induction hypothesis

and τ(ωi) increases withωi whenp11 > p01, we haveVt(Ω(t)) is the increasing function ofωi.
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Case 2: channelωi ∈ ak(t), let ak−1(t) = ak(t)− {ωi}, we have

Vt(Ω(t)) = F (Ω(t)) + β
∑

e∈P(ak(t))

∏

p∈e

ωp

∏

q∈ak(t)\e

(1− ωq)Vt+1(p11[|e|], τ(ωk+1), ..., τ(ωn), p01[k − |e|])

= F (ω1, ..., ωi, ..., ωk) + β
k−1∑

m=0

∑

|e|=m

e∈P(ak−1(t))

∏

p∈e

ωp

∏

q∈ak−1(t)\e

(1− ωq)[

ωiVt+1(p11[|e|], p11, τ(ωk+1), ..., τ(ωn), p01[k − |e|])

+ (1− ωi)Vt+1(p11[|e|], τ(ωk+1), ..., τ(ωn), p01, p01[k − |e|])]

= F (ω1, ..., ωi, ..., ωk) +

k−1∑

m=0

∑

|e|=m

e∈P(ak−1(t))

∏

p∈e

ωp

∏

q∈ak−1(t)\e

(1− ωq)[

ωi[Vt+1(p11[|e|], p11, τ(ωk+1), ..., τ(ωn), p01[k − |e|])

− Vt+1(p11[|e|], τ(ωk+1), ..., τ(ωn), p01, p01[k − |e|])]

+ Vt+1(p11[|e|], τ(ωk+1), ..., τ(ωn), p01, p01[k − |e|])]

The first term,F (ω1, ..., ωi, ..., ωk)), of the right hand of the above formulation increases mono-

tonically with ωi, and the second term also is the increasing function ofωi because

Vt+1(p11[|e|], p11, τ(ωk+1), τ(ωk+2), · · · , τ(ωn−1), τ(ωn), p01[k − |e|])

− Vt+1(p11[|e|], τ(ωk+1), τ(ωk+2), · · · , τ(ωn−1), τ(ωn), p01, p01[k − |e|])

= [Vt+1(p11[|e|], p11, τ(ωk+1), τ(ωk+2), · · · , τ(ωn−1), τ(ωn), p01[k − |e|])

− Vt+1(p11[|e|], τ(ωk+1), τ(ωk+1), τ(ωk+2), · · · , τ(ωn−1), τ(ωn), p01[k − |e|])]

+ · · ·

+ [Vt+1(p11[|e|], τ(ωk+1), τ(ωk+2), · · · , τ(ωn−1), τ(ωn), τ(ωn), p01[k − |e|])

− Vt+1(p11[|e|], τ(ωk+1), τ(ωk+2), · · · , τ(ωn−1), τ(ωn), p01, p01[k − |e|])]

≥ 0

(10)

where, noticingτ(ωi) increases withωi andp01 ≤ τ(ω) ≤ p11 when p11 > p01, and each item in

brackets is larger than or equal to zero according to the induction hypothesis.

We haveVt(Ω(t)) increases monotonically withωi through the two cases and complete the proof.

Lemma 4. Vt(Ω(t)) is a standard reward function.

Proof: It is obvious thatVt(Ω(t)) is a standard reward function according to its definition and
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Lemma 1, 2 and 3.

In this section, we analyze the feature of a class of standardreward function,Vt(Ω(t)), of which

the optimality of greedy policy will be explored in the next section.

IV. OPTIMALITY OF GREEDY POLICY FOR STANDARD REWARD FUNCTION

In this section, we first give the main theorem of optimality for the class of standard reward

function, which states the sufficient condition of discounted factor for the optimality of greedy

policy. After introducing some useful lemmas, we will give the complete proof of the theorem of

optimality.

Let ω−i denote the believe vector except theith elementωi, and define



F ′
max , max

1≤i≤k
{
∂F (ω1(t), ..., ωi(t), ..., ωn(t))

∂ωi(t)
} = max

i∈N , ω−i∈[0,1]N−1

{F (1, ω−i)− F (0, ω−i)},

F ′
min , min

1≤i≤k
{
∂F (ω1(t), ..., ωi(t), ..., ωn(t))

∂ωi(t)
} = min

i∈N , ω−i∈[0,1]N−1

{F (1, ω−i)− F (0, ω−i)}.

