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Abstract

In many applications one may acquire a composition of several signals that may be corrupted by

noise, and it is a challenging problem to reliably separate the components from one another without

sacrificing significant details. Adding to the challenge, in a compressive sensing framework, one is given

only an undersampled set of linear projections of the composite signal. In this paper, we propose using

the Dantzig selector model incorporating an overcomplete dictionary to separate a noisy undersampled

collection of composite signals, and present an algorithm to efficiently solve the model.

The Dantzig selector is a statistical approach to finding a solution to a noisy linear regression problem

by minimizing the ℓ1 norm of candidate coefficient vectors while constraining the scope of the residuals.

If the underlying coefficient vector is sparse, then the Dantzig selector performs well in the recovery and

separation of the unknown composite signal. In the following, we propose a proximity operator based

algorithm to recover and separate unknown noisy undersampled composite signals through the Dantzig

selector. We present numerical simulations comparing the proposed algorithm with the competing Al-

ternating Direction Method, and the proposed algorithm is found to be faster, while producing similar

quality results. Additionally, we demonstrate the utility of the proposed algorithm in several experiments

by applying it in various domain applications including the recovery of complex-valued coefficient vectors,

the removal of impulse noise from smooth signals, and the separation and classification of a composition

of handwritten digits.
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1 Introduction

This paper considers the problem of separating a composite signal through the recovery of an underlying

sparse coefficient vector by using the Dantzig selector given only an incomplete set of noisy linear random

projections. That is, we discuss the estimation of a coefficient vector c ∈ Cq given the vector

y = Xβ + z, (1)

where X ∈ Rn×p is a sensing matrix with n ≤ p, z is a collection of i.i.d. ∼ N(0, σ2) random variables, and

the unknown signal β ∈ R
p admits the sparse representation β = Bc for a known overcomplete dictionary

B ∈ C
p×q. The individual signals composed to form β can then be recovered from c andB. Since Equation (1)

is underdetermined yet consistent, it presents infinitely many candidate signals β and coefficient vectors c.

The Dantzig selector was introduced in [10] as a method for estimating a sparse parameter β ∈ Rp

satisfying (1). Discussions on the Dantzig selector, including comparisons to the least absolute shrinkage

and selection operator (LASSO), can be found in [4, 6, 10, 11, 17, 19, 25, 27]. Both the Dantzig selector and

LASSO aim for sparse solutions, but whereas LASSO tries to match the image of candidate vectors close to

the observations, the Dantzig selector aims to bound the predictor of the residuals. When tuning parameters

in LASSO and the Dantzig selector model are set properly, the LASSO estimate is always a feasible solution

to the Dantzig selector minimization problem, although it may not be an optimal solution. Furthermore,

when the corresponding solutions are not identical, the Dantzig selector solution is sparser than the LASSO

solution in terms of the ℓ1 norm [20]. Recently, the Dantzig selector model has been applied for gene selection

in cancer classification [29].

Classical compressive sensing theory guarantees the recovery of a sparse signal given only a very small

number of linear projections under certain conditions [3, 8, 9, 15]. However, very seldomly is a naturally

encountered signal perfectly sparse relative to a single basis. Therefore, a number of works have considered

the recoverability of signals that are sparse relative to an overcomplete dictionary that is formed by the

concatenation of several bases or Parseval frames [12, 14, 15, 18, 21, 26]. In this work, we propose and analyze

a Dantzig selector model inspired by the above applications of overcomplete dictionaries in compressive

sensing, and develop an algorithm for finding solutions to this model.

The following notation will be used. The absolute value of a scalar α is denoted by |α|, and the number

of elements in a set T is denoted by |T |. The smallest integer larger than the real number α is denoted by

⌈α⌉. The ith element of a vector x is denoted by x(i), and the ith column of a matrix A is denoted by Ai.

