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Kullback-Leibler divergence for interacting
multiple model estimation with random

matrices

Wenling Li and Yingmin Jia

Abstract

This paper studies the problem of interacting multiple mdtM) estimation for jump Markov
linear systems with unknown measurement noise covaridi@system state and the unknown covari-
ance are jointly estimated in the framework of Bayesiameaion, where the unknown covariance is
modeled as a random matrix according to an inverse-Wisligtrttaition. For the IMM estimation with
random matrices, one difficulty encountered is the comhinabf a set of weighted inverse-Wishart
distributions. Instead of using the moment matching apgrothis difficulty is overcome by minimizing
the weighted Kullback-Leibler divergence for inverse-Wég distributions. It is shown that a closed
form solution can be derived for the optimization problend déime resulting solution coincides with an
inverse-Wishart distribution. Simulation results showattthe proposed filter performs better than the

previous work using the moment matching approach.

Index Terms

Interacting multiple model, Kullback-Leibler divergendgandom matrix, Jump Markov system

. INTRODUCTION

Jump Markov linear systems have received considerablet@tedue to its applications in a

wide variety of signal processing systems and control systdl]-[4]. For discrete-time jump
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Markov linear systems, the dynamics are represented by @&uonf modes governed by a
finite state Markov chain and within each mode the continugtate is described by a stochastic
difference equation. Unfortunately, computing the optistate estimate of jump Markov linear
systems requires exponential complexity as time progsegsea result, many suboptimal filters
have been proposed such as the generalized pseudo Bayaisitne [interacting multiple model
(IMM) estimator [6], the patrticle filter[[7]-5[9] and the agraalgorithms [10]. See the survey for
more detailed discussions on multiple model methads [11].

State estimation for jump Markov systems with unknown mesrsent noise statistics has
been investigated in recent years. Inl[12], a robust ex@ri<i@man filter (EKF) has been
developed for jump Markov nonlinear systems with uncertaise, where the uncertainty of
noise covariance matrix is limited by an upper bound and ther fis derived by solving a
nonlinear programming problem with inequality constrainih [13], a linear minimum mean
square error (LMMSE) estimator has been proposed for jumpkddalinear systems without
Gaussian assumptions on the noise and the estimator haskiesled to develop an optimal
polynomial filter for stochastic systems with switching re@@ments in [14]. IN[15], a minimax
filter has been derived for stochastic bimodal systems witmawn binary switching statistics.
In [16], the H, filter has been combined with the IMM approach, where the paef theH
filter is to minimize the worst possible effects of the unkmonoise to the estimation errors.
In addition, some weighting parameters should be desigaesfudly to guarantee the existence
and the performance of the, filter.

Recently, the random matrix approach has been used forestibeation of stochastic systems
with unknown measurement noise covariance [17]) [18]. Binaudifferent conjugate prior
distributions for the unknown measurement noise covaeastate estimation for jump Markov
linear systems with unknown measurement noise covariaaebdéen addressed in the framework
of Bayesian estimation. In_[19], by treating the conjugaiernfor the noise variance parameters
as the inverse-Gamma distribution, an IMM estimator has loeseloped for jump Markov linear
systems. However, a serious limitation in this filter is tthe noise covariance is restricted as a
diagonal matrix. This assumption is used due to the factehah diagonal element of the matrix
can be modeled by an inverse-Gamma distribution but not titexmtself. In fact, a matrix can be
considered as multivariate random variable and the inv&fisdart distribution can be used as the

conjugate prior for the covariance matrix of a multivari@aussian distributiori [20]. By using
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the inverse-Wishart distribution as the conjugate priar tfie measurement noise covariance,
an IMM estimator has been proposed (in][21]. Due to the presefthe estimation of random
matrices, one difficulty encountered in the IMM estimatistihie combination of a set of weighted
inverse-Wishart distributions. In_[21], an inverse-Wighdistribution is used to approximate a
set of weighted inverse-Wishart distributions by matching first order moment and the mean
squared estimation errors. However, it is not clear whethir effective to approximate a set
of weighted inverse-Wishart distributions by using the neatmatching method.

