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Abstract: Estimating the number of sources is a key task in many array signal processing applications. Conventional algorithms
such as Akaike's information criterion (AIC) and minimum description length (MDL) suffer from underestimation and
overestimation errors. In this study, the authors propose four algorithms to estimate the number of sources in white Gaussian
noise. The authors’ proposed algorithms are categorised into two main categories; namely, sample correlation matrix (CorrM)
based and correlation coefficient matrix (CoefM) based. Their proposed algorithms are applied on the CorrM and CoefM
eigenvalues. They propose to use two decision statistics, which are the moving increment and the moving standard deviation of
the estimated eigenvalues as metrics to estimate the number of sources. For their two CorrM based algorithms, the decision
statistics are compared to thresholds to decide on the number of sources. They show that the conventional process to estimate
the threshold is mathematically tedious with high computational complexity. Alternatively, they define two threshold formulas
through linear regression fitting. For their two CoefM based algorithms, they re-define the problem as a simple maximum value
search problem. Results show that the proposed algorithms perform on par or better than AIC and MDL as well as recently
modified algorithms at medium and high signal-to-noise ratio (SNR) levels and better at low SNR levels and low number of
samples, while using a lower complexity criterion function.
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1 Introduction
Accurate and efficient estimation of number of sources is a critical
task in many signal processing applications. Moreover, several
applications in telecommunications and security assume a number
of sources to be known a priori. As a result, many algorithms such
as direction of arrival (DoA) [1, 2], blind source and channel order
separation [3, 4] rely on the robustness of estimating the number of
sources in order to function properly. As an example, DoA
estimation algorithms such as MUltiple SIgnal Classification
assume the number of sources to be known a priori [5]. Thus,
having number of sources accurately estimated is critical for
correct DoA estimation. Furthermore, DoA estimation is involved
in many further applications such as localisation and tracking of
objects and beamforming in wireless networks [6].

Many algorithms have been proposed to estimate the number of
sources. According to [7], these algorithms can be classified into:
information theoretic based [8], threshold based [9], eigenvector
based [10, 11] and data based estimations [12]. The first two are
the most popular, which we summarise below:

• Information theoretic based estimation: algorithms such as
Akaike's information criterion (AIC), Bayesian information
criterion (BIC) and minimum description length (MDL) use
information theoretic criteria to estimate the number of sources
[8, 13]. They search for minimum value of their log-likelihood
function and an added penalty term. AIC and BIC tend to
overestimate the number of sources and their error rate does not
reach zero even at high signal-to-noise ratio (SNR) levels [14].
MDL underestimates the number of sources and has a poor
performance at low SNR levels [14].In [15], the authors propose
a design strategy for the penalty terms in both AIC and BIC with
a finite number of samples. This is achieved by analysing the
probability of model selection of algorithms, which gave an
insight on the performance of underestimation and
overestimation in the algorithms. They design the penalty based

on a tradeoff between the overestimation and underestimation
probabilities. Such approach would minimise the error resulting
from underestimation and keep the overestimation probability
under a certain level. Results show the effectiveness of the new
optimised penalty terms when compared to traditional AIC and
BIC algorithms, however, the new penalty depends on the
maximum probability of overestimation along with the
overestimated number of sources, which were assumed to be
given. In practical scenarios, these parameters should be
measured empirically a priori and shall differ from one scenario
to another.

In addition, Nadakuditi and Edelman [16] propose a
modification of AIC based on random matrix theory (RMT),
which is denoted by RMT_AIC, which changes the log-
likelihood minimisation criterion to include an approximation of
noise log-likelihood in finite number of samples. Similarly,
Seghouane [17] presents a corrected AIC, called AICC3, that
adds a simplified approximation of bootstrap penalty term.
Bootstrap penalty term, as presented in [18], tends to perform
well with finite number of samples; however, it is complex due
to the usage of cross-validation approximation process. Hence,
AICC3 simplifies the cross-correlation calculation by
approximating it using linear regression estimator. RMT_AIC
solves the problem of overestimation in high SNR while AICC3

has a better performance at low SNR values.
Moreover, a modification to the classical MDL is presented

in [19]. The authors modify the MDL criterion for number of
sources estimation utilising the Gaussian assumption of the
noise subspace and the identity structure of the covariance
matrix. Using linear shrinking and the Gaussian assumption of
the observations, the algorithm finds the covariance matrix of
the noise subspace and its corresponding eigenvalues which can
be used in the MDL criterion instead of the full sample
covariance matrix eigenvalues in traditional MDL. Results show
that the new algorithm outperforms existing techniques in many
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cases and were in line with the theoretical analysis presented in
this paper. However, the algorithm requires a second
multidimensional operation to calculate the linear shrinking
values, which adds to traditional algorithms complexity.

• Threshold based estimation: the number of sources in this
category is estimated by setting a threshold on some statistics of
the estimated eigenvalues. Exceeding that threshold indicates
the transition to signal eigenvalues and the number of sources
can be detected at that point. The threshold can be set based on
the upper bound of noise eigenvalues as in [20] or based on the
difference between two consecutive eigenvalues as in [21]. The
main drawback in most of the techniques in this category is that
the formula needed to estimate the threshold has an adjustment
coefficient, which needs to be set beforehand. This adjustment
coefficient is estimated through extensive computer simulation
for each pair of antenna elements and number of collected
samples. In other words, if the number of antenna elements, the
number of collected samples or both change, the coefficient has
to be reconfigured accordingly, which adds a considerable
burden to the system.