The support of a vector x is given by supp(x) = {i : x(i) 6= 0}. The ℓ1, and ℓ2 vector norms, denoted by
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‖ · ‖1, and ‖ · ‖2 respectively, are defined by

‖x‖1 =
n
∑

i=1

|x(i)| , ‖x‖2 =

(

n
∑

i=1

|x(i)|2
)

1

2

,

for any vector x ∈ Cn. For matrices A,B with the same number of rows,

[

A B

]

is the horizontal concate-

nation of A and B. Similarly,







A

B






is the vertical concatenation of A and B, provided each has the same

number of columns. The conjugate transpose of a matrix A is denoted by A⊤.

The rest of the paper is organized as follows. In Section 2, the Dantzig selector model incorporating

overcomplete dictionaries is introduced. In Section 3, we present an algorithm used to find solutions to the

proposed model. Section 4 presents several numerical experiments demonstrating the appropriateness of the

model and the accuracy of the results produced by the presented algorithm. In simulations using real-valued

matrices in the overcomplete dictionary, we compare the efficiency and accuracy of the presented method

with the competing Alternating Direction Method. Additionally, we demonstrate the utility of the proposed

algorithm in several experiments by applying it in various domain applications including the recovery of

complex-valued coefficient vectors, the removal of impulse noise from smooth signals, and the separation and

classification of a composition of handwritten digits. We close the paper with some remarks and possible

future directions.

2 The Dantzig selector model incorporating overcomplete dictio-

naries

In this section, we present a Dantzig selector model incorporating overcomplete dictionaries that can be used

to recover an unknown signal and reliably separate overlapping signals.

Suppose the unknown composite signal β is measured via y = Xβ+z, where X is an n×p sensing matrix

and z models sensor noise, and suppose an overcomplete dictionary B is known such that β = Bc for some

sparse c. Although β and c are not known, it is reasonable in many applications to know or suspect the

correct dictionary components. For example, if the signals of interest appear to be sinusoids with occasional

spikes as in Figure 3, one should use a dictionary that is a concatenation of a discrete Fourier transform

component and a standard Euclidean basis component. In the following, let q = 2p and assume the p × q

dictionary B is formed by a horizontal concatenation of a pair of orthonormal bases, B =

[

Φ Ψ

]

, and

the components of β admit the sparse representations βΦ = ΦcΦ and βΨ = ΨcΨ, with β = βΦ + βΨ and
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c =

[

c⊤Φ c⊤Ψ

]⊤

. More succinctly,

β =

[

Φ Ψ

]







cΦ

cΨ






.

To recover c, and therefore also β and the components βΦ and βΨ, from the observations y, we propose

using a solution to the Dantzig selector model (see [10]) with an overcomplete dictionary

c ∈ min
c∈C2p

{

‖c‖1 : ‖D
−1B⊤X⊤ (XBc− y) ‖∞ ≤ δ

}

, (2)

where the diagonal matrix D ∈ Rq×q with entries djj = diag{‖(XB)j‖2} normalizes the sensing-dictionary

pair. Although Model (2) is expressed using an overcomplete dictionary with two representation systems,

one could generalize the model to accomodate more systems.

If the elements of X are independent and identically distributed random variables from a Gaussian or

Bernoulli distribution, and B contains elements of fixed, nonrandom bases, then D is invertible. To see this,

note that djj = 0 if and only if 〈(X⊤)i, Bj〉 = 0 for all i ∈ {1, 2, . . . , n}. However, since a random sensing

matrix is largely incoherent with, yet not orthogonal to any fixed basis [7, 16, 28], it follows that djj 6= 0

for each j, ensuring D is invertible. Employing a sensing matrix whose entries are i.i.d. random variables

sampled from a Gaussian or Bernoulli distribution, paired with an overcomplete dictionary formed by several

bases or parseval frames has the added benefit of giving small restricted isometry constants, which in turn

improves the probability of successful recovery of the coefficient vector via ℓ1 minimization. More on these

concepts, now standard in compressive sensing literature, can be found in [2, 3, 9, 12, 14, 15, 16, 18, 21, 26].

