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On Optimality of Greedy Policy for a Class of
Standard Reward Function of Restless

Multi-armed Bandit Problem

Quan Liu, Kehao Wang, Lin Chen

Abstract

In this paper,we consider the restless bandit problem,wisione of the most well-studied generaliza-
tions of the celebrated stochastic multi-armed bandit lerakin decision theory. However, it is known be
PSPACE-Hard to approximate to any non-trivial factor. Tthesoptimality is very difficult to obtain due to
its high complexity. A natural method is to obtain the grepdlicy considering its stability and simplicity.
However, the greedy policy will result in the optimality fo$or its intrinsic myopic behavior generally.
In this paper, by analyzing one class of so-called standasénd function, we establish the closed-form
condition about the discounted factérsuch that the optimality of the greedy policy is guaranteedeu
the discounted expected reward criterion, especiallycthedition 5 = 1 indicating the optimality of the
greedy policy under the average accumulative reward miteirhus, the standard form of reward function
can easily be used to judge the optimality of the greedy palithout any complicated calculation. Some
examples in cognitive radio networks are presented to wéhié effectiveness of the mathematical result

in judging the optimality of the greedy policy.

Index Terms

Partially observed Markov decision process (POMDP), rarithed restless bandit problems, optimal-

ity, greedy policy, cognitive radio

I. INTRODUCTION

We consider the system consisting @funcontrolled Markov chains evolving independently
in the discrete time. Each of those chains is an independentically-distributed (iid) two-state

Markov process. The two states will be denoted as "good’esfsiate 1) and "bad” state (state
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0). The transition probabilities ig;;,7,j = 0,1. In each time instance of the system, a user is
allowed to selectt out of then process according to its strategy, and to observe theiesstat
(assuming the precise observation), while those procasseselected by the user will evolve
according to their rules. The user would obtain some rewateérchined by the combination of
those observed states of theselected processes, i.e. collecting no reward if thosestat &
processes are observed "bad”. The above selecting, obgeramd collecting process repeats until
the user does not access the system. Obviously, it is a amafied bandit (MAB) probleni[1] as
well as partially observed Markov decision process (POMP®plem which has been used and
studied in the 7] [2]. Unfortunately, obtaining optimal solutions to a gealerestless bandit process
is PSPACE-Hard [3], and analytical characterizations efplerformance of the optimal policy are
often intractable. Hence the greedy policy governing thanclel selection is the suitable choice
because it only focuses on maximization of the immediateardvignoring its affect on the future
reward. However, the greedy policy is not optimal generally

Thus, recently arise two main research directions addrgssgie greedy policy of this kind
of MAB problem. The first one is to seek the constant-factgorapimation algorithm, such as
68-approximation[[4] developed via the linear programmmetpxation under the condition of
p11 > 0.5 > pgy; for each arm, and 2-approximation policy for a class of monetrestless bandit
problem [5]. The relevant application in dynamic multichehaccess is the papeér [6], where the
authors established the indexability and obtained Whititiex in closed form for both discounted
and average reward criteria. Another research directioto isxplore the optimal condition of
greedy policy corresponding to a concrete application enado. Our work follows on this line.
Although many literatures have studied this problem, theédiate reward function in those wroks
only focuses on the linear combination of those observestae. in [[7], the optimality of the
greedy policy was proved in choosirig= 1 of N channels in the case of positively correlated
channels, and then extended to arbitrarghannels in[[B]. In our previous workl[9], nevertheless,
we have extended the work inl[7] on another line to the scenatiere the immediate reward
function is the simplest non-linear combination of obsdratates, and proved that the greedy
policy is not optimal generally, which is contrary to theukof [8] where the immediate reward
function is the linear combination of observed states. Tdwetrary conclusion make it necessary
to study affect of the immediate reward function on the optity of greedy policy, which is one

of the major incentives for this paper.



From the technical perspective, the optimality of greedycgameeds user prefer to exploit rather
than to explorer. One simplest approach to implement thisha@sm is to adjust the balance
between exploitation and exploration by the discountetbfag. On the other hand, noticing the
different conclusion resulting from the nuance of immeaglisward functions [8] 9], then we only
focus on one generic and basic class of immediate rewardifumformulated bythe combination of
variables of order 1referred to astandardreward function. Therefore, our objective is to derive the
sufficient condition of the discounted factor such that theedy policy is guaranteed to be optimal
for the so-calledstandardreward function under the discounted accumulative rewatdron. If
the discounted factgs = 1, the optimality of greedy policy for the discounted accuatie reward
can be promoted to the optimality for the average expectedreon the time horizon of interest.
Therefore, we can judge the optimality of the greedy polioythe discounted accumulative and
average expected reward according to the closed-form tondif 5. To the best of our knowledge,
very few results been reported from this perspective.

Compared with other existing works on the optimality of ghgeolicy in MAB problem, and

our contribution is three-fold:

« We analyze one special class of MBA problem where the imnedieward function is
so-called standard one, and derive that the discountedradative reward function also is
standard reward function. Furthermore, we establish thienafity of greedy policy under the
discounted accumulative reward criterion wh&n > po;. The theoretical results demonstrate
that the greedy policy choosing the best 1 6r— 1 out of N channels is optimal when
0 < B < 1. For the case of choosing (1 < £ < N — 1) channels, the greedy policy is
optimal only when the discounted factor satisfies a simpbsezd-form condition.