It is easy to verify thatF ′
max ≥ F ′

min ≥ 0 based on the three basic assumptions.

The main theorem of optimality is firstly stated as follows:

Theorem 1. The myopic policy is optimal forp01 ≤ ωi(1) ≤ p11, 1 ≤ i ≤ N if F (Ω(t)) is a

standard reward function, and the discounted factorβ satisfies the following condition:

0 ≤β ≤
F

′

min

F ′

max(1− (1− p11)N−k−1)
(11)

In order to prove the Theorem 1, we introduce some useful lemmas firstly. Note Lemmas 5, 6

and 7 hold under condition (11) in the rest of the paper.

Lemma 5. If k + 1 ≤ i ≤ n− 1, p11 ≥ ωi ≥ ωi+1 ≥ p01, and (11) is satisfied,

Vt(ω1, ..., ωk, ..., ωi, ωi+1, , ..., ωn)− Vt(ω1, ..., ωk, ..., ωi+1, ωi, , ..., ωn) ≥ 0, t = 1, · · · , T. (12)

Lemma 6. For 1 > ω1(t) ≥ ω2(t) ≥ ... ≥ ωn(t) > 0, if (11) is satisfied, we have the following

inequality for all t = 1, 2, ..., T :

Vt(ω1, ..., ωk, ..., ωn−1, ωn)− Vt(ωn, ω1, ..., ωk, ..., ωn−1) ≤ F
′

max, t = 1, · · · , T. (13)

Lemma 7. If p11 ≥ x ≥ y ≥ p01 and (11) is satisfied,

Vt(ω1, ..., ωk−1, x, y, ..., ωn)− Vt(ω1, ..., ωk−1, y, x, ..., ωn) ≥ 0, t = 1, · · · , T. (14)

Remark. We would like to point out the complicated dependence in the following proving process

that Lemma 5 depends on Lemma 2, 6 and 7, Lemma 6 depends on Lemma 6 and 7, Lemma



11

7 depends on Lemma 7 and 6. Therefore, we give the proof of Lemma 5, 6 and 7 together by

backward induction over time horizon.

Proof: The proving process is based on backward induction in three steps as follows:

• step1: slot T ,

These Lemmas hold trivially in slotT noticing VT (Ω(T ) = F (Ω(T ))).

part 1: Lemma 5:

VT (Ω1, ..., ωk, ..., ωi, ωi+1, , ..., ωn)− VT (ω1, ..., ωk, ..., ωi+1, ωi, , ..., ωn)

= F (ω1, ..., ωk)− F (ω1, ..., ωk) = 0

part 2: Lemma 6:

VT (ω1, ..., ωk, ..., ωn−1, ωn)− VT (ωn, ω1, ..., ωk, ..., ωn−1)

= F (ω1, ..., ωk−1, ωk)− F (ωn, ω1, ..., ωk−1)

= (ωk − ωn)(F (ω1, ..., ωk−1, 1)− F (ω1, ..., ωk−1, 0)) ≤ F
′

max

where, the second equality is due to Lemma 1 and 2.

part 3: Lemma 7:

VT (ω1, ..., ωk−1, x, y, ..., ωn)− VT (ω1, ..., ωk−1, y, x, ..., ωn)

= F (ω1, ..., ωk−1, x)− F (ω1, ..., ωk−1, y)

= (x− y)(F (ω1, ..., ωk−1, 1)− F (ω1, ..., ωk−1, 0))

≥ (x− y)F
′

min ≥ 0

• step2: slot t+ 1, ..., T − 1:

Now suppose att+1, ..., T −1, Lemma 5 (Induction Hypothesis 1, HS1), 6 (Induction Hypothesis

2, HS2), and 7 (Induction Hypothesis 3, HS3) are true, we thusprove these Lemmas also hold in

slot t.