In this paper, we attempt to propose a novel IMM estimatorjfonp Markov linear sys-
tems with unknown measurement noise covariance. By magléhie unknown measurement
covariance as a random matrix according to an inverse-\Wishstribution, the state and the
random matrix are estimated jointly in the framework of Bsiga estimation. Instead of using
the moment matching approach to address the combinatiorseff af weighted inverse-Wishart
distributions, this difficulty is overcome by minimizingehweighted Kullback-Leibler divergence
for inverse-Wishart distributions. It is shown that a cld$erm solution can be derived for the
optimization problem and the resulting solution coincideth an inverse-Wishart distribution. A
simulation study of maneuvering target tracking is prodide illustrate the effectiveness of the
proposed filter. Simulation results show that the proposte fierforms better than the previous
work using the moment matching approach.

The rest of this paper is organized as follows. In sectiorthié, problem of state estimation
for jump Markov linear systems is formulated. In section the weighted Kullback-Leibler
divergence is introduced and it is applied in the IMM applo&x develop a novel estimator. A

numerical example is provided in section 1V, followed by clusions in section V.

[I. PROBLEM FORMULATION
Consider the following jump Markov linear system
Ty = Foq (1) @p—1 + Gro1 (%) wi—1 (%) (1)

2 = Hypz + vy (2)

where x;, € R™ and z, € R™ denote the state and the measurement vectors, respectively

ry IS a discrete variable denoting the state of a Markov chauh taking values in the set
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M 2 {1,2,---, M} according to the transition probability matrix = [Tij]arxar With

;5 £ P{ry = jlrr—1 =i} ©))
M
Zﬂ'ijzl,iEM (4)
n=1

The quantitiesFy,_(ry), Gr_1(ry) and H, are known matrices. Note that the measurement
equation (2) does not evolve with time according to the Marktate. This is a reasonable
condition since the measurement is generally insensitivibe state of the model. The process
noise wy_1(r) corresponding to mode, and the measurement noisg are assumed to be
mutually uncorrelated zero-mean white Gaussian procesghscovariance matrice€),_1(r)
and Ry, respectively. The measurement noise covariaiigces assumed to be unknown and it
is modeled as a random matrix with the conjugate prior of aerge-Wishart distribution [20].

The aim of this paper is to derive the estimates of the statend the random matri®,, in
the framework of Bayesian estimation. To this end, the IMNbrach is adopted to derive the
estimates recursively. One cycle of the IMM estimator cstissof four steps including interacting
of mode-conditioned estimates, mode-conditioned filtggrmode probability update and fusion
of mode-conditioned estimates [6]. Specifically, at eaatetistep, the initial condition for the
filter matched to a certain model is derived by mixing theraates of all filters at the previous
time step. This is followed by a regular filtering step, peried in parallel for each model. Then,
the mode probability is updated by using the measurementaacmimbination of the updated
estimates of all filters yields the final estimates. For IMMiraation with random matrices, one
difficulty encountered is how to combine a set of weighteceise-Wishart distributions in the
interacting and fusion steps. Moreover, the combined poitibadensity function is expected to
be an inverse-Wishart distribution which facilitates toide the Bayesian estimation recursion.
This is illustrated in the following formulation.

Problem Formulation Assume that the mode-conditioned posterior density fancat time

stepk — 1 is approximated by a product of Gaussian and inverse-Wig@dyV) distributions
p(@r—1, Reci|ree = i, Zj1) = N (z—1; &5y, Pl ) IWin(Ri—1; vy, Sh_q) (5)

whereZ,_1 = {z, -, z_1} is the cumulative set of measurements up to timel. N'(z; 2, P)

denotes the probability density function of Gaussian iistron with meanz and covariance
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matrix P

N(z; &, P) = ! exp [ — 1(x — )P — i)} (6)

(27T)”/2|P‘1/2 2
The notationZW,,(R; v, ) represents the probability density function of an invaféishart

distribution with degrees and scalar matrix:

—(v—m—1)m v—m—1

2 2 ‘2” 2

o (“=5=1) B2

IWm(R; v, %) =

exp [— %Tr(R_lZ)} (7)

with T',,,(-) being the multivariate Gamma function afid being the trace function of a matrix.