In [22], the authors derived the profile of ordered noise
eigenvalues, which they found to approximately fit an
exponential law. Thus, they derived a recursive algorithm to
estimate the number of sources by detecting a mismatch
between the observed eigenvalues and the theoretical
exponentially behaving eigenvalues. When this mismatch
exceeds a certain threshold, it indicates that this is a signal
eigenvalue and the number of sources can be detected at this
point. A major drawback in their proposed technique is that their
threshold is estimated through extensive Monte Carlo
simulation. To estimate the threshold, they generate a large
number of noise only matrices, on which they apply an
eigenvalue decomposition (EVD) operation in order to take the
mean of the noise only eigenvalues. Therefore, for a different
noise variance, number of samples or number of antenna array
elements, this exhaustive process needs to be repeated a priori.

In a recent publication [23], the authors solve the problem of
number of sources estimation in a two-step threshold algorithm.
In the first step, they estimate a threshold that distinguishes
between the signal and noise subspace based on the noise
variance, as in [20], however, that tends to underestimate the
number of sources in most cases. Hence, they developed the
second step, which is based on the likelihood ratio test and a
second threshold. The second threshold is based on maximum-a-
posteriori probability (MAP) rule, which maximises the
probability of correct estimation. The joint probability density
functions of the sample eigenvalues used in the likelihood ratio
test are for two hypotheses; one assumes the correct number of
sources was estimated in the first step, while the second assumes
that it was underestimated. Results showed that the two-step
algorithm outperforms traditional ones. The improvement in
performance comes at the cost of additional computational
complexity from the second step. In addition, in their second
step, the probabilities of the hypotheses used in their MAP rule
are assumed to be known a priori, which is not the case in many
applications.

To address the overestimation and underestimation errors of
information theoretic algorithm and the reconfigurability problem
in the threshold based algorithms, we propose some simple yet
efficient solutions to estimate the number of sources. Our proposed
algorithms can be categorised into two main categories based on
the matrix used in estimating the number of sources. Namely, we
propose sample correlation matrix (CorrM) based algorithms and
correlation coefficient matrix (CoefM) based algorithms. We define
two decision statistics, namely moving increment (MI) and moving
standard deviation (MS) of the estimated eigenvalues, which are
used as the metrics to estimate the number of sources. In other
words, in each category, we propose two algorithms. We first
estimate the selected matrix, apply an EVD operation and then
estimate the decision statistics from its eigenvalues. In the first
category, the decision statistics are compared to a preset threshold,

while in the second a simple maximisation technique is proposed.
Our main contributions in this work as compared to others include:

• Proposing four novel algorithms that use two different matrices
to estimate the number of sources.

• Exploiting two different decision statistics to distinguish
between noise and signal eigenvalues, i.e. MI and MS.

• For the two CorrM based algorithms, we define two non-
reconfigurable formulas to estimate the threshold for each
decision statistic. First, we find the distribution of the
probability of false alarm of the MI case. We show it is a
mathematically tedious process to estimate the threshold through
this conventional process. We then derive the thresholds using
regression analysis.

• For CoefM based algorithms, we redefine the problem as a
simple maximisation problem.

• We compare the performance of our proposed algorithms to the
traditional AIC and MDL algorithms and some of their recent
modifications. We show that our proposed algorithms have
comparable performance at medium and high levels SNR and
better performance at low SNR values as well as low number of
samples.

• We compare the required number of floating point operation
(flops) of the criterion function of our proposed algorithms to
AIC and MDL and show that our proposed algorithms have less
computational complexity.

To the best of the authors’ knowledge, estimating the number of
sources through a maximisation approach applied on the estimated
eigenvalues of the CoefM, or by a single threshold formula without
an adjusting coefficient applied on the eigenvalues of the CorrM,
have not been presented in the literature before. While in most
existing literature, the received signal is modelled as stochastic
with zero mean, non-zero mean signals are a combination of zero
mean signals and unknown deterministic constants [24]. There
exist several applications of non-zero mean signals [Refer to [24]
for further details on such applications. Moreover, in case of non-

RF signals such as acoustic (such as in [25]), the wireless
stochastic signal is generally non-zero mean.]. Since the
methodology in our paper is meant to be more generalised towards
any array signal processing for DoA and number of sources
estimation in any wireless communications system, we keep the
more generalised form of non-zero mean signals. In the following,
we denote samples by small symbols, vectors by small bold
symbols and matrices by capital bold symbols. The remaining of
this paper is organised as follows, Section 2 presents the system
model while Section 3 discusses the proposed algorithms. Section
4 reviews some existing techniques. Section 5 presents simulation
results and comparisons and finally, conclusion is presented in
Section 6.

