
ar
X

iv
:1

41
1.

12
84

v1
  [

cs
.S

Y
]  

5 
N

ov
 2

01
4

1

Kullback-Leibler divergence for interacting
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Abstract

This paper studies the problem of interacting multiple model (IMM) estimation for jump Markov

linear systems with unknown measurement noise covariance.The system state and the unknown covari-

ance are jointly estimated in the framework of Bayesian estimation, where the unknown covariance is

modeled as a random matrix according to an inverse-Wishart distribution. For the IMM estimation with

random matrices, one difficulty encountered is the combination of a set of weighted inverse-Wishart

distributions. Instead of using the moment matching approach, this difficulty is overcome by minimizing

the weighted Kullback-Leibler divergence for inverse-Wishart distributions. It is shown that a closed

form solution can be derived for the optimization problem and the resulting solution coincides with an

inverse-Wishart distribution. Simulation results show that the proposed filter performs better than the

previous work using the moment matching approach.

Index Terms

Interacting multiple model, Kullback-Leibler divergence, Random matrix, Jump Markov system

I. INTRODUCTION

Jump Markov linear systems have received considerable attention due to its applications in a

wide variety of signal processing systems and control systems [1]–[4]. For discrete-time jump
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Markov linear systems, the dynamics are represented by a number of modes governed by a

finite state Markov chain and within each mode the continuousstate is described by a stochastic

difference equation. Unfortunately, computing the optimal state estimate of jump Markov linear

systems requires exponential complexity as time progresses. As a result, many suboptimal filters

have been proposed such as the generalized pseudo Bayesian [5], the interacting multiple model

(IMM) estimator [6], the particle filter [7]–[9] and the array algorithms [10]. See the survey for

more detailed discussions on multiple model methods [11].

State estimation for jump Markov systems with unknown measurement noise statistics has

been investigated in recent years. In [12], a robust extended Kalman filter (EKF) has been

developed for jump Markov nonlinear systems with uncertainnoise, where the uncertainty of

noise covariance matrix is limited by an upper bound and the filter is derived by solving a

nonlinear programming problem with inequality constraints. In [13], a linear minimum mean

square error (LMMSE) estimator has been proposed for jump Markov linear systems without

Gaussian assumptions on the noise and the estimator has beenextended to develop an optimal

polynomial filter for stochastic systems with switching measurements in [14]. In [15], a minimax

filter has been derived for stochastic bimodal systems with unknown binary switching statistics.

In [16], theH∞ filter has been combined with the IMM approach, where the purpose of theH∞

filter is to minimize the worst possible effects of the unknown noise to the estimation errors.

In addition, some weighting parameters should be designed carefully to guarantee the existence

and the performance of theH∞ filter.

Recently, the random matrix approach has been used for stateestimation of stochastic systems

with unknown measurement noise covariance [17], [18]. By using different conjugate prior

distributions for the unknown measurement noise covariance, state estimation for jump Markov

linear systems with unknown measurement noise covariance has been addressed in the framework

of Bayesian estimation. In [19], by treating the conjugate prior for the noise variance parameters

as the inverse-Gamma distribution, an IMM estimator has been developed for jump Markov linear

systems. However, a serious limitation in this filter is thatthe noise covariance is restricted as a

diagonal matrix. This assumption is used due to the fact thateach diagonal element of the matrix

can be modeled by an inverse-Gamma distribution but not the matrix itself. In fact, a matrix can be

considered as multivariate random variable and the inverse-Wishart distribution can be used as the

conjugate prior for the covariance matrix of a multivariateGaussian distribution [20]. By using
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the inverse-Wishart distribution as the conjugate prior for the measurement noise covariance,

an IMM estimator has been proposed in [21]. Due to the presence of the estimation of random

matrices, one difficulty encountered in the IMM estimation is the combination of a set of weighted

inverse-Wishart distributions. In [21], an inverse-Wishart distribution is used to approximate a

set of weighted inverse-Wishart distributions by matchingthe first order moment and the mean

squared estimation errors. However, it is not clear whetherit is effective to approximate a set

of weighted inverse-Wishart distributions by using the moment matching method.