3 A proximity operator based algorithm

To compute the Dantzig selector, we characterize a solution of Model (2) using the fixed point of a system

of equations involving applications of the proximity operator to the ℓ1 norm. In this section we describe the

system of equations and their relationship to the solution of Model (2) and present an algorithm with an

iterative approach for finding these solutions.

Let A = D−1B⊤X⊤XB, and define the vector γ = D−1B⊤X⊤y and the set F = {c : ‖c − γ‖∞ ≤ δ}.

The indicator function ιF : C2p → {0,∞} is defined by

ιF (u) =















0, if u ∈ F

+∞, if u /∈ F
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and the proximity operator of a lower semicontinuous convex function f with parameter λ 6= 0 is defined by

proxλf (x) = argmin
u∈C2p

{

1

2λ
‖u− x‖22 + f(u)

}

.

Then Model (2) can be expressed in terms of the indicator function as

c ∈ min
c∈C2p

{‖c‖1 + ιF (Ac)} . (3)

If c is a solution to Model (3), then for any α, λ > 0 there exists a vector τ ∈ C2p such that

c = prox 1

α
‖·‖1

(

c−
λ

α
A⊤τ

)

and τ =
(

I − proxιF
)

(Ac+ τ) .

Furthermore, given α and λ, if c and τ satisfying the above equations exist, then c is a solution to (3),

and therefore also to (2). Using the fixed-point characterization above, the (k + 1)th iteration of the prox-

imity operator algorithm to find the solution of the Dantzig selector model incorporating an overcomplete

dictionary is














ck+1 = prox 1

α
‖·‖1

(

ck − λ
α
A⊤(2τk − τk−1)

)

,

τk+1 =
(

I − proxιF
) (

Ack+1 + τk
)

.

(4)

If λ/α < 1/‖A‖22, the sequence {(ck, τk)} converges. The proof follows those in [13, 22]. We remark that the

proximity operators appearing in Equation (4) can be efficiently computed. More precisely, for any positive

number λ and any vector u ∈ Cd,

proxλ‖·‖1
(u) =

[

proxλ|·|(u1) proxλ|·|(u2) · · · proxλ|·|(u2p)

]⊤

,

and

proxιF (u) =

[

proxι{|·−γ1|≤δ}
(u1) proxι{|·−γ2|≤δ}

(u2) · · · proxι{|·−γd|≤δ}
(u2p)

]⊤

,

where for 1 ≤ i ≤ 2p

proxλ|·|(ui) = max{|ui| − λ, 0}
ui

|ui|

and

proxι{|·−γi|≤δ}
(ui) = γi +max{|ui − γi|, δ}

ui − γi
|ui − γi|

Summarizing the above, one has the following proximity operator based algorithm (POA) for approxi-

mating a solution to Model (2).
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Algorithm 1 (POA)

Initial Parameters: The observations y are known, and the sensing matrix X and dictionary B are used
to define the matrix A, the vector γ and the set F . A parameter α > 0 is chosen.
Initial Step: Initial guess τ0 = τ−1 = 0, c0 = 0, β0 = 0; λ = 0.999α/‖A‖22.
Main Iterations: Generate the sequence {(ck, τk) : k ∈ N} via the iterative scheme (4) until a stopping
criterion is met.
Post-processing: Use the appropriate post-processing scheme to construct the Dantzig estimator ĉ from
the final output of the main iterative step, and obtain an approximate separation of the signal components
from ĉ and B.

The main iteration process will ideally terminate once the sequence {(ck, τk)} reaches a stationary point.

In practice, we estimate this by stopping once either of the following are met:

1.
‖D−1B⊤X⊤

(

XBck − y
)

‖∞

max {‖ck‖2, 1}
≤ ǫ, for some 0 < ǫ < 1, or

2. The support of ck is stationary for η iterations, for some predetermined positive integer η.

As noted in [10], the Dantzig selector tends to slightly underestimate solution values within the support

of the true solution. Let (c∞, τ∞) denote the final product of the Main Iterations step in POA, and define

the set Λ = supp{c∞}. Denote by cΛ the vector whose elements are chosen from c with indices in Λ, and by

BΛ the submatrix whose columns are chosen from B with indices in Λ. The Dantzig selector is estimated

on Λ by solving the least squares problem ĉΛ = argmin{‖X⊤ (XBΛc− y) ‖2} and setting ĉi = 0 for i /∈ Λ.