2 System model
In our system model, we assume that the receiver is equipped with
M-sensor UCA antenna. Considering K signals are impinging on
the receiver's array, the received signal at an instant of time t can be
expressed as

y(t) = ∑
k = 1

K
a(ϕk)sk(t) + w(t), (1)

where a(ϕk) is the steering vector for the signal arriving at azimuth
angle ϕk, sk(t) is the impinging signal from the kth source at time t,
and w(t) is the additive white Gaussian noise (AWGN). In the
matrix notation, (1) can be represented as

Y = AS + W, (2)

where Y ∈ ℂM × N, A ∈ ℂM × K, S ∈ ℂK × N, W ∈ ℂM × N, with N
being the total number of collected samples and ℂ is the set of
complex numbers. The matrix of steering vectors is

Q4
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A = [a(ϕ1), a(ϕ2), …, a(ϕk)] . (3)

The steering vector a( f k) for a uniform circular array (UCA)
can be represented as

a(ϕk) = e 2π /ηrsin(θ) cos ϕ − γ , (4)

with waveform η, radius r and γ is 360/N ∗ (0: N − 1), θ is the
elevation angle which we assume to be orthogonal to the array and
hence sin(θ) is 1 for the remaining of this paper. The CorrM of the
received data can be expressed as

RYY = 𝔼 YYH = ARSSAH + RWW (5)

where 𝔼[ ⋅ ] denotes the expectation operation, H denotes the
Hermitian operation, RSS is the correlation matrix of the impinging
signal, RWW = σ2I is the auto covariance matrix of the receiver's
AWGN with σ2 is the noise variance and I is M × M identity
matrix. The received signal is assumed to be non-zero mean as in
[24, 26]. In practice, the sample CorrM is estimated instead of the
CorrM. We express R′YY as the CorrM of N observations as

R′YY = 1
N YYH (6)

where R′YY converges to RYY for large number of samples.

3 Proposed algorithms
As mentioned earlier, we propose four algorithms to estimate the
number of sources in which we categorise them into CorrM
algorithms and CoefM algorithms [Note that for stochastic signals
with zero mean, the two measures will collapse into a single
method.]. We propose to use MI and MS as the metrics to estimate
the number of sources. We first formulate the problem and define
CorrM and CoefM matrices. Then, we introduce our two decision
statistics. We present the intuition behind our proposed algorithms.
We then present our four proposed algorithms categorised into two
subsections, one for each matrix category.

3.1 Problem formulation

3.1.1 CorrM matrix: We first apply and EVD on R′YY, which
leads to

R′YY = UYΛYUY
H = USΛSUS

H + UWΛWUW
H , (7)

where US and UW are signal and noise subspaces unitary matrices,
respectively, and ΛS and ΛW are diagonal matrices of the
eigenvalues of the signal and noise, respectively. ΛY can be
expressed as

ΛY = diag λ1, λ2, …, λM

= diag 0, …, 0, λ1, λ2, …, λK + σ2I,
(8)

where λ1 ≤ λ2 ≤ ⋯ ≤ λK. The total eigenvalues (λ1, λ2, …, λM) with
their corresponding eigenvectors (e1, e2, …, eM) define the noise and
signal subspaces as UW = [e1, …, eM − K] and
US = [eM − K + 1, …, eM], respectively. The problem then becomes
estimating the value of K, i.e. the number of impinging signals,
given the estimated (λ1, λ2, …, λM).

3.1.2 CoefM matrix: Two of our proposed techniques exploit
CoefM rather than CorrM to estimate the number of impinging
sources. To define CoefM, we first define the covariance matrix as

VYY = 𝔼 Y − μY Y − μY
H

= ARSSAH + RWW − μY μY
H,

(9)

where μY = 𝔼[Y]. The elements in the diagonal of VYY are the
variances of Y. With μ′Y being the sample mean, the sample
version of VYY is then given by

V′YY = 1
N Y − μ′Y Y − μ′Y

H . (10)

CoefM is then given by

CYY = diag(V′YY) −(1/2)V′YY diag(V′YY) −(1/2) . (11)

We then apply the EVD on CYY which leads to

CYY = UCΛCUC
H, (12)

where

ΛC = diag λ1
C, λ2

C, …, λM
C

= diag 0, …, 0, λ1
C, λ2

C, …, λK
C

+ diag(V′YY) −(1/2) σ2I − μY μY
H diag(V′YY) −(1/2),

(13)

where λ1
C ≤ λ2

C ≤ ⋯ ≤ λK
C. The total eigenvalues (λ1

C, λ2
C, …, λM

C )
with their corresponding eigenvectors (e1

C, e2
C, …, eM

C ) define the
noise and signal subspaces. The problem is then estimating the
value of K given the estimated (λ1

C, λ2
C, …, λM

C ).

3.2 Proposed decision statistics

In our algorithms, we use two decision statistics, namely MI and
MS. We first arrange the eigenvalues in an ascending order, rather
than a descending order as in the case of AIC and MDL. Hence,
eigenvalues are arranged from the beginning as (λ1, λ2, …, λM),
where λ1 ≤ λ2 ≤ ⋯ ≤ λM and (λ1, λ2, …, λM − K) are in the noise
subspace while (λM − K + 1, …, λM) are in the signal subspace.