« The major technique developed in this paper is largely basethe analytic properties of
standard reward function, completely different fram [7] f8lying on the coupling argument.
Besides significant and practical application in cognitaeio networks, this technique serves
as the key criterion to judge the optimality of greedy poliepen the immediate reward
function is the combination of the standard functions ineotbcenarios.

« We analyze two practical models in the cognitive radio nekaoThe first model in cognitive
radio networks involves the sensing order problem wherest#wondary user selects(1 <
k < N) of N channels in order to maximize the probability of finding afeidhannel. It

is obvious that the immediate reward function is the ordemf-inear combination of the



availability probabilities of selected channels. The hedemonstrates that the greedy policy
is not optimal generally under the average expected rewehih is coherent with [9]. The
second model is that a user choo#¢s < k£ < N) channels to access and receive a reward
on the channel in good state. The immediate reward functidhe linear combination of the
availability of those selected channels. Our derived teisutonsistent with that in[[7][8]

where the myopic policy choosing any number of channels tsrap.

The rest of the paper is organized as follows: Our model imfdated in Sectioflll. Sectidn]ll
analyzes standard reward function. Secfioh IV gives tha@raity theorem of the myopic policy.

Three applications are given in Sectioh V. Finally, our dosions are summarized in Sectionl VI.

[I. PROBLEM FORMULATION

As outlined in the introduction, we consider a user tryingatttess the system consisting of
n independent and statistically identical channels, eaghngby a two state Markov chain. The
set of n channels is denoted hy/, each indexed by = 1,2,....,n, and the state of channel
denoted bysS;(t) = {1 (good) 0 (bad)}. The system operates in discrete time steps indexed by
(t=1,2,...,T7), whereT is the time horizon of interest (or the user gives up accgdsia system).
Specifically, we assume that channels go through stateticanat the beginning of slot and then
at timet the user makes the channel selection decision. Limited bywae or sensing policy, at
time ¢ the user is allowed to chooge(l < k < n) of then channels to sense, the chosen channel
set denoted by*(t) C N, |a*(t)| = k.

Obviously, the user cannot observe the whole stdfes= [0, 1]" of the underlying system (i.e.,
the states of. channels). We know that a sufficient statistic of such a sy$te optimal decision
making, or the information state of the system, is given by tbnditional probabilities of the
state each channel is in given all past actions and obsengaf?]. We denote this information
state (also called belief vector) W¥(¢) = [wy (%), ..., wn(t)] € [0, 1]™, wherew;(t) is the conditional
probability that channel is in state 1 at time given all past states, actions and observations. In the
rest of the papew;(t) will be referred to as the information state of channet timet, or simply
the channel probability of at timet. Due to the Markovian nature of the channel model, the
future information state is only a function of the currenfiormation state and the current action,
i.e., it is independent of past history given the currenbinfation state and action. Given that the

information state at time is Q(¢) = {w;(t),i € N’} and the sensing policy*(t) C A is taken,



the state at time + 1 can be updated using Bayes Rule as showilin (1).
D11, i€ab(t),Si(t) =1
wi(t +1) = 1 por, i€ ak(t),Si(t)=0- 1)
T(wit)), i¢d"(t)
where, 7(w;(t)) = wi(t)p11 + [1 — w;i(t)]por-
The objective is to maximize the discounted accumulativeard over a finite horizon given in

the following problem: T

max ET[Y 5" R, (Q(1)|2(1)] 2

t=1
whereR,,(Q(t)) is the reward collected under st&¢t) when channels in the set(t) = m,(Q(t))

are selectedy, specifies a mapping from the current information stafe) to a channel selection
actiona®(t) = m(Q(t)) C N.
Let V;(Q2) be the value function, which represent the maximum expetitabunted accumulative

reward obtained from to 7" given the initial belief vectof). Let py, [x] andp;;[x] denote the vector

[po1, -+ ,po1] @and[py1, - ,p11] of lengthx. Thus, we arrive at the following optimality equation:
Vr(Q(t)) = ER(Qt))| = F(Q(t 3
T(82(t)) Jmax [R((t))] e (©(1)) 3)
Vi(Q(t)) = max [F(Q(t)) + SE(Q(1))] (4)
a®(t)CN

Ki(Q(t) = Yo Iw II @—w)Vialeullell r@isr(®), - m(@n(t)), porlk — |5

ecP(ak(t)) ice jeak(t)\e

where,P(a*(t)) represents the power set generated by the’se}, the expected immediate reward
F(Q(t))is F : Q(t) — R, ande is the cardinality of set. On right side of the above formulatidd (4),
the reward that can be collected from statonsists of two parts: the expected immediate reward
F(Q(t)) and the future discounted accumulative reward,(€2(¢)) calculated by summing over all
possible realizations of the selected channels. IR, (€2(¢)), the channel state probability vector
consists of three parts: a sequence@fs indicating those channels sensed to be in staetime
t; a sequence of valuesw;) for all j ¢ «*; and a sequence gfy’s indicating those channels
sensed to be in stateat timet.

Considering the computational complexity of the recurstreicture [(#), we should seek other
policies but not optimal policy. One of the simplest appfoa a greedy policy where at each

time step the objective is to maximize the expected immedietvardF'(€2(¢)). Thus, the greedy



policy is given as follows:

at(t) = arg Jax FQ() (6)

Note we always assume that the greedy polic(t), is the optimal policy at slot in the rest
of paper, and then derive the sufficient conditionfofo guarantee the optimality of the greedy

policy. Without introducing ambiguityz®(¢) anda”*(¢) would be used alternatively in the rest.