The main contribution to the computational complexity of POA is the ‘Main Iterations’ procedure.

Assume the matrices A and A⊤ are computed at the beginning of the algorithm, then recalled for use in

Equation (4). For each iteration of the ‘Main Iterations’ stage, computing (τk, ck) via Equation (4) requires

O(q2) multiplications, and determining whether the stopping criteria have been met contributes an additional

O(q2), where q is the length of the coefficient vector c. Therefore, if R iterations are required to complete

POA, then the overall complexity of the algorithm is O(Rq2).

4 Numerical Experiments

In this section, the separation of noisy undersampled composite signals using POA to solve Model (2) is

demonstrated. All codes are implemented in MATLAB R2013b on a workstation with an Intel i7-3630QM

CPU (2.40GHz) and 16GB RAM.

Four numerical experiments will be presented. In the first three experiments, composite signals are

simulated, then POA is applied to the noisy incomplete observations y = XBc+ z to recover and separate

the components. The entries of the n×p sensing matrixX are sampled from the standard normal distribution,

which is then normalized so that each column has unit ℓ2 norm. The noise vector z has i.i.d. entries sampled

6



from the normal distribution N(0, σ2), with σ = 0.01 and 0.05 corresponding to 1% and 5% noise levels

respectively. To measure the effeciency and accuracy of the algorithm, we use the CPU run time and the

relative ℓ2 error of the recovery of the separate components. For each experiment, we report the means and

standard deviations of these measurements over 50 simulations for each set of parameters.

In the fourth experiment, real-world data taken from the United States Postal Service handwritten digits

data sets, are used to sample the composite signal and to train the overcomplete dictionary. Given an

undersampled signal y = Xβ, where X is an n × p sensing matrix with entries taken from a Bernoulli

distribution and β is the composite image, POA is used to identify the digits and to approximate the

individual components in the composite image.

To demonstrate the utility of POA, we also use the Alternating Direction Method (ADM) developed in

[5, 23, 24] to estimate a solution to Model (2) in Experiment 1. A comparison of the results are summarized

in Figure 1 and Table 1. POA and the ADM separated the components of a composite signal with similar

accuracy, however POA was significantly faster. We do not compare POA and the ADM in Experiments

2 and 3 because these problem domains involve complex-valued dictionaries and coefficients, but the ADM

was designed to solve real-valued convex optimization problems only.

The effectiveness of the postprocessing scheme is illustrated in Figure 2. Every other figure and table

present only results with postprocessing. In the following, time is measured in seconds, and the symbol ˆ

over a parameter indicates its recovered value via POA with postprocessing. For notational convenience, the

relative ℓ2 error of the recovery of a vector x is denoted by E(x) := ‖x− x̂‖2/‖x‖2.

4.1 Experiment 1

In this experiment, we recover and separate a composite signal that has a sparse representation in terms of

wavelets and discrete cosine transforms. Let β represent the composite signal, βΦ the wavelet component and

βΨ the sinusoidal component, each of length p. The signals are simulated by generating a sparse coefficient

vector c of length 2p by selecting a support set of size s uniformly at random and sampling c on the support

set from the distribution N(100, 15). The signals are observed via y = XBc + z, where the overcomplete

dictionary B is formed by concatenating matrices for the level 5 Haar wavelet decomposition and the discrete

cosine transform. The simulations are performed 50 times for each m = 1, 2, . . . , 10 and each σ = 0.01, 0.05,

with parameters p = 256m+512, n = p/4, s = ⌈n/9⌉. The parameters for the stopping criteria of POA are

ǫ = 10−4 and η = 20.

Comparisons of the mean and standard deviation of CPU time and relative ℓ2 recovery error of each of

the components for 50 simulations at each level of m and σ using both POA and the ADM to solve Model (2)
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are illustrated in Figure 1 and Table 1. �
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(a) CPU runtime, with σ = 0.01.
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(b) CPU runtime, with σ = 0.05.