3.2.1 MI decision statistic: The first decision statistic is the MI,
δ, which is simply the difference between two consecutive
eigenvalues. It can be expressed as

δi = λi − λi − 1 for i = 2, 3, …, M . (14)

3.2.2 MS decision statistic: Our second proposed decision
statistic used as a metric to decide on the number of sources is the
moving standard deviation of the estimated eigenvalues, α. The
sample standard deviation is calculated by

sM = 1
M − 1 ∑

i = 1

M
xi − u 2, (15)

where xi is the value of the ith sample and u is the mean. The
sample standard deviation of two consecutive eigenvalues can be
given by

STD(i) = (λi − u)2 + (λi − 1 − u)2, (16)

where u is the mean of the two eigenvalues calculated as

u =
λi + λi − 1

2 . (17)

We define our second decision statistic α as the difference
between two consecutive STDs
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αi = STD(i) − STD(i − 1), for i = 3, 4, …, M . (18)

 
Proposition 1: αi can be rewritten as

αi = 1
2 λi − 2λi − 1 + λi − 2 . (19)

 
Proof: The proof for Proposition 1 is obtained by substituting (17)
into (16) and with some simple algebraic manipulation, we have

STD(i) =
λi − λi − 1

2 . (20)

Applying the same for STD(i − 1) and substituting into (18), αi can
be written as in (19).   □

3.3 Proposed algorithm principle

The objective of our algorithm is to estimate the point at which the
eigenvalues move from the noise subspace to the signal subspace;
hence the intuition behind exploiting MI and MS of the
eigenvalues. MS is a measure of how disperse the eigenvalues are.

Therefore, it is expected to increase at the transition point between
the noise and signal subspaces. It can be inferred from (8) and (13)
that the values of sources’ signal eigenvalues are expected to be
considerably higher than noise eigenvalues at moderate and high
SNR levels. At the same time, the noise eigenvalues are expected
to be comparable to one another. We plot MI and MS of the
estimated eigenvalues of CoefM versus CorrM for different SNR
levels in Figs. 1 and 2 and different number of collected samples in
Figs. 3 and 4. The simulation parameters in Figs. 1 and 2 are
circular antenna array with M = 8, K = 2 and N = 1024 samples at
different SNR levels. Same simulation parameters are used in
Figs. 3 and 4 except that the SNR was kept fixed at −7 dB and N
changed from 128 to 2048 samples. 

The main difference between using CoefM in (13) and CorrM
in (8) is that the signal eigenvalues of CoefM are closer to one
another than CorrM signal eigenvalues. Therefore, the change in
both MI and MS of CoefM eigenvalues when first moving from the
noise subspace to the signal subspace, i.e. between eigenvalue
indices 6 and 7, is always the highest. MI and MS then start to
decrease. In other words, the highest increment in both MI and MS
always happens when moving from the noise subspace to the signal
subspace. This implies that when using MI or MS of CoefM, the
problem is transformed into a simple maximisation problem, where
the index at which the highest increment occurs is searched for.

Fig. 1  MI of the estimated eigenvalues for M = 8, K = 2 and N = 1024 at
different SNR levels for
(a) CoefM, (b) CorrM

 

Fig. 2  MS of the estimated eigenvalues for M = 8, K = 2 and N = 1024 at
different SNR levels for
(a) CoefM, (b) CorrM

 

Fig. 3  MI of the estimated eigenvalues for M = 8, K = 2 and SNR = −7 
dB at different number of samples for
(a) CoefM, (b) CorrM

 

Fig. 4  MS of the estimated eigenvalues for M = 8, K = 2 and SNR = −7 
dB at different number of samples for
(a) CoefM, (b) CorrM
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On the contrary, MI and MS of CorrM eigenvalues consistently
increase when moving from the noise subspace to the signal
subspace. Hence, a threshold needs to be set to compare MI or MS
to. This threshold can be estimated either with a configurable
parameter as in traditional threshold based techniques [9]. The
configurable parameter requires extensive simulation a priori to be
set. We propose a simple single formula to estimate the threshold
for CorrM eigenvalues below.

3.4 CoefM based algorithms

For MI of the CoefM eigenvalues, the index at which the shift from
the noise subspace to the signal's subspace occurs can be estimated
as

j = arg max
i

δi . (21)

In this case, the estimated number of sources can be given by
K^ = M − j + 1. Similarly, for MS of CorrM eigenvalues, expressed
in (19), the index at which the highest increment occurs can be
estimated as

l = arg max
i

αi (22)

Consequently, the number of sources can be given by
K^ = M − l + 1.

3.5 CorrM based algorithms

As stated earlier, MI and MS of CorrM eigenvalues should be
compared to preset thresholds in order to estimate the number of
sources. For MI case, we denote the threshold by ξn. At index, i, at
which δi ≥ ξn, the number of sources is estimated as
K^ = M − i + 1. To estimate the threshold ξn, the probability
distribution of δi has to be derived first. The probability of false
alarm, Pf, is defined as

Pf = Pr δi ≥ ξn | i ≤ M − K . (23)

Thus, for a given Pf, ξn can be estimated accordingly. In case of
noise only, i.e. K = 0, the received samples follow 𝒩(0, σ2), and
therefore R′YY follows a Wishart distribution with N degrees of
freedom and variance Σ, i.e. R′YY follows 𝒲(N, Σ) [27]. The
empirical distribution function of the noise eigenvalues can be
expressed by [16, 27]