I1l. STANDARD REWARD FUNCTION
A. Feature of Immediate Reward Function

For simplicity, we assume that, () > wy(t) > --- > wy(t), and then use”(¢t) = {1,-- -k} and
a®(t) = {wi(t), ...,wi(t)} alternatively. The immediate rewafd Q(t)) = F(wi(t), ..., wi(t), ..., wn(t)) =
F(wi(t),...,wx(t)) means choosing the firétchannels. Especially, we drop the time slot index of
w;(t), and abusey;(t) andw; alternatively without introducing ambiguity.

Three fundamental while natural assumptions about the uhates reward functions are listed

as follows:

Assumption 1. (symmetry) The immediate reward functidf(€2(¢)) is symmetric about any two

different channels im*(t), that is,i, j € a*(t), such that
F(wi(t), .w;i(t), .., w;(t), cwn(t)) = F(wi(t), ..wj(t), ..ywi(t), ..wn(t)), 1 <i#j <k (7)
Assumption 2. (affine) The immediate reward functidn(€2(¢)) is order ]EI polynomial ofw;(t), 1 <
1 < n, that is,
F(@1(t), e wimt (£) i(8), i1 (D), oy (1)) =
w;(£) F(wi(t), ..., wi—1(t), 1, wit1(£), ..., wn(l))
+ (1 —wi(0)F(wi(t), ..., wi—1(t), 0, wir1 (), ..., wn(t)) (8)
Assumption 3. (monotonicity) The immediate reward functidn(€2(¢)) increases monotonically
with w;(t),1 <i < k, that is,
wi(t) > wi(t) = Flwi(t), ...,wi(t), ..wn(t)) > Fwi(t), ...,w;(t), ..wn(t)) 9)
Note these assumptions are necessary and non-redundaeb\p these three assumptions are

used to define a class of general functions, referred tstaasdardimmediate reward functions.

Definition 1. A reward function is standard one if it satisfies the aforetioered three assumptions.

LF(Q(t)) is affine in each variable if all other variables hold constan



In order to see the intrinsic structure of the standard imatedeward function, we give three
basic examples.
Example 1. Considering the scenario inl[8] where the user gets one @inévward for each channel
sensed good. In this example, the expected slot rewardifumistF'(£2) = Efﬂ w;. It can be easily
verified thatF' satisfies the above three assumptions and thetisdard
Example 2. Considering the scenario where the user gets one unit ofdesvay if all the channels
k

are sensed to be good. Thus the immediate reward is forndubste'(2) = []._, w;, which is

standardone.

Example 3. Consider the scenario in![9] where the user gets one unitwéne if at least one
channel is sensed good. In this case, the expected slotddéwaation isF' () = 1 —Hf:1(1 —w;),

which is standardby satisfying the three assumptions.

B. Feature of Accumulative Reward Function
In this part, some important features of the accumulativeard functionV;(€2(¢)) (also called
value function) will be proved, which consists of the proafb of the optimality of greedy policy
in the next section.
Lemma 1. (symmetry)V;(2(t)) is symmetric aboub;(t), w;(t), 1 <1i,5 <k, that is,
Vi(wi (), ...wi(t), ..., w;(t), ..wn(t)) = Vi(wi(t), ..w;(t), ..., wi(t), ..wn(t)), 1 <i#j <k
Proof: (1)According to assumptidd 1, for any< i # j < k in time slotT, since,V;-(Q(T)) =
F(Q(T)), then it is easy to verify(2(T")) is symmetric.
(2)AssumeVr_1(2(t)), ..., Viea(Q(t)), Vie1(€2(t)) are true, then at time
Vi(Q(t)) = F(Q(t)) + BE((1))
Based on assumptidd F(€2(¢)) is symmetric. By Lemmal9 (Appendix]A), the second term,

K, (€(t)) of the above formulation is symmetric. Hendé({2(¢)) is symmetric. [

Lemma 2. (affine) V;(€2(¢)) is an affine function of;(¢), 1 < i < n when all otherw;(t), j # 1,

1 < 7 < n hold constant.

Proof: (1) According to assumptionl 2, in time sl@t F(Q(T)) is affine function ofw;(T),
1 <7 <n.HenceVr(QUT)) = F(QT)) is also affine function ofu;(T").



(2) AssumeVy_ (AT —1)),....Vera(Q(t + 2)), Vi (2t + 1)) are affine functions, we prove it
also holds for slot. Two cases should be considered as follows:
Case 1: channel; ¢ a*(t) = {wi, ..., wi }:

Vi) =Fe+8 S [lww TI (= woVers@nllell mwisn); oo (wa)s porlk — lel)

ecP(ak(t)) ree geak(t)\e
Since F'(€)(t)) is unrelated withw;, V;11(€2(¢t + 1)) is the affine function ofv; by the induction

hypothesis and(w;) is an affine transform ob;, we haveV;(Q2(t)) is the affine function of;.
Case 2: channel; € a*(t), let a*~1(t) = a*(t) — {w;}, we have

vieey=r@e)+5 Y e II Q—wViloullell m@in), o 7(wn), por [k — lel])

ecP(ak(t)) ree geak(t)\e

:F(wl, +BZ Z pr H (I_WQ){

=m pEe geak—1(t)\e
667’( k (1)

w;i Vs (pui[lel], pu, T(Wet1), s T(Wn), por [k — [e]])
+ (1= wi)Vars (puallel), 7(@rs1), oos (), por, Poalk — [e]])
By assumption 2F(wy, ...,w;, ...,wx) IS the affine function ofv;. The second term of the right
hand of the above formulation is also the affine functionuaf Therefore,V;(Q2(¢)) is the affine
function of w;. Combining the two cases, we haVg(t)) is the affine function ofv;. Lemmal2

is concluded. [ ]