Assume that the mode probabilities are also derived at tie@is— 1

P{re—1 = i|Ze-1} = pj_ (8)

The problem considered in this paper is to, given a set of roodelitioned posterior density
functions (5) and mode probabilities (8), obtain a soluttonthe mixed probability density

function is of the same function form as (5), i.e.,
D@1, Rk = 4, Zo1) = N(@p—1; 8771, PP ) IW(Ri—1s v 1, ) ) 9)
and the fusion of mode-conditioned posterior density fiomcat timek

p(zg, Re|Zy) = N (2k; Tk, P)IWon(Ry; Vi, ) (10)

[Il. PROPOSED ESTIMATOR

In this section, the Kullback-Leibler divergence is briefigviewed, based on which the
weighted Kullback-Leibler divergence is defined to derimeogtimal probability density function
for a set of weighted inverse-Wishart distributions. Thiée proposed approach is utilized to

address the problem of combination of inverse-Wishartibigions in the IMM estimator.

A. Kullback-Leibler divergence

Let
P 2 {p(x) : R" — R such that / p(z)dr =1 and p(z) > 0,Vx € R"} (11)

denotes the set of probability density functions oR&t
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From the information-theoretic point of view, the diffecenbetween two probability density

functionsp(x) andg(x) in P can be measured by the following Kullback-Leibler divercgen

Dxw(pllg) = / p(z)log %dw (12)

In Bayesian statistics, the Kullback-Leibler divergen@n doe used as a measure of the
information gain in moving from a prior probability densitynction ¢(z) to a posterior prob-
ability density functionp(z). The Kullback-Leibler divergence satisfié¥q,(p|lq) > 0 with
equality if, and only ifp(x) = ¢(x). However, it is not a symmetrical quantity, that is to
say Dki(p|lq) # Dku(¢llp) [22]. Thus, the Kullback-Leibler divergence should not b&en

as a distance rigorously. Nevertheless, the Kullback{eeilivergence has been shown to

be geometrically important and it can be evaluated numigrickn addition, the Kullback-
Leibler divergence can be considered an example of the iIMeysclass of information theoretic
measures[[23], and it quantities how close a probabilityritistion is to a candidate. The
Kullback-Leibler divergence can be used to find a probahbdistribution that best approximates
the candidate in the sense of minimizing the Kullback-Leribdlivergence. To represent the
difference between a probability density function and acdgirobability density functions, we
adopt the following definition of the weighted Kullback-bér divergence [24].

Definition 1: Given N probability density functiong;(x) € P, and relative weights\;
satisfying

N
>0, Y =1 (13)
i=1

their weighted Kullback-Leibler divergence is defined alofes
N
p(r) = arg;réfag AiDxe(pl[ps) (14)

It can be seen that the weighted Kullback-Leibler diverggiie) is the one that minimizes the
sum of the information gains from the initial probabilityrdsgty functions. Thus, it is coherent
with the Principle of Minimum Discrimination InformationPMDI) according to which the
probability density function best represents the curreatesof knowledge is the one which
produces an information gain as small as possible [25].dtde®n shown that the above weighted

Kullback-Leibler divergence can be derived explicitly addws.
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Lemma 1:( [24]) The weighted Kullback-Leibler divergence defined(i®) turns out to be
I | B CO)
p(x) = N [ N
JILL P (2)]hd
By applying the weighted Kullback-Leibler divergence te timverse-Wishart distributions,

(15)

we can obtain a closed form solution to (15), as shown in thevitng theorem.
Theorem 1:Given N inverse-Wishart probability density functio®$V,,,(X; a;; A;) and weights
A; satisfying (13), their weighted Kullback-Leibler divergee in (15) takes the form

p(X) =IW,(X;a A) (16)
where
N
a = Z )\iai (17)
i=1
N
A= N4 (18)
i=1

Proof. From the definition of the inverse-Wishart distribution,(We have
N N N 1
e AN e _ Y14,
TTIZW (X ai; AP H|X| : exp[ STEOX Az)}

1=1

27{\;1&'%’ 1 N
o | X5 exp[—iTr(X_IZAiAi)}

i=1

X IW,, (X i i i NiAy) (29)
i=1 =1
Notice that the denominator of (15) is a constant, hence
P(X) = IW,(X;a: A) (20)
wherec is a normalizing constant, and A are given by (17)-(18), respectively.
Sincep(X) is a probability density function, we have
/ﬁ(X)dX = c/IWm(X;EL; A)dX =c=1 (21)

the result is provedli
Remark 1: Theorem 1 states that the weighted Kullback-Leibler digagg provides an op-
timal probability density function to a set of weighted irse-Wishart distributions. Moreover,

the resulting solution coincides with an inverse-Wishastribution, where the parameteisand
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A can be simply obtained by the algebraic average. This giatan be applied in the IMM
estimation with random matrices by treating mode-condéub posterior density functions and

mode probabilities as a set of weighted inverse-Wishattidigions.