In this paper, we attempt to propose a novel IMM estimator forjump Markov linear sys-

tems with unknown measurement noise covariance. By modeling the unknown measurement

covariance as a random matrix according to an inverse-Wishart distribution, the state and the

random matrix are estimated jointly in the framework of Bayesian estimation. Instead of using

the moment matching approach to address the combination of aset of weighted inverse-Wishart

distributions, this difficulty is overcome by minimizing the weighted Kullback-Leibler divergence

for inverse-Wishart distributions. It is shown that a closed form solution can be derived for the

optimization problem and the resulting solution coincideswith an inverse-Wishart distribution. A

simulation study of maneuvering target tracking is provided to illustrate the effectiveness of the

proposed filter. Simulation results show that the proposed filter performs better than the previous

work using the moment matching approach.

The rest of this paper is organized as follows. In section II,the problem of state estimation

for jump Markov linear systems is formulated. In section III, the weighted Kullback-Leibler

divergence is introduced and it is applied in the IMM approach to develop a novel estimator. A

numerical example is provided in section IV, followed by conclusions in section V.

II. PROBLEM FORMULATION

Consider the following jump Markov linear system

xk = Fk−1(rk)xk−1 +Gk−1(rk)wk−1(rk) (1)

zk = Hkxk + vk (2)

where xk ∈ R
n and zk ∈ R

m denote the state and the measurement vectors, respectively.

rk is a discrete variable denoting the state of a Markov chain and taking values in the set
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M , {1, 2, · · · ,M} according to the transition probability matrixΠ = [πij ]M×M with

πij , P{rk = j|rk−1 = i} (3)

M
∑

n=1

πij = 1, i ∈ M (4)

The quantitiesFk−1(rk), Gk−1(rk) and Hk are known matrices. Note that the measurement

equation (2) does not evolve with time according to the Markov state. This is a reasonable

condition since the measurement is generally insensitive to the state of the model. The process

noisewk−1(rk) corresponding to moderk and the measurement noisevk are assumed to be

mutually uncorrelated zero-mean white Gaussian processeswith covariance matricesQk−1(rk)

andRk, respectively. The measurement noise covarianceRk is assumed to be unknown and it

is modeled as a random matrix with the conjugate prior of an inverse-Wishart distribution [20].

The aim of this paper is to derive the estimates of the statexk and the random matrixRk in

the framework of Bayesian estimation. To this end, the IMM approach is adopted to derive the

estimates recursively. One cycle of the IMM estimator consists of four steps including interacting

of mode-conditioned estimates, mode-conditioned filtering, mode probability update and fusion

of mode-conditioned estimates [6]. Specifically, at each time step, the initial condition for the

filter matched to a certain model is derived by mixing the estimates of all filters at the previous

time step. This is followed by a regular filtering step, performed in parallel for each model. Then,

the mode probability is updated by using the measurement anda combination of the updated

estimates of all filters yields the final estimates. For IMM estimation with random matrices, one

difficulty encountered is how to combine a set of weighted inverse-Wishart distributions in the

interacting and fusion steps. Moreover, the combined probability density function is expected to

be an inverse-Wishart distribution which facilitates to derive the Bayesian estimation recursion.

This is illustrated in the following formulation.

Problem Formulation: Assume that the mode-conditioned posterior density function at time

stepk − 1 is approximated by a product of Gaussian and inverse-Wishart (GIW) distributions

p(xk−1, Rk−1|rk−1 = i, Zk−1) = N (xk−1; x̂
i
k−1, P

i
k−1)IWm(Rk−1; ν

i
k−1,Σ

i
k−1) (5)

whereZk−1 , {z1, · · · , zk−1} is the cumulative set of measurements up to timek−1. N (x; x̂, P )

denotes the probability density function of Gaussian distribution with meanx̂ and covariance
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matrix P