Figure 1: Comparisons of CPU runtime of POA and ADM from Experiment 1. The mean CPU
runtime of the 50 simulations of each algorithm is represented by the points along the curves,
and the vertical lines represent one standard deviation from the means. The solid line with *
markers plot the values obtained using POA, and the dotted line with ◦ markers plot the values
obtained using the ADM. The horizontal axis represents the parameter m determining the size
of the system, and the vertical axis is measured in seconds.

4.2 Experiment 2

In this experiment, we recover and separate a composite signal, with one component βΦ being a dirac spike

signal with random sparse locations and values, and the other component βΨ being a sinusoidal signal with

random sparse Fourier coefficients. The parameters used in this experiment are p = 256m, n = 64m, and

s = ⌈n/9⌉ for m = 1, 2, . . . , 10, and stopping criteria parameters ǫ = 10−4 and η = 6 for σ = 0.01 and η = 30

for σ = 0.05.

For each of the 50 simulations for each value of m and σ, the experiment is set up by generating a vector

c of length 2p by selecting a support set S of size s uniformly at random, then sampling c on S with i.i.d.

entries C(j) = λ(j)(1 + |a(j)|), where λ(j) is 1 or −1 and a(j) ∼ N(0, 1). The signal is observed via the

vector y = XBc + z, with the dictionary B being a concatenation of the identity matrix and the discrete

Fourier transform matrix, both of size p× p.

Figure 2 illustrates the accuracy of the numerical separation by comparing the numerically recovered

composite signal and separated components (denoted by ‘o’) against the exact values of the signal and

components (denoted by ‘+’) for one simulation with m = 2 and σ = 0.05. Table 2 lists the mean and

standard deviation of the algorithm run time and the relative ℓ2 recovery error of each signal component

over the 50 simulations for each m and σ. �
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m E(βΦ) E(βΨ)
POA ADM POA ADM

Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev
(×10−3) (×10−3) (×10−3) (×10−3) (×10−3) (×10−3) (×10−3) (×10−3)

N
o
is
e
L
ev
el

σ
=

0
.0
1

1 9.0421 2.2306 8.6562 2.0236 9.1171 2.9345 8.7136 2.7528
2 8.3235 2.2061 8.1769 2.2004 8.3946 2.0634 8.3330 2.2880
3 8.3875 2.2645 8.3397 2.2484 8.6408 2.4491 8.5115 2.3044
4 7.7607 1.3936 7.7985 1.3568 7.6132 1.5551 7.6046 1.5981
5 8.2638 1.4670 8.2121 1.6065 7.5479 1.3118 7.6928 1.4544
6 8.0279 1.4589 8.0491 1.5101 7.7504 1.4392 7.7910 1.6199
7 7.7411 1.2514 7.6378 1.1422 7.9663 1.4901 7.9039 1.4730
8 8.2142 1.3920 8.1150 1.3064 7.9014 1.3367 7.8035 1.3457
9 7.8209 1.0384 7.8440 1.1215 8.1155 1.4212 8.0859 1.4590
10 7.9987 1.2901 7.9806 1.2391 7.9123 1.2342 7.9213 1.1699

Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev
(×10−2) (×10−3) (×10−2) (×10−3) (×10−2) (×10−3) (×10−2) (×10−3)

N
o
is
e
L
ev
el

σ
=

0
.0
5

1 4.4187 14.921 4.2647 13.274 4.2368 13.321 4.1104 12.031
2 3.9471 10.951 3.8098 10.353 3.9301 10.570 3.9203 10.816
3 3.9268 9.6222 3.8574 9.0583 3.9068 7.8635 3.8550 7.4182
4 3.9723 7.8517 3.9302 7.3932 4.0431 12.237 3.9847 11.224
5 4.0825 8.4696 4.0847 8.1707 3.8121 6.9432 3.8310 6.7285
6 3.9041 4.9101 3.8963 5.0425 3.8486 7.1261 3.7879 7.3865
7 4.0000 5.8845 3.9813 5.4931 4.1028 8.0082 4.1050 7.6549
8 3.8323 6.2478 3.8310 6.3490 3.9243 7.4910 3.9327 7.7148
9 3.8040 6.4910 3.8195 6.3716 3.9178 5.7576 3.9010 5.6531
10 3.9514 6.2999 3.9518 6.2383 3.9898 6.3100 3.9677 6.3825