• step3: slot t:
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part 1: Lemma 5:

Vt(ω1, ..., ωk, ..., ωi, ωi+1, , ..., ωn)− Vt(ω1, ..., ωk, ..., ωi+1, ωi, , ..., ωn)

= (ωi − ωi+1)(Vt(ω1, ..., ωi−1, 1, 0, ωi+2, , ..., ωn)− Vt(ω1, ..., ωi−1, 0, 1, ωi+2, ..., ωn))

= (ωi − ωi+1){F (ω1, ..., ωk) + β
∑

e∈P(ak(t))

∏

i∈e

ωi

∏

j∈ak(t)\e

(1− ωj)×

Vt+1(p11[|e|], τ(ωk+1), ..., τ(ωi−1), p11, p01, τ(ωi+2), ..., τ(ωn), p01[k − |e|])}

− (ωi − ωi+1){F (ω1, ..., ωk) + β
∑

e∈P(ak(t))

∏

i∈e

ωi

∏

j∈ak(t)\e

(1− ωj)×

Vt+1(p11[|e|], τ(ωk+1), ..., τ(ωi−1), p01, p11, τ(ωi+2), ..., τ(ωn), p01[k − |e|])}

= (ωi − ωi+1)β
∑

e∈P(ak(t))

∏

i∈e

ωi

∏

j∈ak(t)\e

(1− ωj){

Vt+1(p11[|e|], τ(ωk+1), ..., τ(ωi−1), p11, p01, τ(ωi+2), ..., τ(ωn), p01[k − |e|])

− Vt+1(p11[|e|], τ(ωk+1), ..., τ(ωi−1), p01, p11, τ(ωi+2), ..., τ(ωn), p01[k − |e|])}

≥ 0

where,ak(t) = {ω1, ..., ωk}, the first equality is due to Lemma 2, the inequality is due to the IH1

if |e|+ i−k−1 ≥ k, and IH3 if |e|+ i−k−1 = k−1, and the Lemma 1 if|e|+ i−k−1 < k−1.

part 2: Lemma 6:

we have the following decomposition according to the Lemma 2

Vt(ω1, ω2, ..., ωk−1, ωk, ..., ωn−1, ωn)− Vt(ωn, ω1, ω2, ..., ωk−1, ωk, ..., ωn−1)

= ωkωn((ω1, ω2, ..., ωk−1, 1, ωk+1, ..., ωn−1, 1)− Vt(1, ω1, ω2, ..., ωk−1, 1, ωk+1, ..., ωn−1))

+ ωk(1− ωn)((ω1, ω2, ..., ωk−1, 1, ωk+1, ..., ωn−1, 0)− Vt(0, ω1, ω2, ..., ωk−1, 1, ωk+1, ..., ωn−1))

+ (1− ωk)ωn((ω1, ω2, ..., ωk−1, 0, ωk+1, ..., ωn−1, 1)− Vt(1, ω1, ω2, ..., ωk−1, 0, ωk+1, ..., ωn−1))

+ (1− ωk)(1− ωn)((ω1, ω2, ..., ωk−1, 0, ωk+1, ..., ωn−1, 0)− Vt(0, ω1, ω2, ..., ωk−1, 0, ωk+1, ..., ωn−1))

Therefore, we analyze the above formulation through four cases as follows:

Case 1. The first term of the right hand of the above formulation where channelsk andn have

the state realization ”1” and ”1”, respectively, and denoteak−1(t) = {ω1, ω2, ..., ωk−1}, we thus
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have

Vt(ω1, ω2, ..., ωk−1, 1, ωk+1, ..., ωn−1, 1)− Vt(1, ω1, ω2, ..., ωk−1, 1, ωk+1, ..., ωn−1)

= F (ω1, ω2, ..., ωk−1, 1)− F (1, ω1, ω2, ..., ωk−1)

+ β
∑

e∈P(ak−1(t))

∏

i∈e

ωi

∏

j∈ak−1(t)\e

(1− ωj){

Vt+1(p11[|e|], p11, τ(ωk+1), ..., τ(ωn−1), τ(ωn), p01[k − 1− |e|])

− Vt+1(p11[|e|], p11, τ(ωk), τ(ωk+1), ...τ(ωn−1), p01[k − 1− |e|])}

= β
∑

e∈P(ak−1(t))

∏

i∈e

ωi

∏

j∈ak−1(t)\e

(1− ωj){

Vt+1(p11[|e|], p11, τ(ωk+1), ..., τ(ωn−1), p11, p01[k − 1− |e|])

− Vt+1(p11[|e|], p11, p11, τ(ωk+1), ...τ(ωn−1), p01[k − 1− |e|])}

≤ 0 ≤ F
′

max

where, the first inequality is due to the Lemma 3 according to the similar way as (10).