N (x; x̂, P ) =
1

(2π)n/2|P |1/2
exp

[

−
1

2
(x− x̂)TP−1(x− x̂)

]

(6)

The notationIWm(R; ν,Σ) represents the probability density function of an inverse-Wishart

distribution with degreeν and scalar matrixΣ

IWm(R; ν,Σ) =
2

−(ν−m−1)m
2 |Σ|

ν−m−1
2

Γm(
ν−m−1

2
)|R|

ν

2

exp
[

−
1

2
Tr(R−1Σ)

]

(7)

with Γm(·) being the multivariate Gamma function andTr being the trace function of a matrix.

Assume that the mode probabilities are also derived at time step k − 1

P{rk−1 = i|Zk−1} = µi
k−1 (8)

The problem considered in this paper is to, given a set of mode-conditioned posterior density

functions (5) and mode probabilities (8), obtain a solutionto the mixed probability density

function is of the same function form as (5), i.e.,

p(xk−1, Rk−1|rk = j, Zk−1) = N (xk−1; x̂
0j
k−1, P

0j
k−1)IWm(Rk−1; ν

0j
k−1,Σ

0j
k−1) (9)

and the fusion of mode-conditioned posterior density function at timek

p(xk, Rk|Zk) = N (xk; x̂k, Pk)IWm(Rk; νk,Σk) (10)

III. PROPOSED ESTIMATOR

In this section, the Kullback-Leibler divergence is brieflyreviewed, based on which the

weighted Kullback-Leibler divergence is defined to derive an optimal probability density function

for a set of weighted inverse-Wishart distributions. Then,the proposed approach is utilized to

address the problem of combination of inverse-Wishart distributions in the IMM estimator.

A. Kullback-Leibler divergence

Let

P , {p(x) : Rn → R such that

∫

Rn

p(x)dx = 1 and p(x) ≥ 0, ∀x ∈ R
n} (11)

denotes the set of probability density functions overR
n.
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From the information-theoretic point of view, the difference between two probability density

functionsp(x) andq(x) in P can be measured by the following Kullback-Leibler divergence

DKL(p||q) =

∫

p(x) log
p(x)

q(x)
dx (12)

In Bayesian statistics, the Kullback-Leibler divergence can be used as a measure of the

information gain in moving from a prior probability densityfunction q(x) to a posterior prob-

ability density functionp(x). The Kullback-Leibler divergence satisfiesDKL(p||q) ≥ 0 with

equality if, and only if p(x) = q(x). However, it is not a symmetrical quantity, that is to

say DKL(p||q) 6= DKL(q||p) [22]. Thus, the Kullback-Leibler divergence should not be taken

as a distance rigorously. Nevertheless, the Kullback-Leibler divergence has been shown to

be geometrically important and it can be evaluated numerically. In addition, the Kullback-

Leibler divergence can be considered an example of the Ali-Silvey class of information theoretic

measures [23], and it quantities how close a probability distribution is to a candidate. The

Kullback-Leibler divergence can be used to find a probability distribution that best approximates

the candidate in the sense of minimizing the Kullback-Leibler divergence. To represent the

difference between a probability density function and a setof probability density functions, we

adopt the following definition of the weighted Kullback-Leibler divergence [24].

Definition 1: Given N probability density functionspi(x) ∈ P, and relative weightsλi

satisfying

λi ≥ 0,

N
∑

i=1

λi = 1 (13)

their weighted Kullback-Leibler divergence is defined as follows

p̄(x) = arg inf
p∈P

N
∑

i=1

λiDKL(p||pi) (14)

It can be seen that the weighted Kullback-Leibler divergence p̄(x) is the one that minimizes the

sum of the information gains from the initial probability density functions. Thus, it is coherent

with the Principle of Minimum Discrimination Information (PMDI) according to which the

probability density function best represents the current state of knowledge is the one which

produces an information gain as small as possible [25]. It has been shown that the above weighted

Kullback-Leibler divergence can be derived explicitly as follows.
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Lemma 1: ( [24]) The weighted Kullback-Leibler divergence defined in(14) turns out to be

p̄(x) =

∏N
i=1[p

i(x)]λi

∫
∏N

i=1[p
i(x)]λidx

(15)

By applying the weighted Kullback-Leibler divergence to the inverse-Wishart distributions,

we can obtain a closed form solution to (15), as shown in the following theorem.