FR(λ) =
number of eigenvalues of R′YY ≤ λ

M (24)

according to [16], FR converges to f W with high probability when
the number of samples N → ∞. f W follows a Marcenko–Pastur
density function [28], which can be expressed as

f W(λ) = dFW(λ) = max (0, (1 − G))δd(λ)

+ (λ − a−) (a+ − λ)
2πσλ(1/G) Π[a−, a+](λ),

(25)

where G is the samples to elements ratio (N /M),
a± = σ(1 ± 1/ G)2, δd(λ) is the Dirac delta function, and the
function Π[a, b](λ) has the value 1 for a ≤ λ ≤ b and 0 otherwise. We
derive the probability distribution of the noise eigenvalues of δi in
Proposition 2.
 
Proposition 2: The probability distribution of δi can be given by
(see (26)) 
 

Proof: The proof for Proposition 2 is provided in the
Appendix.   □

Consequently, (23) can be rewritten as

Pf = Pr δi ≥ ξn | i ≤ M − K = 1 − Fδi
(ξn) . (27)

Conventionally, in order to estimate the threshold ξn, (27) has to
be solved for a desired Pf. This requires calculating the integral in
(26), which is highly prohibitive due to the following:

i. For a given Pf, it requires the total number of noise
eigenvalues (M − K) to be known a priori in order to solve for
ξn. This is not feasible since the total number of sources (K) is
our unknown to be estimated.

ii. Another approach is to try to minimise Pf by differentiating it
twice, once with respect to K and another with respect to ξn.
Then equating the outputs to zero to solve for the two
unknowns. This, as can be seen from (26), is a mathematically
tedious process and will have a high computational complexity.

Alternatively, we estimate the threshold in (23) through
multiple linear regression, which is a popular machine learning
approach [29, 30]. Among the class of multiple linear regression
techniques, we use the least square fitting. It should be noted that
other machine learning techniques, such as logistic regression or
neural networks [31], can results in less error in the threshold
function, however, we choose linear regression due to its simplicity
and applicability in our context. Analogous to the approaches in
[20–22], we find the threshold through extensive simulation
results. However, we empirically [Extensive simulation data is
collected for all possible scenarios and regions of interest.] find a
formula for the threshold rather than having an adjustment
coefficient that changes with the change of any parameter the
threshold depends on such as the number of samples or SNR.

A multiple linear regression model for ξn is defined as

ξn = η0 + ∑
j

η jZ j, (28)

where the dependent variable is the threshold that we need to
model having multiple other independent variables Z j, such as
SNR value, number of samples, number of antenna elements and
the received power and η j ( j = 0, 1, 2, …) are the parameters to be
estimated through multiple linear regression. This model
approximates the threshold in one equation using least square
fitting by minimising the sum of the squares of the residual
between the observed value and the fitted value [30–32].

Using the previous concept in Section 3, depicted in Figs. 1B
and 3B, the threshold can be defined with multiple regions using

ξn = Ps ×

σ2, for SNR > 2 dB
σ2/8, for N > 10000
σ2/2, for SNR ≥ 2 dB N < 100
σ2/6, for SNR ≤ 6 dB N > 1000
σ2/4, for elsewhere

(29)

where Ps is the power of the received signal. Taking some samples
from those regions and applying the concept of multiple linear least
squares regression [33] to estimate the threshold function, the
threshold can be defined by

ξn = Ps( − 7.75 × 10−3 ⋅ SNR − 3.77 × 10−5 ⋅ N + 1.05) (30)

This threshold takes into consideration specific regions of
interest that include: SNR values SNR ∈ [ − 20 dB:40 dB],
received power Ps ∈ [0 dBm: − 100 dBm], number of samples
N ∈ [26:214], and number of antenna array element of <30. Outside
these regions the threshold might fail to estimate the number of
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sources correctly and hence requires further analysis. As a matter
of fact, it is difficult for these parameters to be outside the specified
regions in practical scenarios. For MS of CorrM eigenvalues, we
denote the threshold by γn. At index, i, at which αi ≥ γn, the
number of sources is estimated as K^ = M − i + 1. Another
technique is to use MS instead of MI and set a threshold to
distinguish between noise and signal eigenvalues. Hence, the
decision is taken on the number of sources: The probability of false
alarm for MS case can be given by

Pf = Pr αi ≥ γn | i ≤ M − K . (31)

As in the MI case, in order to estimate the threshold γn, the
probability distribution function Fαi

(γn) has to be expressed first,
then solve (31) for a given Pf. As a matter of fact, Fαi

(γn) is
expected to be more complicated to solve than Fδi

(ξn). Again, we
find the threshold in (31) through a linear least squares regression
fitting approach [33] that takes into consideration the number of
samples, the number of elements and the received power. Using the
previous concept in Section 3, depicted in Figs. 2B and 4B, the
threshold can be defined with multiple regions using

γn =
0.45Ps, for 500 < N < 1000 M ≤ 8
Ps, for 100 < N < 500 M > 8
0.75Ps, elsewhere

(32)

Taking some samples from those regions and using a linear
least squares regression to estimate the threshold function, the
threshold can be defined by

γn = Ps(2.5 × 10−5 ⋅ N − 0.12 × 10−4 ⋅ M + 0.66) . (33)

This threshold takes into consideration specific regions of interest
including received power Ps ∈ [0 dBm: − 100 dBm], number of
samples N ∈ [26:214], and number of antenna array elements of
<30. Outside these regions the threshold might fail to estimate the
number of sources correctly and hence needs further analysis.