Case 2. The second term of the right hand of the above formulation where channelsk andn

have the state realization ”1” and ”0”, respectively, and denoteak−1(t) = {ω1, ω2, ..., ωk−1},

Vt(ω1, ω2, ..., ωk−1, 1, ωk+1, ..., ωn−1, 0)− Vt(0, ω1, ω2, ..., ωk−1, 1, ωk+1, ..., ωn−1)

= F (ω1, ω2, ..., ωk−1, 1)− F (0, ω1, ω2, ..., ωk−1)

+ β
∑

e∈P(ak−1(t))

∏

i∈e

ωi

∏

j∈ak−1(t)\e

(1− ωj){

Vt+1(p11[|e|], p11, τ(ωk+1), ..., τ(ωn−1), p01, , p01[k − 1− |e|])

− Vt+1(p11[|e|], p11, τ(ωk+1), ...τ(ωn−1), p01, p01[k − 1− |e|])}

= F (ω1, ω2, ..., ωk−1, 1)− F (0, ω1, ω2, ..., ωk−1)

≤ F
′

max

Case 3. The third term of the right hand of the above formulation where channelsk andn have
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the state realization ”0” and ”1”, respectively, and denoteak−1(t) = {ω1, ω2, ..., ωk−1},

Vt(ω1, ω2, ..., ωk−1, 0, ωk+1, ..., ωn−1, 1)− Vt(1, ω1, ω2, ..., ωk−1, 0, ωk+1, ..., ωn−1)

= F (ω1, ω2, ..., ωk−1, 0)− F (1, ω1, ω2, ..., ωk−1)

+ β
∑

e∈P(ak−1(t))

∏

i∈e

ωi

∏

j∈ak−1(t)\e

(1− ωj){

Vt+1(p11[|e|], τ(ωk+1), ..., τ(ωn−1), p11, p01, , p01[k − 1− |e|])

− Vt+1(p11[|e|], p11, p01, τ(ωk+1), ...τ(ωn−1), p01[k − 1− |e|])}

≤ F (ω1, ω2, ..., ωk−1, 0)− F (1, ω1, ω2, ..., ωk−1)

+ β
∑

e∈P(ak−1(t))

∏

i∈e

ωi

∏

j∈ak−1(t)\e

(1− ωj){

Vt+1(p11[|e|], τ(ωk+1), ..., τ(ωn−1), p11, p01, , p01[k − 1− |e|])

− Vt+1(p11[|e|], p01, p11, τ(ωk+1), ...τ(ωn−1), p01[k − 1− |e|])}

= F (ω1, ω2, ..., ωk−1, 0)− F (1, ω1, ω2, ..., ωk−1)

+ β
∑

e∈P(ak−1(t))

∏

i∈e

ωi

∏

j∈ak−1(t)\e

(1− ωj){

Vt+1(p11[|e|], τ(ωk+1), ..., τ(ωn−1), p11, p01, , p01[k − 1− |e|])

− Vt+1(p01, p11[|e|], p11, τ(ωk+1), ...τ(ωn−1), p01[k − 1− |e|])}

≤ F (ω1, ω2, ..., ωk−1, 0)− F (1, ω1, ω2, ..., ωk−1)

+ β
∑

e∈P(ak−1(t))

∏

i∈e

ωi

∏

j∈ak−1(t)\e

(1− ωj){

Vt+1(p11[|e|], τ(ωk+1), ..., τ(ωn−1), p11, p01, , p01[k − 1− |e|])

+ F
′

max − Vt+1(p11[|e|], p11, τ(ωk+1), ...τ(ωn−1), p01, p01[k − 1− |e|])}

≤ F (ω1, ω2, ..., ωk−1, 0)− F (1, ω1, ω2, ..., ωk−1) + βF
′

max

≤ βF
′

max ≤ F
′

max

where, the first inequality is due to IH3 when|e|+1 = k, the second one due to the IH2, and the

second equality due to Lemma 1 when|e|+ 1 < k, noticing0 ≤ |e| ≤ k − 1.