Theorem 1:GivenN inverse-Wishart probability density functionsIWm(X ; ai;Ai) and weights

λi satisfying (13), their weighted Kullback-Leibler divergence in (15) takes the form

p̄(X) = IWm(X ; ā; Ā) (16)

where

ā =

N
∑

i=1

λiai (17)

Ā =
N
∑

i=1

λiAi (18)

Proof. From the definition of the inverse-Wishart distribution (7), we have
N
∏

i=1

[IWm(X ; ai;Ai)]
λi ∝

N
∏

i=1

|X|−
λiai

2 exp
[

−
1

2
Tr(λiX

−1Ai)
]

∝ |X|−
∑N

i=1 λiai

2 exp
[

−
1

2
Tr(X−1

N
∑

i=1

λiAi)
]

∝ IWm(X ;

N
∑

i=1

λiai;

N
∑

i=1

λiAi) (19)

Notice that the denominator of (15) is a constant, hence

p̄(X) = cIWm(X ; ā; Ā) (20)

wherec is a normalizing constant,̄a and Ā are given by (17)-(18), respectively.

Sincep̄(X) is a probability density function, we have
∫

p̄(X)dX = c

∫

IWm(X ; ā; Ā)dX = c = 1 (21)

the result is proved.�

Remark 1:Theorem 1 states that the weighted Kullback-Leibler divergence provides an op-

timal probability density function to a set of weighted inverse-Wishart distributions. Moreover,

the resulting solution coincides with an inverse-Wishart distribution, where the parametersā and
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Ā can be simply obtained by the algebraic average. This strategy can be applied in the IMM

estimation with random matrices by treating mode-conditioned posterior density functions and

mode probabilities as a set of weighted inverse-Wishart distributions.

B. IMM estimator by Kullback-Leibler divergence

As the IMM approach has been well studied in the previous work[6], [19], [21], we present

one cycle of recursion in the following steps.

Step 1. Interacting of mode-conditioned estimates

Since the statexk−1 and the random matrixRk−1 are independent, the posterior density

function (5) can be rewritten as

p(xk−1|rk−1 = i, Zk−1) = N (xk−1; x̂
i
k−1, P

i
k−1) (22)

p(Rk−1|rk−1 = i, Zk−1) = IW(Rk−1; ν
i
k−1,Σ

i
k−1) (23)

The mixed posterior density function for the statexk−1 is given by

p(xk−1|rk = j, Zk−1) =

M
∑

i=1

p(xk−1|rk−1 = i, Zk−1)P{rk−1 = i|rk = j}

=

M
∑

i=1

µ
i|j
k−1N (xk−1; x̂

i
k−1, P

i
k−1)

≈ N (xk−1; x̂
0j
k−1, P

0j
k−1) (24)

where the moment matching method is used to approximate the Gaussian mixture terms

µ
i|j
k−1 =

πijµ
i
k−1

∑M
l=1 πljµl

k−1

(25)

x̂0j
k−1 =

M
∑

i=1

µ
i|j
k−1x̂

i
k−1 (26)

P 0j
k−1 =

M
∑

i=1

µ
i|j
k−1

[

P i
k−1 + (x̂i

k−1 − x̂0j
k−1)(x̂

i
k−1 − x̂0j

k−1)
T
]

(27)

The mixed posterior density function for the random matrixRk−1 is derived by

p(Rk−1|rk = j, Zk−1) = arg inf
p

M
∑

i=1

µ
i|j
k−1DKL(p||p(Rk−1|rk−1 = i, Zk−1)) (28)
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By using Theorem 1, the weighted Kullback-Leibler divergence is given by

p(Rk−1|rk = j, Zk−1) = IWm(Rk−1; ν
0j
k−1,Σ

0j
k−1) (29)

where

ν0j
k−1 =

M
∑

i=1

µ
i|j
k−1ν

i
k−1 (30)