4 Existing techniques

AIC and MDL are the most widely used number of sources
estimation techniques. They are model order selection information
theoretic approaches that use the eigenvalues of the sample
covariance matrix to determine how many smallest eigenvalues are
approximately equal. These eigenvalues lie in the noise subspace,
while others lie in the signal subspace. Both algorithms involve
minimising a criterion of log-likelihood over the number of signals
that are detectable. We compared our algorithms to traditional AIC
and MDL as well as other new modified versions of AIC and
MDL, which were presented in the recent literature. Namely, we
compared to corrected AIC, AICC3 presented in [17], RMT_AIC
presented in [16], LS_MDL presented in [19] and traditional AIC
and MDL presented in [13]. Table 1 summarises the criteria for
each algorithm, where the covariance matrix eigenvalues are
ordered in a descending order, i.e. λ1 ≥ λ2 ≥ ⋯ ≥ λM. 

5 Simulation results
We evaluate the performance of our algorithms versus existing
algorithms of Table 1 in different scenarios. The simulated
scenarios include different SNR levels, different number of
samples, different number of sources and different number of array
elements. Performance metric used for comparison is the
percentage error rate, which can be expressed as

error rate = 1 − number of successes
number of runs × 100. (34)

Except for different array element simulation results, the array
that is used is a UCA with M = 8 elements. It is worth noting that
our proposed algorithms are independent of the antenna array
formation. Rather, they can operate with any formation, linear,
circular, planar or any antenna array formation where the steering
vector of the antenna array can be estimated either analytically or
experimentally. We estimate the error rate through 10,000
iterations.

For simplicity and arrangement of figures, Table 2 represents
the notations of the legends that are used in all the following
figures. It shows the notations for our proposed algorithms only,
while other algorithms notations are the same as given in Table 1. 

Fδi
(ξn) = G

2πσ
i∫

−∞

ξn (M − K)!
(i − 2)!(M − K − i)!∫a−

a+ (λ − a−) (a+ − λ)
λ

× 1
4 a− a+

2arcsin −2λ + a− + a+

a− − a+
a−

3/2 a+

+2arcsin −2λ + a− + a+

a− − a+
a+

3/2 a−

+4a+a−arctan 1
2

2a−a+ − a+λ − a−λ
a− a+ (a+ − λ) (λ − a−)

+πa−
3/2 a+ + π a−a+

3/2 − 2a−a+π

+4 a− a+ λ − a− a+ − λ] i − 2 (λ + δ) − a− a+ − (λ + δ)
λ + δ

× 1 − G
2πσ

1
4 a− a+

2arcsin −2(λ + δ) + a− + a+

a− − a+
a−

3/2 a+

+2arcsin −2(λ + δ) + a− + a+

a− − a+
a+

3/2 a− + 4a+a−

arctan 1
2

2a−a+ − a+(λ + δ) − a−(λ + δ)
a− a+ (a+ − (λ + δ)) ((λ + δ) − a−)

+πa−
3/2 a+ + π a−a+

3/2 − 2a−a+π

+4 a− a+ (λ + δ) − a− a+ − (λ + δ) M − K − i dλ dδ

(26)
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5.1 Algorithms’ performance at various SNR levels

We first evaluate the performance of our proposed algorithms at
various SNR levels. In our simulation, SNR values ranged from
−20 to 15 dB, while the number of samples was fixed to N = 1024
samples and the actual number of sources was K = 2.

Fig. 5a shows the error rate for our proposed algorithm as well
as the algorithms presented in Table 1 versus SNR. As shown in
Fig. 5a, the proposed algorithms outperform MDL algorithms at
low SNR levels and outperform AIC and AICC3 at high SNR
levels. For SNR ≤ 10 dB, the proposed algorithms have a
comparable performance to AIC and better performance than
MDL, with MICOEF achieving the least error rate at SNR ≤ 15 dB.
For SNR ≥ 10 dB, the performance of MDL, LS_MDL, RMT_AIC
and the proposed algorithms is indistinguishable with a minimum
error rate, i.e. almost 0%, while AIC and AICC3 kept their error rate
at about 10%. The reason why AIC and AICC3 are not achieving
lower error rate is the overestimation of the number of sources,
which tends to occur at relatively high SNR levels. This
overestimation is due to the added penalty term as presented in
[34]. 

In Fig. 5b, we plot the error rate for all algorithms using the
same simulation setting as shown in Fig. 5a, except at a low
number of samples of N = 100. CoefM based algorithms
outperform others at low SNR levels, i.e. ≤10 dB. This goes back
to the better contrast between the signal and the noise eigenvalues
that is introduced by exploiting CoefM and hence better number of
sources’ estimation.