Case 4. The forth term of the right hand of the above formulation where channelsk andn have
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the state realization ”0” and ”0”, respectively, and denoteak−1(t) = {ω1, ω2, ..., ωk−1},

Vt(ω1, ω2, ..., ωk−1, 0, ωk+1, ..., ωn−1, 0)− Vt(0, ω1, ω2, ..., ωk−1, 0, ωk+1, ..., ωn−1)

= F (ω1, ω2, ..., ωk−1, 0)− F (0, ω1, ω2, ..., ωk−1)

+ β
∑

e∈P(ak−1(t))

∏

i∈e

ωi

∏

j∈ak−1(t)\e

(1− ωj){

Vt+1(p11[|e|], τ(ωk+1), ..., τ(ωn−1), p01, p01, p01[k − 1− |e|])

− Vt+1(p11[|e|], p01, τ(ωk+1), ...τ(ωn−1), p01, p01[k − 1− |e|])}

= β
∑

e∈P(ak−1(t))

∏

i∈e

ωi

∏

j∈ak−1(t)\e

(1− ωj){

Vt+1(p11[|e|], τ(ωk+1), ..., τ(ωn−1), p01, p01, p01[k − 1− |e|])

− Vt+1(p11[|e|], p01, τ(ωk+1), ...τ(ωn−1), p01, p01[k − 1− |e|])}

= β
∑

e∈P(ak−1(t))

∏

i∈e

ωi

∏

j∈ak−1(t)\e

(1− ωj){

Vt+1(p11[|e|], τ(ωk+1), ..., τ(ωn−2), τ(ωn−1), p01, p01, p01[k − 1− |e|])

− Vt+1(p01, p11[|e|], τ(ωk+1), ...τ(ωn−1), p01, p01[k − 1− |e|])}

≤ β
∑

e∈P(ak−1(t))

∏

i∈e

ωi

∏

j∈ak−1(t)\e

(1− ωj){

Vt+1(p11[|e|], τ(ωk+1), τ(ωk+2), ..., τ(ωn−2), τ(ωn−1), p01, p01, p01[k − 1− |e|])

+ F
′

max − Vt+1(p11[|e|], τ(ωk+1), ...τ(ωn−1), p01, p01, p01[k − 1− |e|])}

≤ βF
′

max

where, the first inequality is due to the IH2 and the third equality is due to Lemma 1.

Combing the results of cases 1, 2, 3, and 4, we have

Vt(ω1, ω2, ..., ωk−1, ωk, ..., ωn−1, ωn)− Vt(ωn, ω1, ω2, ..., ωk−1, ωk, ..., ωn−1)

≤ ωkωn0 + ωk(1− ωn)F
′

max + (1− ωk)ωnβF
′

max + (1− ωk)(1− ωn)βF
′

max

≤ F
′

max

To this end, we complete the proof of Lemma 6.

part 3: Lemma 7:
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Vt(ω1, ..., ωk−1, x, y, ..., ωn)− Vt(ω1, ..., ωk−1, y, x, ..., ωn)

= (x− y)(Vt(ω1, ..., ωk−1, 1, 0, ..., ωn)− Vt(ω1, ..., ωk−1, 0, 1, ..., ωn))

= (x− y)(F (ω1, ..., ωk−1, 1)− (ω1, ..., ωk−1, 0))

+ (x− y)β
∑

e∈P(ak−1(t))

∏

i∈e

ωi

∏

j∈ak−1(t)\e

(1− ωj){

Vt+1(p11[|e|], p11, p01, τ(ωk+2), ..., τ(ωn), p01[k − 1− |e|])

− Vt+1(p11[|e|], p11, τ(ωk+2), ...τ(ωn), p01, p01[k − 1− |e|])}

≥ (x− y)(F (ω1, ..., ωk−1, 1)− F (ω1, ..., ωk−1, 0))

− β(x− y)(1−
N∏

j=k+2

(1− ωj))F
′

max

≥ (x− y)F
′

min − β(x− y)(1−
N∏

j=k+2

(1− ωj))F
′

max

= (x− y)(1−
N∏

j=k+2

(1− ωj))F
′

max(
F

′

min

F

′

max
(1−

N∏

j=k+2

(1− ωj))− β)

≥ (x− y)(1−
N∏

j=k+2

(1− ωj))(
F

′

min

F ′

max(1− (1− p11)N−k−1)
− β)

≥ 0

where, the third inequality is due to condition (11) and the first inequality is due to the following

inequality formulation,

∆V = Vt+1(p11[|e|], p11, p01, τ(ωk+2), ..., τ(ωn), p01[k − 1− |e|])