Σ0j
k−1 =

M
∑

i=1

µ
i|j
k−1Σ

i
k−1 (31)

Step 2. Mode-conditioned filtering

As in [21], taking the mixing estimates as inputs of filters, the mode-conditioned posterior

density function at timek can be obtained by using variational Bayesian approximation

p(xk|rk = j, Zk) ≈ N (xk; x̂
j
k, P

j
k ) (32)

p(Rk|rk = j, Zk) ≈ IWm(Rk; ν
j
k,Σ

j
k) (33)

Step 3. Update of mode probabilities

As in [21], the mode probabilities are updated by

µj
k =

Λj
k

∑M
l=1 πljµ

l
k−1

∑M
i=1

∑M
l=1 πliµ

l
k−1Λ

i
k

(34)

whereΛi
k the likelihood function.

Step 4. Fusion of mode-conditioned estimates

The overall posterior density function for the statexk is given by

p(xk|Zk) =

M
∑

j=1

p(xk|rk = j, Zk)P{rk = j|Zk}

=
M
∑

j=1

µj
kN (xk; x̂

j
k, P

j
k )

≈ N (xk; x̂k, Pk) (35)

where the moment matching method is used to approximate the Gaussian mixture terms

x̂k =
M
∑

j=1

µj
kx̂

j
k (36)

Pk =

M
∑

j=1

µj
k

[

P j
k + (x̂j

k − x̂k)(x̂
j
k − x̂k)

T
]

(37)
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The overall posterior density function for the random matrix Rk is derived by

p(Rk|Zk) = arg inf
p

M
∑

j=1

µj
kDKL(p||p(Rk|rk = j, Zk)) (38)

By using Theorem 1, the weighted Kullback-Leibler divergence is given by

p(Rk|Zk) = IWm(Rk; νk,Σk) (39)

where

νk =
M
∑

j=1

µj
kν

j
k (40)

Σk =

M
∑

j=1

µj
kΣ

j
k (41)

Notice that the overall estimate of the random matrix is the expectation of the inverse-Wishart

distribution (39)

R̂k =
Σk

νk − 2m− 2
(42)

Remark 2: In the proposed filter, two different strategies are utilized to fuse the mode-

conditioned estimates of the state and the random matrix. Specifically, for the probability density

function of the statexk, the moment matching approach is used to approximate a set ofweighted

Gaussian distributions, which is widely used in the IMM estimation. For the probability density

function of the random matrixRk, the weighted Kullback-Leibler divergence is adopted to

approximate a set of weighted inverse-Wishart distributions. The weighted Kullback-Leibler

divergence is adopted because only the first order moment canbe matched for a set of weighted

inverse-Wishart distributions by using the moment matching approach. Moreover, the weighted

Kullback-Leibler divergence provides a closed form solution with an inverse-Wishart distribution.

Remark 3:The difference between the proposed filter and the previous version in [21] is that

the sum of weighted inverse-Wishart distributions inStep 1andStep 4is approximated by using

the weighted Kullback-Leibler divergence instead of moment matching method. Specifically,

an inverse-Wishart distribution is used to approximate thesum of weighted inverse-Wishart

distributions in [21], where the first order moment and the mean-squared estimation error are

matched to determine the parameters of the inverse-Wishartdistribution, e.g., the overall estimate
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of the random matrix in [21] is given by

R̂k =
N
∑

j=1

µj
kΣ

j
k

νj
k − 2m− 2

(43)

It can be seen that the overall estimates of the random matrixin (42) and (43) are not matched

in general. However, they are matched ifνi
k = νj

k for all i, j = 1, 2, · · · ,M .