5.2 Algorithms’ performance at various number of samples

We evaluate the efficiency of our proposed algorithms in terms of
error rate versus number of samples. It is desirable in practical
scenarios to process the lower number of samples while achieving
an adequate performance. Fig. 6 depicts the error rate for our
proposed algorithms as well as the algorithms presented in Table 1

 versus the number of samples at SNR = −5 dB and K = 2. The x-
axis is the number of samples represented by log2 N. 

Our proposed algorithms outperform MDL algorithms and have
a comparable performance to AIC algorithms at low number of
samples. MDL and LS_MDL algorithms underestimate the number
of sources when using a low number of samples. As in changing
SNR case, MDL, LS_MDL, RMT_AIC and the proposed
algorithms have the same performance for N > 256 samples, i.e.
N > 28, where the error rates are almost 0%. AIC and AICC3, on
the other hand, overestimate the number of sources and hence had
their almost 10% error rate.

5.3 Algorithms’ performance with different number of sources

Different algorithms have different sensitivities in terms of the
number of sources they can estimate. Hence, in Fig. 7a, we plot the
error rate of all algorithms against different number of sources at
SNR = −5 dB and N = 1024. At higher number of sources, i.e.
K > 5, AIC algorithms outperform others by achieving a slightly
lower error rate. However, at K < 5, AIC algorithms have a
consistent 10% error rate. Moreover, all algorithms fail to achieve
an acceptable error rate when K > 5. On the other hand, MICOEF
has the worst performance among all algorithms, achieving a high
error rate at K > 3. MDL, LS_MDL, MSCOEF, MSCORR and
MICORR have a comparable performance. 

5.4 Algorithms’ performance at different number of array
elements

We then examine the effect of increasing the number of elements
that construct the array at SNR = −5 dB, N = 100 samples and
K = 2 in Fig. 7b. MSCOEF, MICORR and LS_MDL show the best
performance among others for M > 8. As M increases the error rate
decreases until it approximately approaches 0% for MDL,
LS_MDL, RMT_AIC and all proposed algorithms except for
MICOEF, which occurs at M > 12 elements.

5.5 Complexity comparison

Our proposed algorithms as well as the algorithms presented in
Table 1 require an estimation of the CorrM or the CoefM followed
by and EVD operation. These two steps have a complexity in the
order of 𝒪 M2N + M3  [19]. However, each algorithm has a
different criterion function. We compared the required number of

Table 1 Criterion functions of RMT_AIC, AICC3, LS_MDL, AIC and MDL
Abbreviation Algorithm
AIC [13]

K^ = arg min
k

(2N(M − k)log
(1/M − k)∑i = k + 1

M λi

Πi = k + 1
M λi

(1/M − k) + 2k(2M − k))

MDL [13]
K^ = arg min

k
(N(M − k)log

(1/M − k)∑i = k + 1
M λi

Πi = k + 1
M λi

(1/M − k) + 1
2k(2M − k)log(N))

LS_MDL [19]
K^ = arg min

k
(N(M − k)log

(1/M − k)∑i = k + 1
M ςi

(k)

Πi = k + 1
M ςi

(k) (1/M − k) + 1
2k(k − 1)log(N))

ςi
(k) = β(k)τ(k) + (1 − β(k))λi and i = k + 1: M

τ(k) = 1
M − k ∑

i = k + 1

M
λi and β(k) = max (1, ν(k))

ν(k) =
∑i = k + 1

M λi
2 + ∑i = k + 1

M λi
2

N + 1 ∑i = k + 1
M λi

2 − ∑i = k + 1
M λi)2/m − k

AICC3 [17]
K^ = arg min

k
2N(M − k)log

(1/M − k)∑i = k + 1
M λi

Πi = k + 1
M λi

(1/M − k) +
2(vk + 1)(m̂ + vk + 2)

m̂ − vk − 2
vk = k(2M − k) and m̂ = 2MN

RMT_AIC [16]
K^ = arg min

k

N
2

∑i = k + 1
M λi

2

(1/M − k)∑i = k + 1
M λi

2

2

+ 2k

 

Table 2 Figures legend abbreviations
Abbreviation Algorithm
MSCOEF proposed MS for CoefM algorithm

MICOEF proposed MI for CoefM algorithm

MSCORR proposed MS for CorrM algorithm

MICORR proposed MI for CorrM algorithm
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floating point operation (flops) of the criterion function of our
proposed algorithms to AIC and MDL in Table 3. It is assumed that
each multiplication, addition or comparison operation requires one
flop. Our algorithms require less number of flops to implement the
criterion function than AIC and MDL. The complexity of our

proposed algorithms is in the order of 𝒪 M , while the complexity
of AIC and MDL is 𝒪 M2 . 

We plot the simulation run-time for the criterion functions in
Fig. 8 versus the number of antenna elements. Our proposed
algorithms have drastically improved the simulation run-time,
while AIC and MDL algorithms are having a comparable run-time.
Our CoefM algorithms achieve simulation run-time that is <5% of
that achieved using LS_MDL at low number of antenna elements
and <2% at higher number of antenna elements, while our CorrM
algorithms are achieving simulation run-time that is <25% of that
achieved using LS_MDL at low number of antenna elements and
<10% at higher number of antenna elements. 