Lemma 3. (monotonicity)V;(€2(t)) increases monotonically with;, 1 < i < n, that is,

/

wi(t) > wi(t) = Vi(wi(t), ooy wi (), own (b)) > Vi(wi(t), .oy w;(t), wn(t)),1 < i < n

()

Proof: (1) The lemma holds trivially for sloi’ consideringV;(Q(T")) = F(2(7T')), which is
the increasing function withy;.
(2)AssumeVr_1 (T —1)),....Vira (Ut + 2)), Vi1 (2t + 1)) increase monotonically, we prove
it is true for slott by two different cases.

Case 1: channel; ¢ a”(t):
v =r@e)+5 Y Jlws II Q@-wdViloullell @), o m(wn), por [k = lef])

ecP(ak(t)) ree geak(t)\e
Since F'(Q(t)) is unrelated witha*(t), Vi1 (Q(t+1)) increases withy; by the induction hypothesis

and 7(w;) increases withu; whenpy; > po;, we haveV;(Q(t)) is the increasing function ab;.



Case 2: channel; € a*(t), let a*~1(t) = a*(t) — {w;}, we have
Vi) =rF@)+8 > [lw TI (= w)Viaullell, m(wrir), o 7(wn), porlk = [e]])

e€P(ak(t)) p€e  geak(t)\e

= F(wi, ... +ﬁz Z pr H (1 —wg)l

=m pEe geak—1(t)\e
 cerrin)

wi‘/;erl(pllHeH’plh T(wk+1)7 ceey T(wn)7p01[k - |€H>

+ (1= wi) Ve (puflel]; T(WkJrl)v oo T(wn)s Por, por [k — |e]])]

= F(wy, ..., w; )+ Z pr H (1 — wy)
m=0 el= pEe geak—1(t)\e

e€P(@* (1))
wi[Viei(puillel], prr, 7(Wrta)s o 7(wn), por [k — lel])

— Visi(pullel], 7(Wikt1), - 7(wn), Por, por [k — [el])]

+ Vici(pullel], 7(wri1), -5 T(wn),s por, por [k — [e]])]
The first term,F'(wy, ..., w;, ...,wy)), Of the right hand of the above formulation increases mono-

tonically with w;, and the second term also is the increasing functiow;dfecause
Visr(pullel], pi1, T(wrs1), T(wWri2)s - s T(wn—1), T(wn), por [k — e]])
— Vira(pullell, 7(wis1), T(wrt2), - -+, T(wi—1), (W), pors por [k — [e]])
= [Viri(pullel], pars 7(Wrs1) s T(@rt2), -+ T(wn—1), T(wn), por [k — le]])
— Vi (pulel]s 7(wrr1), 7(Wrs1), T(Wht2), -+, T(Wn1), T(wn), por [k — [e]])] (10)
+ Ve (pullel] 7(wi1), T(wht2), -+ T(wWno1), T(wn), T(wn), por [k — e]])
— Vin(pullel], 7(wiir), 7(Wrs2), -+ T(wn1), 7(wn), Por, por[k = [e]])]
>0
where, noticingr(w;) increases withv; andpy; < 7(w) < p;; whenpy; > poi, and each item in
brackets is larger than or equal to zero according to thecinolu hypothesis.

We haveV;(2(t)) increases monotonically with; through the two cases and complete the proof.

u
Lemma 4. V;(Q2(t)) is a standard reward function.

Proof: It is obvious thatl;(£2(¢)) is a standard reward function according to its definition and
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Lemmal1[2 and]3.
In this section, we analyze the feature of a class of stanaavedrd functionV;(€2(¢)), of which
the optimality of greedy policy will be explored in the nexdcsion.
IV. OPTIMALITY OF GREEDY POLICY FOR STANDARD REWARD FUNCTION
In this section, we first give the main theorem of optimality the class of standard reward
function, which states the sufficient condition of discathfactor for the optimality of greedy

policy. After introducing some useful lemmas, we will giveetcomplete proof of the theorem of

optimality.
Let w_; denote the believe vector except tik elementy;, and define
max {F(l,w—;) — F(0,w_;)},

OF (w1 (t), ooy wi(t), ..oy wn(t)) _
ieN, w_;€[0,1]N-1
{F(l,w_;) — F(0,w_;)}.

Flow =
mas = 102X B (1)
Féun ey min {a (wl(t>7 7wl(t)7 7wn(t)) — min
1<i<k Ow; (1) €N, w_i€[0,1]N-1
> F' . >0 based on the three basic assumptions.