IV. NUMERICAL EXAMPLE

In this section, we compare the performance of the proposed filter with the previous work

via a two-dimensional (2-D) maneuvering target tracking example. In order to produce a fair

comparison, the tracking parameters in [21] are adopted. Tobe specific, the target dynamics is

described by the following coordinated turn model

xk =















1 sin(ωT )
ω

0 −1−cos(ωT )
ω

0 cos(ωT ) 0 − sin(ωT )

0 1−cos(ωT )
ω

1 sin(ωT )
ω

0 sin(ωT ) 0 cos(ωT )















xk−1 + wk−1 (44)

wherexk = (px,k vx,k py,k vy,k)
T denotes the target state.ω denotes the coordinated turn rate

andT = 1 is the sampling time period. The process noisewk−1 is zero-mean white Gaussian

with covariance matrix

Q = qI2×2 ⊗





T 4/4 T 3/2

T 3/2 T 2



 (45)

whereq = 0.09 is the level of power spectral density and⊗ denotes the Kronecker product.

Three models corresponding to different turn rates are usedin the simulations, i.e.,−4◦/s, 0◦/s

and 4◦/s. The switching between three models is governed by a first order time-homogeneous

Markov chain with known transition probabilitiesπii = 0.8 (i = 1, 2, 3) andπij = 0.1 (i 6= j). It

is assumed that only the target positions are measured and the measurement noise is zero-mean

white Gaussian with unknown covariance matrix

Rk =





r r/20

r/20 r



 (46)

wherer is the level of power spectral density .
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To evaluate the performance of the proposed filter, the IMM-KF with known measurement

noise covariance matrix is considered as the baseline algorithm. For simplicity of notation, the

proposed filter with weighted Kullback-Leibler divergenceis shortly denoted by IMM-KL and

the IMM estimation with moment matching approach is shortlydenoted by IMM-MM [21].

Simulation results are derived from 1000 Monte Carlo runs, where the root mean square error

(RMSE) in position and the estimation error of the random matrix Rk defined in [26] are used.

The initial inverse-Wishart distribution forR0 is chosen asνi
0 = 20 andΣi

0 = diag{50, 50}

(i = 1, 2, 3). The number of fixed iteration steps in the variational Bayesian update is taken to

beNc = 2 to derive mode-conditioned estimates. The level of the measurement noise density is

taken to ber = 200. The RMSE in position are shown in Fig.1. The simulation results show that

the IMM-KL outperforms the IMM-MM and the IMM-KL converges faster than the IMM-MM

at the beginning of the simulation intervals. Especially, the IMM-KL generates almost identical

results with the IMM-KF as time progresses. The IMM-KF performs better than the IMM-MM

and IMM-KL at the beginning of the simulation intervals. This is due to the fact that there

is a large gap between the initial prior distributions and the truth for covariance matrix. The

estimation errors with respect to the random matrixRk are shown in Fig.2. It can be seen that

the IMM-KL achieves higher accuracy than the IMM-MM.

To further evaluate the performance of the proposed filter with respect to different levelsr,

the averaged RMSE in position and the averaged estimation errors with respect to the covariance

matrix are presented in Fig.3 and Fig.4, respectively. It can be observed that the performance

of the proposed IMM-KL is comparable to that of the IMM-KF with known covariance matrix.

The IMM-KL outperforms the IMM-MM with respect to the estimation of covariance matrix.

V. CONCLUSION

In this paper, we proposed a novel IMM estimation approach with random matrices. Instead

of using the moment matching method to address of the combination of a set of weighted

inverse-Wishart distributions in the IMM estimation, the weighted Kullback-Leibler divergence

is applied and a closed form solution can be derived. Simulation results show that the proposed

filter outperforms the previous work using the moment matching method. The proposed approach

can be expected to be used for maneuvering extended targets tracking where the target extent is

modeled via a random matrix [27]–[32].
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Fig. 1: RMSE in position versus time.
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Fig. 2: Estimation error of the covariance matrix versus time.
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Fig. 3: Averaged RMSE in position versus different levelsr.
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