− Vt+1(p11[|e|], p11, τ(ωk+2), ...τ(ωn), p01, p01[k − 1− |e|])}

≥ −(1−
N∏

j=k+2

(1− ωj))F
′

max

(15)

Note, if τ(ωk+2) = · · · τ(ωn) = p01, then∆V = 0. This event happens with the probability equaling

to
∏N

j=k+2(1− ωj). Thus with the probability1−
∏N

j=k+2(1− ωj), exists at leasti, k+ 2 ≤ i ≤ n

such thatτ(ωi) > p01. According to the IH2 and IH4, we have∆V ≥ −F
′

max with probability

1−
∏N

j=k+2(1− ωj), which is (15).

Therefore, we finish the whole proving process of Lemmas 5, 6,and 7.

After obtaining the Lemmas 5, 6, and 7, we are ready to prove the Theorem 1.
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Proof: The basic approach is by induction ont. It is obvious that the myopic policy is optimal

at T . Now, assuming the optimality of the myopic policy fort + 1, ..., T − 1, we shall show the

myopic policy is also optimal fort. Denote{i1, · · · , in} as any one of permutations ofN . To

prove the optimality of greedy policy in slott, we need to prove

Vt(ω1, · · · , ωk, · · · , ωn) ≥ Vt(ωi1, · · · , ωik , · · · , ωin) (16)

The proving process is same as the Bubble Sort algorithm, comparing each pair of adjacent items

and swapping them if they are in the wrong order according to Lemma 1, 5 and 7 until no swaps

are needed, which indicates that the list is sorted toVt(ω1, · · · , ωk, · · · , ωn). The optimality of

greedy policy at slott is guaranteed. Therefore, the Theorem 1 is concluded.

Corollary 1. The greedy policy is optimal if choosing1 out of n channels for0 < β ≤ 1 if

p11 > p01.

Proof: When k = 1, according to Lemmas 1, 2 and 3, we haveF (Ω(t)) = aωi(t), a > 0,

thence,
F

′

min

F ′

max(1− (1− p11)N−k−1)
=

1

(1− (1− p11)N−2)
> 1 (17)

According to Theorem 1, we have the conclusion.

Corollary 2. The greedy policy is optimal if choosingn− 1 out of n channels for0 < β ≤ 1.

Proof: In case ofk = n− 1, we have[
F

′

min

F ′

max(1− (1− p11)N−k−1)

]

k=N−1

−→ ∞ (18)

Hence, the greedy policy is optimal according to Theorem 1.

V. APPLICATIONS IN COGNITIVE RADIO NETWORK

To illustrate the application of the mathematical results derived in the previous section, three typ-

ical scenarios [8] [9] described by standard reward function are presented here, which demonstrate

that the different optimality conditions are completely due to different forms of the immediate

reward function.

A. Application 1

An application is in a synchronously slotted cognitive radio network where a SU can opportunis-

tically access a setN of N i.i.d. channels partially occupied by PUs. The state of eachchannel

i in time slot t, denoted bySi(t), is modeled by a discrete time two-state Markov chain. At the
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beginning of each slott, the SU selects a subsetA(t) of channels to sense. If at least one of the

sensed channels is in the idle state (i.e., unoccupied by anyPU), the SU transmits its packet and

collects one unit of reward. Otherwise, the SU cannot transmit, thus obtaining no reward. These

decision procedure is repeated for each slot. The objectiveis to maximize the average reward over

T slots, that is to say, the discounted factorβ = 1.

Obviously, we have the immediate reward function as follows:

F (Ω(t)) = 1−
∏

i∈A(t)

(1− ωi(t))

Therefore, the greedy policy is to choose the bestk channels by (6). According to Theorem 1, we

haveF
′

max = (1 − p01)
k−1, F

′

min = (1 − p11)
k−1 if p01 ≤ ωi(0) ≤ p11, 1 ≤ i ≤ n. Therefore the

greedy policy, choosing the bestk out of n channels, is optimal if the discounted factorβ satisfies

the following condition:

0 ≤β ≤
(1− p11)

k−1

(1− p01)k−1(1− (1− p11)N−k−1)

Obviously, the upper bound cannot achieve 1 generally. Thus, the greedy policy, in general, is not

optimal for the average reward over time horizon proved in our previous work [9]. In particular, the

greedy policy, choosing the bestk = 1 or n− 1 out of n channels is optimal forβ = 1 according

to the corollary 1 and 2.