Table 1: Comparisons of the relative ℓ2 errors of the recovered components from Experiment 1
using POA and ADM. The means and standard deviations over 50 simulations of the relative
errors are given for the recovery of each component in the original signal, and for each parameter
m and noise level σ.
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m Time (Seconds) E(βΦ) E(βΨ)

Mean Std Dev
Mean Std Dev Mean Std Dev

(×10−3) (×10−4) (×10−3) (×10−4)

N
o
is
e
L
ev
el

σ
=

0
.0
1

1 2.8118×10−2 5.8329×10−3 6.4762 15.851 6.7300 12.374
2 6.2733×10−2 2.1378×10−2 6.4622 8.6297 6.7490 8.6886
3 0.1351 7.5995×10−2 6.6026 8.7737 6.4949 7.8729
4 0.4025 0.2948 6.7021 8.2956 6.6030 6.3652
5 0.9603 0.7242 6.7423 6.6547 6.7797 6.6109
6 1.5431 1.3161 6.6408 5.1202 6.6585 4.4381
7 3.0107 2.2266 6.8240 5.9514 6.8955 6.7195
8 3.5928 2.6642 6.8223 6.2282 6.6457 4.2048
9 5.2908 3.7904 6.6667 5.3515 6.5987 4.0810
10 8.6188 4.7235 6.8529 5.7726 6.8113 4.5567

Mean Std Dev
Mean Std Dev Mean Std Dev

(×10−2) (×10−3) (×10−2) (×10−3)

N
o
is
e
L
ev
el

σ
=

0
.0
5

1 0.1076 3.3335×10−2 3.4973 6.6099 3.3185 6.6436
2 0.2615 6.4574×10−2 3.5430 4.2359 3.4794 4.3713
3 0.6093 0.1218 3.4250 4.4838 3.3384 3.4251
4 1.7032 0.3350 3.3804 3.2731 3.3572 3.2625
5 3.6084 0.5986 3.4346 2.8969 3.3914 2.6619
6 5.5694 0.9674 3.4677 2.8924 3.3116 2.6373
7 7.5435 1.1237 3.4493 2.7535 3.3879 1.9975
8 9.9614 1.1852 3.4638 2.3516 3.4088 2.2992
9 12.8380 1.7008 3.4874 2.3352 3.3968 2.5498
10 15.4924 1.4241 3.4326 2.3453 3.4374 1.4001

Table 2: The means and standard deviations of the CPU run time and the relative ℓ2 recovery
error of each component for 50 simulations of Experiment 2 using POA for each parameter m
and noise level σ.
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(a) Recovery of βΦ without postprocessing.
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(b) Recovery of βΦ with postprocessing.
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(c) Recovery of Re(βΨ).
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(d) Recovery of Im(βΨ).

Figure 2: The separation of components from a typical simulation of Experiment 2 with m =
2, σ = 0.05. The plots in the top row are of the recovered values of the component βΦ without
and with postprocessing. The component βΨ is complex-valued, so the recovery of its real and
imaginary parts with postprocessing are displayed separately in the second row. In each plot,
the exact values are denoted by ‘+’ and the values recovered by POA are denoted by ‘o’.
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σ = 0.01 σ = 0.05
Mean Std Dev Mean Std Dev

Time 2.9154 5.7204×10−2 2.8984 8.6182×10−2

E(β) 2.3460×10−3 2.0277×10−3 5.3163×10−3 3.2198×10−3

E(βΦ) 2.0391×10−3 1.5152×10−3 3.7928×10−3 2.3483×10−3

E(βΨ) 3.8823×10−2 3.3788×10−2 8.4469×10−2 5.9878×10−2

Table 3: The means and standard deviations of the run time of POA and the relative ℓ2 recovery
norm of the composite signal and each component over 50 simulations of Experiment 3 for noise
levels σ = 0.01 and 0.05.