It is easy to verify thatf!,
The main theorem of optimality is firstly stated as follows:

Theorem 1. The myopic policy is optimal fopy; < w;(1) < p11,1 <@ < N if F(Q(t)) is a
standard reward function, and the discounted factosatisfies the following condition:
(11)

’

Fmin

0<p < —
_6 N Fmax(l - (1 _pll)Nikil)
In order to prove the Theorel 1, we introduce some useful lasnfinstly. Note Lemmals] £ 6

and[T hold under conditiof_(IL1) in the rest of the paper.
Lemma 5. If £ +1 <7:1<n-1, P11 = Wi = Wi+1 > Do1s and M) is SatiSﬁed,
7wn)207 tzlaaT (12)

y Why «ovy Wi 1, Wiy

Vi(wi, ...
: t=1,---,T. (13)

Wy eey Wiy Wit 1y 5 ey Wy ) — Vi(w1,
Lemma 6. For 1 > wy(t) > wa(t) > ... > w,(t) > 0, if () is satisfied, we have the following
inequality for allt =1,2,...,T:
V(W1 vey Wiy vvey Wi 1, W) — Vi(Why W1y ey Wiy vy Wio1) <
Lemma 7. If p;; > x >y > py; and (1) is satisfied,
ywn) — Vi(wy, oo wiem1, Yy, @

ywp) >0, t=1,---,T. (14)

Vi(wr, ooy wi—1, 2, 9, -
Remark. We would like to point out the complicated dependence in dliewing proving process
that Lemmab depends on Lemmal[2, 6 ahd 7, Lerima 6 depends ondl@vand ¥, Lemma
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[7 depends on Lemmd 7 andl 6. Therefore, we give the proof of L&fi® andl7 together by

backward induction over time horizon.

Proof: The proving process is based on backward induction in thegessas follows:
« Stepl: slot T,
These Lemmas hold trivially in sIéf noticing Vi (U(T") = F(U(T))).
part 1: Lemmalb:
V(1 ooy Whey veey Wiy Wi 1y vey W) — V(W1 vey Wy eey Wik 1y Wiy 5 ey Wiy
= F(wi,...,wr) — Fwy, ooywi) =0
part2: Lemmal®:
V(Wi ooy Wiy ooy W1, Wn) — V(Wi W1y ooy Wy ooy Wi—1)
= F(wy, .oy Wp—1, wg) — F(wn, w1,y ooy Wp—1)

!

= (wg — wp)(F (w1, ooy wi—1, 1) = Fwy,y...yw—1,0)) < F,

max

where, the second equality is due to Lemima 1[@nd 2.
part3: LemmalT:
V(Wi ooy W1, T, Yy ey i) — V(W1 oy Wh—1, Yy Ty oy W)
= F(wy, .1, ) — F(wi, ..., Wg_1,Y)
= (x —y)(F(wy, ..., w-1,1) = F(wy, ..., wk—1,0))
> (¢ = y)Fpin > 0
o Step2:slott+1,...,T — 1:
Now suppose at+1,...,7 — 1, LemmaXb (Induction Hypothesis 1, HSL), 6 (Induction Hyesil
2, HS2), andJ7 (Induction Hypothesis 3, HS3) are true, we titose these Lemmas also hold in

slot ¢.

« Step3: slot ¢
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part 1: Lemmalb:
V(W1 eey Wy ooy Wiy Wit 1y s oeey W) — V(W1 coy Wy weey Wi 1, Wiy ooy W)

= (wl - wi+1)(%(w17 ey Wi—1, 17 Oawi+27 ) 7wn) - ‘/;f(wh ey Wi—1, 07 17wi+27 7wn))

= (wi — wip1){F (w1, ...,wy) + B Z Hw, H (1 —wj;)x

e€P(ak(t)) t€e jEak(t)\e

Vt+1(p11[|€H77'(wk+1), ---77'(%71)71711,]901, T<wi+2)7 "'7T(wn)7p01[k - \€|])}

— (wi — wir ) {F(wr, ooy wi) + B Z sz H (1 —wj)x

e€P(ak(t)) t€e jEak(t)\e

Vt+1(p11[|€H77'(wk+1), ---77'(%71)71?017]911, T<wi+2)7 "'7T(wn)7p01[k - \€|])}

= (wi—wi+1 Z sz H 1 _wj){

e€P(ak(t)) i€e  jeak(t)\e
Vt+1(p11ﬂe|], T(warl)a ---77'(%71)7]91171901, T<wi+2)7 "'7T(wn)7p01[k - \€|])

= Vipr(pullel], 7(wri1), s T(wis1), Pors P11, T(Wi2), - T(Wn ), por [k — [e]]) }
>0
where,a”(t) = {wy, ..., w.}, the first equality is due to Lemnia 2, the inequality is duehe tH1

if le|l+i—k—1>k,and IH3 ifle|+i—k—1=k—1, and the LemmBl1l ife| +i—k—1 < k—1.
part2: Lemmal®:

we have the following decomposition according to the Lenuna 2
Vi(w1, Way eeey W1, Wy vy Wi 1, Wh) — Vi(Wiy W1, Wy ey Wh— 1, Wy +eey Wi—1)
= WrWn (W1, way ooy W1, L Wi 1y ooy W1, 1) — Vi(1, Wi, woy ey W1, 1, Wet 1y ey Wn—1))
+ wi(1 — wp) (w1, w2y vy wWr—1, L Wha 1y oey W1, 0) — Vi(0, w1, way ooy W1, 1, Wit 1y ey Wn1))
+ (1 — wi)wn (w1, w2y vy W1, 0, Wha 1, ooy W1, 1) — Vi(1, w1, way ooy W1, 0, Wht 1y ey Wn1))