B. IMM estimator by Kullback-Leibler divergence
As the IMM approach has been well studied in the previous W6Ik[19], [21], we present

one cycle of recursion in the following steps.
Step 1 Interacting of mode-conditioned estimates
Since the stater,_; and the random matriX?,_; are independent, the posterior density

function (5) can be rewritten as

p(rra|re1 =14, Zp1) = N(ap_1; 851, PL_y) (22)

p(Ri_1|rio1 =i, Zp—1) = IW(Ri_1; V)1, Xk 1) (23)

The mixed posterior density function for the state ; is given by
p(Tr—1|re = J, Zi—1) = Zp(ﬂfk—ﬂ?“k—l =i, Zg—1)P{ry—1 = i[ry = j}
M ..
= N (i iy, Py
i=1

%N(xk—l;igil,szl) (24)

where the moment matching method is used to approximate #ussgn mixture terms

i i
/“Lkbl_ MJ = (25)
=1 Tl
B, = Zu;“ - (26)
0j i 05 N[ ai .0
P = ZNU [Py + (@0 — 3 ) (@ — 23 )T (27)

The mixed posterior density function for the random matgix ; is derived by

p(R—1|re = J, Zi—1) _al"glnfz,u 1Dk (pllp(Ri-1|re-1 =1, Zy—1)) (28)
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By using Theorem 1, the weighted Kullback-Leibler divergens given by

P(Ri_i|rk = §, Zi1) = DV Ri—1; v 1,57 ) (29)

where
Vk 1—2,1% Wit (30)
Egj 1= ZM 22 1 (31)

Step 2 Mode-conditioned filtering
As in [21], taking the mixing estimates as inputs of filteise tmode-conditioned posterior

density function at timé can be obtained by using variational Bayesian approximatio
plaklry = j, Zi) = N (xy; i, ) (32)
P(Rulri = 4, Zi) = IW(Ri; v}, ) (33)

Step 3 Update of mode probabilities
As in [21], the mode probabilities are updated by

J
Ay, l 17leﬂk 1
Z l 17Tl21uk 1AZ

i, = (34)

where A the likelihood function.

Step 4 Fusion of mode-conditioned estimates

The overall posterior density function for the stateis given by

M
p(%\Zk) = Zp(ﬁk\m =7 Zk)P{Tk = J"Zk}

j=1
= N (i i, PL)
j=1

where the moment matching method is used to approximate #ussgan mixture terms

M

=3 ] (36)
j=1

P =[Pl + (& — &) (2] — )" (37)
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The overall posterior density function for the random mxafj, is derived by
M

p(Rk|Zy) = arg il;fZMiDKL(pHp(RkW = J, Zr)) (38)

J=1

By using Theorem 1, the weighted Kullback-Leibler divergenms given by

P(Ri|Zi) = IW,n(Ri; vk, Bi) (39)
where
M
Ve =Y 1y (40)
j=1
M
Sp=) Y (41)
j=1

Notice that the overall estimate of the random matrix is thgeetation of the inverse-Wishart
distribution (39)

~ Yk
B v, —2m — 2 (42)

Remark 2:In the proposed filter, two different strategies are utdiz® fuse the mode-
conditioned estimates of the state and the random matrecifally, for the probability density
function of the state;;, the moment matching approach is used to approximate a segighted
Gaussian distributions, which is widely used in the IMM esttion. For the probability density
function of the random matrixz,, the weighted Kullback-Leibler divergence is adopted to
approximate a set of weighted inverse-Wishart distrimgioThe weighted Kullback-Leibler
divergence is adopted because only the first order momerbbeamatched for a set of weighted
inverse-Wishart distributions by using the moment matghapproach. Moreover, the weighted
Kullback-Leibler divergence provides a closed form sautwith an inverse-Wishart distribution.