4.3 Experiment 3

In this experiment, a specified composite signal is separated into distinct components. The composite signal

β is formed by combining the discretized sinusoidal component βΦ and the sparse spike component βΨ, where

βΦ(x) = 30 sin

(

2πx

p

)

+ sin
(πx

2

)

, for x ∈ {0, 1, . . . , 1023},

and βΨ is formed by selecting a set S of size s and sampling on S using the same method applied to

c in Experiment 2. The overcomplete dictionary B is the concatenation of the identity and the discrete

Fourier transform matrices, each of size p × p. Note that in this experiment, the exact coefficient vector

is not directly specified, so the signal is observed according to y = Xβ + z. The parameters used are

p = 1024, n = 512, s = 57, with stopping criteria ǫ = 10−6 and η = 6 for σ = 0.01 and η = 30 for σ = 0.05.

A typical plot of the composite signal, the individual components, their recoveries and pointwise recovery

error with σ = 0.01 are shown in Figure 3. Table 3 displays the means and standard deviations of the run

time of POA and relative ℓ2 recovery error of the signal and each component over 50 simulations for each

noise level. �

4.4 Experiment 4

In this experiment, composite signals of two handwritten digits are classified and separated using POA and

standard principal component analysis techniques. The data are taken from the USPS handwritten digit

data sets, obtained from [1]. The data set contains 10 classes, labeled zero through nine, of 1100 examples of

8-bit grayscale 16×16 images. Each image is reshaped as 256-column vectors. In each class, 998 examples are

used as the training set and the remaining 102 examples form the testing set. Denote by R[j] the collection

of vectors forming the training set, and by T [j] the collection of vectors forming the testing set. By an abuse

of notation, also denote by R[j] the matrix whose columns come from the jth collection of training vectors.

The composite vector β is sampled from the test data by randomly selecting two vectors from two distinct
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(b) Recovery error β − β̂.
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(c) The recovered component Re(β̂Φ).
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(d) The recovered component β̂Ψ.

Figure 3: The separation of components from a typical simulation of Experiment 3 with noise
level σ = 0.01. Subplot (a) is the exact composite signal β, which is then undersampled via

y = Xβ+ z. Subplot (b) is the pointwise error β− β̂, where β̂ is the recovered signal. Subplots

(c) and (d) are the individual recovered components Re(β̂Φ) and β̂Ψ separated using POA and
Model (2).
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test sets, β1 ∈ Tj1 and β2 ∈ Tj2 , and taking β = β1 + β2. Consider the observation y = Xβ, where X is a

random Bernoulli 128×256 sensing matrix. The overcomplete dictionary is learned from the labeled training

sets by concatenating the first few principal components of each matrix R[j]. Using Model (2) and POA,

we classify the two digits in the composition β, and recover an approximation of the two digits using the

procedure outlined in Algorithm 2.

Algorithm 2 Composite Handwritten Digit Classification and Separation

(1): Input the observation y, the training sets R[0], . . . , R[9], and a positive integer k ≤ 256.
(2): For each j, compute Ũ [j], a matrix whose columns are the first k principal components of the matrix
R[j]. The overcomplete dictionary is learned from the training data via

B =
[

Ũ [0] Ũ [1] · · · Ũ [9]
]

.

(3): Apply POA to y to produce a sparse coefficient vector ĉ satisfying Model (2) and to recover the

composite vector β̂ = Bĉ.
(4): Classify the components of β̂ as the indices j1, j2 yielding the smallest two values of

∥

∥

∥

(

I256 − Ũ [j]Ũ [j]∗
)

β̂
∥

∥

∥

2
.

(5): Form a reduced dictionary
B̂ =

[

Ũ [j1] Ũ [j2]
]

.