+ (1 — wi) (1 — wy) (w1, wa,y ooy W1, 0, Wiy 1,y ooy W1, 0) — Vi(0, w1, wa, ooy W1, 0, Wrt 1y ooy Wn—1))
Therefore, we analyze the above formulation through fogesaas follows:
Case 1. The first term of the right hand of the above formulatihere channels andn have

the state realization "1” and "1”, respectively, and denafe!(t) = {w;,ws,...,wr_1}, We thus
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have

Vt(wh W2y ey W1y Ly Wht 1y ooy Wi 1, 1) - Vt(L W1y Wy veey Wh—1, Ly Whg 1y ey qu)

= F(wl,w2, cey WE—1, 1) — F(l,wl,w2, ...,wk,l)

+6 > Jlee T -w)

ecP(ak—1(t)) i€e  jeak—1(t)\e
Vt+1(pnﬂe|]ap117T(Wkﬂ), ---7T(wn71)7 T(wn)7p01[k —1- |€H)

— Vipr(pullel], purs 7(wr), 7(Wri1), -+ T(Wn1), por [k — 1 — e]]) }

=8 > e I 0-w

e€P(ak—1(t)) i€e jeak—1(t)\e
Vt+1(pnﬂe|]ap117T(Wkﬂ), "'7T(wn71)7p117p01[k —1- ‘€|])

— Viri(pullel); pirs puo, 7(wis1)s -7 (@n1), por [k — 1 — le[]) }
<0< F,,
where, the first inequality is due to the Lemfda 3 accordincheodimilar way as[(10).
Case 2. The second term of the right hand of the above forironlathere channelé andn
have the state realization "1” and "0”, respectively, andate a* 1 (t) = {w,wy, ..., wr_1},

%(wla W2, ey We—1, ]-7 WkAt1y -y Wn—1, O) - ‘/t(oa Wi, W, «vey WE—1, 17 WE415 -0y wn—l)

- F(w17w27 vy WE—1, 1) - F(07w17w27 "'7wk—1)

5 Y Jle TI (-wd

e€P(ak—1(t)) i€e  jeak—1(t)\e
Vit (pullell, pu, 7(@it), o T(@Wn1), pots s Por [k — 1 — [e]])
— Vi (pullel], pir, 7(wrt1), -7 (wn—1), o1, por [k — 1 — [e]]) }
= F(wy,way ooy wp—1,1) — F(0, w1, wa, ..oy wi_1)

< Fruaa
Case 3. The third term of the right hand of the above formafatvhere channels andn have
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the state realization "0” and "1”, respectively, and dendgte!(t) = {wi,ws, ..., wr_1},
%(wla W2, ey We—1, 07 Wkt1y -y Wn—1, ]-) - ‘/t(la Wi, W, .eey WE—1, 07 Wk415 -0y wn—l)

= F(wl,w2, cey WE—1, O) — F(l,wl,w2, ...,wk,l)

+5 3 [Mw T a-w

eeP(ab—1(t)) i€e  jeab—1(t)\e
Vt+1(p11H€|], T(warl)a ---aT(qu),pn,POh 7P01[k —1- |€H)
— Vigi(puillel]s p11s por, 7(wis1), . T(wn—1), por [k — 1 — |e]]) }

S F(wth, ey WE—1, O) — F(l,wl,wz, ...,wk,l)

+5 Z sz [T a—w)

e€P(ak—1(t)) i€e j€ak—1(t)\e
Vi1 (p1a el T(warl)a oy T(Wn—1), P11, Pors > Por [k — 1 — |e]])
- V;erl(pllHe‘LpOlupllv T<wk+1)7 "'T(wn*1)7p01[k -1- |€H>}

= F(wl,(,ug, ey We—1, 0) — F(l,wl,wg, ...,wk_l)

5 Jlw I a-w

e€P(ab—1(t)) i€e  jeak—1(t)\e
Vt+1(p11H€|], T(warl)a ---aT(qu),pn,POh 7P01[k —1- |€H)
- Vt+1(p01,p11[|6|],p11, T(wk—l—l)v "'T(wn—l)apm[k —-1- |6|])}

S F(wl,w2, ey WE—1, 0) — F(]_,wl,WQ, ...,wk_l)

w5 S [ [T a-w)

e€P(ak—1(t)) ice jeakF—1(t)\e
Virr(pullell, 7(wrs1), -, T(wn—1), P11, Pots s Por [k — 1 — [e]])
+ Foe — Vira (pullel], pio, 7(wrs), ---T(Wn—l)aPm,poﬂk —1—lel])}
< F(wl,WQ, ~-~7wk—170) — F(l,wi,wa, oy wi—1) + BF, maz

/8 max
where, the first mequallty is due to IH3 whé#j + 1 = &, the second one due to the IH2, and the

second equality due to Lemrha 1 wheh+ 1 < &, noticing0 < |e|] < k — 1.
Case 4. The forth term of the right hand of the above formoatvhere channels andn have



the state realization "0” and "0”, respectively, and dendte!(t) = {w;,ws, ...,wx_1},
‘/t(wla W2, ey We—1, 07 W41y ooy Wn—1, 0) - ‘/t(oa Wi, W2, ey WE—1, 07 Wk415 -0y wn—l)

= F(wl,wz, vy WE—1, 0) — F(O,wl,ng, ...,wk,l)