B. Application 2

Consider the problem of probingn independent Markov chains. Each one has two states–good

(1) and bad (0)–with transition probabilitiesp11, p01 across chain. Assumingp11 > p01. A player

selectsk chains to probe according to its preference (policy) and obtain a reward for each probed

chain in the good state. We assume that the reward is affine function of the probability of the

selected channel in the good state, i.e.,ui(t) = aωi(t), a > 0, then we have the immediate reward

function as follows:
F (Ω(t)) = a

n∑

i=1

ωi(t)

SinceF
′

max = F
′

min = a, thus,

0 ≤β ≤ 1 <
1

(1− (1− p11)N−k−1)

we have the following conclusion about this problem by Theorem 1:

Lemma 8. The greedy policy of choosing the firstk best channels is optimal for0 < β ≤ 1.
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Obviously, this result is consistent with [7] [8].

C. Application 3

Consider the scenario where a player detectsn independent Markov chains. Each one has two

states–good (1) and bad (0)–with transition probabilitiesp11, p01 (p11 > p01) across chain. The

player selectsk chains to detect according to its policy and obtain one unit of reward if all

detected channels are good; otherwise , no reward. We assumethat the probability ofi channel in

good state at timet is ωi(t), then we have the immediate reward function as follows:

F (Ω(t)) = Πn
i=1ωi(t)

Therefore, the greedy policy is to detect the firstk best channels, andF
′

max = pk−1
11 , F

′

min = pk−1
01 .

We have the following conclusion by Theorem 1:

0 ≤β ≤
pk−1
01

pk−1
11 (1− (1− p11)n−k−1)

So in case of1 < k < n− 1 the greedy policy is not optimal generally forβ = 1, while choosing

the bestk = 1 or k = n− 1 out of n channels is optimal for0 < β ≤ 1.

VI. CONCLUSION

In this paper, we considered a class of POMDP problem arisen in the fields of cognitive radio

network, server scheduling, and downlink scheduling in cellular systems, characterized by the so-

called standard reward function. For this class of POMDP, weestablish the optimal condition of

the greedy policy only focusing the maximization of the immediate reward. The technical approach

analyzing this problem is purely mathematical, and thus is general for other models involving the

recursive backward induction on the time horizon. The future direction is to investigate non i.i.d

Markov chain model through the proposed method, and anothermore challenging work is to extend

the standard reward function by dropping at least one of three basic assumptions.

APPENDIX A

PROOF OFLEMMA 9

Lemma 9. Assumeak(t) = {ω1(t), · · · , ωk(t)}, Kt(Ω(t)) is symmetric aboutωi(t), ωj(t) for all

1 ≤ i, j ≤ k, that is,

Kt(ω1(t), · · · , ωi(t), · · · , ωj(t), · · · , ωn(t)) = Kt(ω1(t), · · · , ωj(t), · · · , ωi(t), · · · , ωn(t))
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Proof: Let

Km
t (Ω(t)) =

∑

e∈P(ak(t))
|e|=m

∏

i∈e

ωi

∏

j∈ak(t)\e

(1− ωj)Vt+1(p11[|e|], τ(ωk+1), · · · , τ(ωn), p01[k − |e|]) (19)

Therefore,

Kt(Ω(t)) =

k∑

m=0

Km
t (Ω(t)) (20)

SinceVt+1(p11[|e|], τ(ωk+1), · · · , τ(ωn), p01[k]) is unrelated withak(t), we only need to prove the

k + 1 coefficients is symmetric aboutωi(t), ωj(t) for all 1 ≤ i, j ≤ k, that is,

Cm
t =

∑

e∈P(ak(t))
|e|=m

∏

i∈e

ωi

∏

j∈ak(t)\e

(1− ωj), 0 ≤ m ≤ k

is symmetric aboutωi(t), ωj(t). Based on the feature of power setP(ak(t)), it is simple to verify

that Cm
t , (0 ≤ m ≤ k) is symmetric about any twoωi(t), ωj(t) ∈ ak(t). Therefore,Kt(Ω(t)) is

symmetric aboutωi(t), ωj(t) ∈ ak(t).
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