(6): Apply POA again to y using B̂ to obtain a new coefficient vector ĉ =
[

c⊤j1 c⊤j2
]⊤

satisfying Model (2).
The two unknown components of β are approximated as

β̂j1 = Ũ [j1]ĉj1 , and β̂j2 = Ũ [j2]ĉj2 .

Let us explain the motivation behind Algorithm 2. Since each unknown digit in the composite vector

should be described well by its corresponding principal vectors, it follows that one can approximate the

composite vector by β = Bc for a sparse coefficient vector c, and Model (2) is appropriate to use on y.

In Step (2), the first k principal components of each training set R[j] is computed and used to form the

overcomplete dictionary. One possible method to find each Ũ [j] is to use the singular value decomposition.

If UΣV ∗ is a singular value decomposition of the R[j], then Ũ [j] can be taken as the first k columns of the

collection of left singular vectors U . In Step (4), the recovered composite vector β̂ is projected onto the

vector spaces spanned by the first k principal components of each training class, and the components are

classified according to the residual vectors giving the smallest ℓ2 norm. In Steps (5) and (6), the dictionary is

reduced based on the most significant principal components identified in Step (4). Reducing the dictionary

results in a cleaner separation since only coefficients in the identified classes will be recovered.

Algorithm 2 was performed 1000 times for different observations y with k = 30, and the recovered classi-

fication indices were compared with the true classification of the two components, as well as the classification

determined using the smallest residual error from the composite image β. In 95.4% of the simulations, the
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classification accuracy of β̂ generated by POA given only the random projections y matched or exceeded the

classification accuracy of the exact image β. Examples of the separation of two composite images sampled

from the testing data sets using Algorithm 2 is illustrated in Figure 4. �

Figure 4: Two illustrations of the approximation of individual components composite images
using POA in Algorithm 2 with an overcomplete dictionary learned from training examples as
in Experiment 4. In each collection, reading left to right, the top row is the exact composite
image β followed by the exact components. The bottom row is the recovered composite image
β̂ followed by the recovered components β̂j1 and β̂j2 .

5 Conclusion

The strength of Model (2) and POA in separating noisy undersampled composite signals is demonstrated

through the numerical experiments in the previous section. Figures 2, 3 and 4 and Tables 1, 2 and 3 clearly

illustrate components of a composite signal are separated using POA with a high degree of precision. In

particular, Figure 2 demonstrates the method’s ability to distinguish mixed signals that have similar dynamic

range, Figure 3 demonstrates the effectiveness of this method to separate a smooth signal from unwanted

impulse noise and Figure 4 demonstrates POA can be used to separate overlaid images using an overcomplete

dictionary training from labeled data.

The relative ℓ2 norm error of the recovery of each of the components remains fairly stables as m increases

for each σ, as shown in Tables 1 and 2. This suggests that the method is not greatly affected by the system

size, and is stable and reliable in practice.

Comparisons to ADM demonstrate the advantages of using POA to separate a noisy undersampled com-

posite signal and estimate solutions of Model (2). When the underlying coefficient vector and overcomplete

dictionary have only real-valued elements, the two methods have similar accuracy yet POA is significantly

faster (Figure 1, Table 1). Moreover, POA can be readily applied to models involving complex-valued over-

complete dictionaries and coefficients, but the ADM used for comparison was designed for convex optmization
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in real-valued domains only. In this sense, POA applies to a wider class of problems.

In summary, we have introduced a model for the Dantzig selector incorporating overcomplete dictionaries

that can be used to separate composite signals. Additionally, we have proposed POA, an iterative algorithm

to estimate solutions to Model (2) and have given the results of several numerical experiments to support the

strength of both the model and the algorithm. We have shown through the numerical experiments that POA

is preferable over the competing method ADM, since POA produces results with similar accuracy but with

less CPU time and is applicable to a wider class of problems. Some possible future applications based on

the foundation of the separation of composite signals include medical imaging, image inpainting and feature

extraction. Moreover, advances in finding sparse descriptions of noisy composite signals can be applied to

improve technologies in signal compression and communications.
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