#5 3 IMw I 0-w

e€P(ak—1(t)) i€e  jeak—1(t)\e
Vt+1(pl1ﬂe|], T(warl)a ---7T(wnq),pm,pmapm[k —-1- \€|])

— Vigr(pullel], por, 7(Wi1), - T(Wn-1), Po1, Por [k — 1 — |e|]) }

=8 > e I (-w)

e€P(ak—1(t)) ice jeak=1(t)\e
Vt+1(p11[|€H,7'(wk+1), ---7T(wnq),pmapmapm[k —1- |€H)

— Vigr(pullel], por, 7(Wi1), - T(Wn—1), Po1, Por [k — 1 — |e|]) }

=5 Y, Jlw II (-w)

e€P(ak—1(t)) i€e  jeak—1(t)\e
Vt+1(p11[|€H,7'(wk+1), ---,T(wnfz), T(wnq),pm,pmapm [k —-1- \€|])

— Vig1(por, pullel], 7(wr1), - T(Wn—1), Po1, Por [k — 1 — |e|]) }

<8 > I II a-w)

e€P(ak—1(t)) i€e  jeak—1(t)\e
Vt+1(p11[|€H,7'(wk+1), T(wk+2), ---,T(wnfz), T<wn71>7p017p017p01[k —1- |€H)
+ Fmax Visi(puallel], 7(wr+1), -7 (wWn-1), Po1, Po1, o[k — 1 — |e]])}

5 max
where, the first inequality is due to the IH2 and the third di(pas due to Lemmadll.

Combing the results of cases 1, 2, 3, and 4, we have
%(wl,w% ey W1, Wg, ...,wn,l,wn) — %(wn,wl,wz, ey We—1, WE, ...,wn,l)
< wkwno + wk<1 - wn)Fmam + (1 - Wk)wnﬁ mazx (1 - wk><1 - wn)ﬁ mazx

< Fmam
To this end, we complete the proof of Lemina 6.

part3: LemmalT:

15



‘/t(wla vy WE—1, T, Y, 7wn) - %(wla e WE—1,Y, T, 7wn)
- (:E - y)(%(wla ey Wh—1, 17 07 7wn) - ‘/t(wla ey Wh—1, 07 ]-7 7wn))
=(r—y)(F(wy,...,wp-1,1) = (w1, ..., wr—1,0))

t@—y9s Y Jlw I @-wld

ceP(ah-1(1)) i€e  jeab-1()\e
Virr(pullel], pi1, pors T(@Wrr2), -, T(wn), por [k — 1 — e]])
— Vs (pu[lel], par, 7(wrt2), -7 (wn), por, por [k — 1 — [e]])}
> (r —y)(F(wi, ooy w1, 1) — F(w1, ...,wi_1,0))

B =)0~ T[] (0 -w)F,
j=k+2
2 (@ =) P = Bl =)= ]] Q= wi)F
=)0~ [[ O -w)FCmm - T 0 -w) - 5)
j=k+2 e J=k+2
N F/ '
> ('T_y)(l_ H (1_wj>><F/ (1_ (frznpll)]\/,k,l) _B)

>0

16

where, the third inequality is due to conditidn{11) and thst finequality is due to the following

inequality formulation,

Note, if 7(wy42) = -

AV = Vi (pullel], pir, por, T(Wit2),s oo, T(wn), por [k — 1 — |e]])

— Vira(pullel], pur, 7(wrt2), - 7(wn ), por, por [k — 1 — [e]]) }
>—(1— ] 0= w)Fr

j=h+2

(15)

-7(wp) = po1, thenAV = 0. This event happens with the probability equaling

to [T ,,»(1 —w;). Thus with the probabilityt — [T, ,,(1 —w;), exists at least, k+2 < i <n
such thatr(w;) > po. According to the IH2 and IH4, we havAV > —F  with probability

1—

1. 5(1 —w;), which is [I5).
Therefore, we finish the whole proving process of Lemiidd &na[7.

After obtaining the Lemmals §] 6, afd 7, we are ready to progeltheorenl.
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Proof: The basic approach is by induction ant is obvious that the myopic policy is optimal
at 7. Now, assuming the optimality of the myopic policy for 1,...,7 — 1, we shall show the
myopic policy is also optimal fot. Denote{i,--- ,i,} as any one of permutations df. To

prove the optimality of greedy policy in slet we need to prove
‘/t(wla' Cry Wyt 7wn) Z ‘/t(wila ter Wiyttt 7win) (16)

The proving process is same as the Bubble Sort algorithmpadng each pair of adjacent items
and swapping them if they are in the wrong order accordingemimal[ 6 and17 until no swaps
are needed, which indicates that the list is sorted/fo, - ,ws,- - ,w,). The optimality of

greedy policy at slot is guaranteed. Therefore, the Theorlgm 1 is concluded. [ |
Corollary 1. The greedy policy is optimal if choosingout of n channels for0 < 5 < 1 if
P11 > pot-

Proof: When k = 1, according to Lemmals] 1] 2 afdl 3, we haé€(t)) = aw;(t), a > 0,

thence,

F . 1
; min = > 1 17
Frol= (=" * 1) (1= (L= pu)" ) &
According to Theorer]1, we have the conclusion. [ |

Corollary 2. The greedy policy is optimal if choosing— 1 out of n channels for) < 5 < 1.