Remark 3:The difference between the proposed filter and the previetsian in [21] is that
the sum of weighted inverse-Wishart distributionsSitep land Step 4is approximated by using
the weighted Kullback-Leibler divergence instead of momeratching method. Specifically,
an inverse-Wishart distribution is used to approximate shen of weighted inverse-Wishart
distributions in [21], where the first order moment and theamsquared estimation error are

matched to determine the parameters of the inverse-Widlsribution, e.g., the overall estimate
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of the random matrix in([21] is given by
N

iy
3 32
Ry = —_— 43
g zg:zﬂ —2m —2 (43)
j=1 "k
It can be seen that the overall estimates of the random mat {#2) and (43) are not matched

in general. However, they are matched/jf= u,{ foralli,j=1,2,---, M.

IV. NUMERICAL EXAMPLE

In this section, we compare the performance of the proposted With the previous work
via a two-dimensional (2-D) maneuvering target trackingreple. In order to produce a fair
comparison, the tracking parameterslinl[21] are adoptedeTepecific, the target dynamics is

described by the following coordinated turn model

_1—cos(wT)]
w

sin(wT)
w

Ty = Tp—1+ Wr_1 (44)

sin(wT)

w w

1 0
0 cos(wT) 0 —sin(wT)
0 LzcoswI)
0 0

sin(wT) cos(wT)

wherez, = (Duk Vak Dy vy,k)T denotes the target state.denotes the coordinated turn rate
andT = 1 is the sampling time period. The process naise; is zero-mean white Gaussian

with covariance matrix
TY/4 T3)2
Q= qly® (45)
T3/)2 T?
whereq = 0.09 is the level of power spectral density arddenotes the Kronecker product.
Three models corresponding to different turn rates are ustge simulations, i.e5-4°/s, 0°/s
and4°/s. The switching between three models is governed by a firgtrdithe-homogeneous
Markov chain with known transition probabilities; = 0.8 (: = 1,2,3) andr,;; = 0.1 (i # j). It
is assumed that only the target positions are measured andehsurement noise is zero-mean

white Gaussian with unknown covariance matrix
r /20
By — / (46)
r/20 r

wherer is the level of power spectral density .
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To evaluate the performance of the proposed filter, the IMMaKith known measurement
noise covariance matrix is considered as the baselineitdgorFor simplicity of notation, the
proposed filter with weighted Kullback-Leibler divergeniseshortly denoted by IMM-KL and
the IMM estimation with moment matching approach is shodénoted by IMM-MM [21].
Simulation results are derived from 1000 Monte Carlo runisere the root mean square error
(RMSE) in position and the estimation error of the randomrixak, defined in[26] are used.

The initial inverse-Wishart distribution foR, is chosen ag; = 20 and %} = diag{50, 50}

(1 = 1,2,3). The number of fixed iteration steps in the variational Bayesipdate is taken to
be N. = 2 to derive mode-conditioned estimates. The level of the nreasent noise density is
taken to ber = 200. The RMSE in position are shown in Fig.1. The simulation lssshow that
the IMM-KL outperforms the IMM-MM and the IMM-KL convergesaéter than the IMM-MM
at the beginning of the simulation intervals. Especialiy tMM-KL generates almost identical
results with the IMM-KF as time progresses. The IMM-KF penfis better than the IMM-MM
and IMM-KL at the beginning of the simulation intervals. $his due to the fact that there
is a large gap between the initial prior distributions and truth for covariance matrix. The
estimation errors with respect to the random maftjxare shown in Fig.2. It can be seen that
the IMM-KL achieves higher accuracy than the IMM-MM.

To further evaluate the performance of the proposed filteh wespect to different levels,
the averaged RMSE in position and the averaged estimatrorsexith respect to the covariance
matrix are presented in Fig.3 and Fig.4, respectively. it ba observed that the performance
of the proposed IMM-KL is comparable to that of the IMM-KF Wwiknown covariance matrix.

The IMM-KL outperforms the IMM-MM with respect to the estiti@n of covariance matrix.

V. CONCLUSION

In this paper, we proposed a novel IMM estimation approadh wvandom matrices. Instead
of using the moment matching method to address of the combmaf a set of weighted
inverse-Wishart distributions in the IMM estimation, theighted Kullback-Leibler divergence
is applied and a closed form solution can be derived. Sinmatesults show that the proposed
filter outperforms the previous work using the moment maigtmethod. The proposed approach
can be expected to be used for maneuvering extended targeteg where the target extent is
modeled via a random matrix [27]-[32].
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Fig. 1: RMSE in position versus time.
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Fig. 2: Estimation error of the covariance matrix versusetim
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Fig. 3: Averaged RMSE in position versus different levels
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