Proof: In case ofk =n — 1, we have
Frpin

Frae(L = (L =pr)N ) [y

Hence, the greedy policy is optimal according to Theokém 1. [ |

— 0 (18)

V. APPLICATIONS IN COGNITIVE RADIO NETWORK

To illustrate the application of the mathematical resuéievaed in the previous section, three typ-
ical scenarios [8][9] described by standard reward fumctice presented here, which demonstrate
that the different optimality conditions are completelyedio different forms of the immediate

reward function.

A. Application 1

An application is in a synchronously slotted cognitive cadetwork where a SU can opportunis-
tically access a seW/ of NV i.i.d. channels partially occupied by PUs. The state of ecgwmnel

i in time slott, denoted bysS;(¢), is modeled by a discrete time two-state Markov chain. At the
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beginning of each slot, the SU selects a subsét(¢) of channels to sense. If at least one of the
sensed channels is in the idle state (i.e., unoccupied byP&hy the SU transmits its packet and
collects one unit of reward. Otherwise, the SU cannot traipghus obtaining no reward. These
decision procedure is repeated for each slot. The objerstitee maximize the average reward over
T slots, that is to say, the discounted factbe 1.
Obviously, we have the immediate reward function as foltows
FO@) =1~ J] (1 -w®)

i€ A(t)
Therefore, the greedy policy is to choose the heshannels by[{6). According to Theorémh 1, we

haveF . = (1 —po)* ', .. = (1 —pu)F 1 if poy < wi(0) < piy, 1 < i < n. Therefore the
greedy policy, choosing the bestout of » channels, is optimal if the discounted factbsatisfies
the following condition:

(1—pn)*

(1= por)* (1 = (L= pu)N*1)
Obviously, the upper bound cannot achieve 1 generally. Timesgreedy policy, in general, is not

0<p<

optimal for the average reward over time horizon proved inpravious work[[9]. In particular, the
greedy policy, choosing the bekt=1 or n — 1 out of n channels is optimal fof = 1 according
to the corollary(lL and]2.

B. Application 2

Consider the problem of probing independent Markov chains. Each one has two states—good
(1) and bad (0)—with transition probabilities;, py; across chain. Assuming;; > po;. A player
selectsk chains to probe according to its preference (policy) anaioba reward for each probed
chain in the good state. We assume that the reward is affinidtnof the probability of the
selected channel in the good state, iwg(f) = aw;(t),a > 0, then we have the immediate reward

function as follows:

F(Q() =0y wi(t)

SincefF,,,, = F. . = a, thus,

1
= (= p) 1)
we have the following conclusion about this problem by Teeald:

0<B<1<

Lemma 8. The greedy policy of choosing the firstbest channels is optimal fdr < 5 < 1.
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Obviously, this result is consistent with! [7]/[8].

C. Application 3

Consider the scenario where a player detectadependent Markov chains. Each one has two
states—good (1) and bad (0)-with transition probabilitigspo; (p11 > po1) across chain. The
player selectsk chains to detect according to its policy and obtain one uhitesvard if all
detected channels are good; otherwise , no reward. We aghattne probability of channel in

good state at time is w;(t), then we have the immediate reward function as follows:

FQ(t)) = I wi(?)

Therefore, the greedy policy is to detect the fitsbest channels, andl, . = pi !, Fl. = phit
We have the following conclusion by Theorédn 1:
k—1
Doy
piv (1= (1= pua)nh1)
So in case oft < k < n — 1 the greedy policy is not optimal generally f6r= 1, while choosing

0<p<

the bestt =1 or £k =n — 1 out of n channels is optimal fob < 5 < 1.

VI. CONCLUSION

In this paper, we considered a class of POMDP problem arisehe fields of cognitive radio
network, server scheduling, and downlink scheduling inutal systems, characterized by the so-
called standard reward function. For this class of POMDPesatablish the optimal condition of
the greedy policy only focusing the maximization of the inthia¢e reward. The technical approach
analyzing this problem is purely mathematical, and thuseisegal for other models involving the
recursive backward induction on the time horizon. The fitdirection is to investigate non i.i.d
Markov chain model through the proposed method, and anatbee challenging work is to extend

the standard reward function by dropping at least one ofthasic assumptions.

APPENDIX A

PROOF OFLEMMA
Lemma 9. Assumen”(t) = {wi(t), - ,wi(t)}, K:(Q(t)) is symmetric about;(t),w;(t) for all

1<i,j <k, thatis,

Kt<w1(t)7 T 7wi(t>7' o ,C%(t), T 7wn(t)) = Kt(wl(t)v' o 7wj<t)7 T 7wi(t>7' o 7wn<t))
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Proof: Let

@)= S [Te TI (- w)Viaullel @), m(wa), porlk = [e]}) (29)

ecP(ak (1)) i€ jeak(t)\e

le|=m
Therefore, i
=) EPQ() (20)
m=0
Since Vi1 (pu|lel], 7(wrs1), -+, 7(wn), por[k]) is unrelated witha®(¢), we only need to prove the

k + 1 coefficients is symmetric about;(t),w;(¢) for all 1 <4, 5 <k, that is,

C" = Z Hwi H (1-wj), 0<m<k

eeP(ak (1)) i€e jeak(t)\e

le|=m
is symmetric about;(¢),w;(t). Based on the feature of power seta*(t)), it is simple to verify

that C/", (0 < m < k) is symmetric about any twa;(t),w;(t) € a*(t). Therefore,K;(Q(t)) is
symmetric abouty; (t),w;(t) € a*(t).
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