Fig. 5  Error rate for our proposed algorithm as well as algorithms
presented in Table 1 versus SNR at
(a) N = 1024 samples and (b) N = 100 samples

 

Fig. 6  Error rate for our proposed algorithm as well as algorithms
presented in Table 1 versus number of samples at SNR = −5 dB

 

Fig. 7  Error rate for our proposed algorithm as well as algorithms
presented in Table 1
(a) Versus different number of sources at SNR = −5, N = 1024 and M = 8 and (b)
Versus number of antenna array elements at N = 100 samples

 
Table 3 Required number of flops for our proposed
algorithms, AIC and MDL to implement the criterion function
Algorithm Number of flops Complexity
MSCOEF 4M − 9 𝒪 M

MICOEF 2M − 3 𝒪 M

MSCORR 4M + 2 𝒪 M

MICORR 2M + 4 𝒪 M

AIC [35] M2 + M
2 + 6M 𝒪 M2

MDL [36] M2 + 16M 𝒪 M2
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6 Conclusion
In this paper, we presented four new techniques for number of
sources estimation based on the eigenvalues decomposition. The
proposed algorithms operate on the estimated eigenvalues of
CorrM and CoefM. Simple decision statistics were presented to
estimate the number of sources. CorrM based algorithms use a
threshold, which is derived using least squares linear regression
fitting, while CoefM algorithms rely on a simple search for
maximum value of the decision statistic, which makes them more
robust and suitable for hardware implementation and practical
scenarios. Results showed that our algorithms have better
performance in comparison to MDL at low SNR and number of
samples conditions and better than AIC at high SNR conditions.
Moreover, the complexity of the criterion functions of our
proposed algorithms has lower computational complexity than
those for the information theoretic ones.
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8 Appendix
 
8.1 Proof for Proposition 2

The joint probability density function of the difference between
two ordered independent random variables, Xr and XS with
1 ≤ r < s < n, Wrs = Xs − Xr is [37]

f Wrs
(wrs) = Drs∫

−∞

∞
F(x)r − 1 f (x)(F(x + wrs)

−F(x))s − r − 1 f (x + wrs)(1 − F(x + wrs))n − s dx .
(35)

In our case, we need to find the joint the probability density
function of δi = λi − λi − 1, hence, we let r = i − 1, s = i and
δi = Wrs and let D = Drs. In this way, (35) for δi = δ and λi = λ can
be redefined as

f δi
(δ) = D∫

−∞

∞
F(λ)i − 2 f (λ)(F(λ + δ)

−F(λ))i − i + 1 − 1 f (λ + δ)(1 − F(λ + δ))M − K − i dλ .
(36)

Since i − i + 1 − 1 = 0, the term (F(λ + δ) − F(x))i − i + 1 − 1 will be 1
and (36) can be rewritten as

f δi
(δ) = D∫

−∞

∞
F(λ)i − 2 f (λ) f (λ + δ)(1 − F(λ + δ))M − K − i dλ,

where D is a constant defined as

D = (M − K)!
(r − 1)!(s − r − 1)!(M − K − s)!

= (M − K)!
(i − 2)!(i − i + 1 − 1)!(M − K − i)!

= (M − K)!
(i − 2)!(M − K − i)!

(37)

f (λ) is defined in (25). On the assumption that G is >1, i.e.
N > M, the first term in (25) will be cancelled and (25) will be
represented by its second term. F(λ) can be defined as

F(λ) = ∫
−∞

λ
f (λ) dλ = ∫

−∞

λ (λ − a−) (a+ − λ)
2πσλ(1/G) Π[a−, a+](λ) dλ

= ∫
−∞

λ G
2πσ

(λ − a−) (a+ − λ)
λ Π[a−, a+](λ) dλ

= G
2πσ∫a−

λ (λ − a−) (a+ − λ)
λ dλ

(38)

Assuming that 0 ≤ a− ≤ λ ≤ a+:

F(λ) = G
2πσ

1
4

1
a− a+

2arcsin −2λ + a− + a+

a− − a+
a−

3/2 a+

+2arcsin −2λ + a− + a+

a− − a+
a+

3/2 a−

+4a+a−arctan 1
2

2a−a+ − a+λ − a−λ
a− a+ (a+ − λ) (λ − a−)

+πa−
3/2 a+ + π a−a+

3/2 − 2a−a+π + 4 a− a+ λ − a− a+ − λ .

(39)

By that, (36) can be rewritten as

f δi
(δ) = (M − K)!

(i − 2)!(M − K − i)!∫−∞

∞ G
2πσ∫a−

λ (λ − a−) (a+ − λ)
λ dλ

i − 2

× G
2πσ

(λ − a−) (a+ − λ)
λ Π[a−, a+](λ)

× G
2πσ

(λ + δ) − a− a+ − (λ + δ)
λ + δ Π[a−, a+](λ + δ)

× 1 − G
2πσ∫a−

λ + δ (λ + δ − a−) (a+ − λ − δ)
λ + δ dλ

M − K − i

dλ

= (M − K)!
(i − 2)!(M − K − i)!

G
2πσ

1 + i − 2 + 1

× ∫
a−

a+ (λ − a−) (a+ − λ)
λ

× ∫
a−

λ (λ − a−) (a+ − λ)
λ dλ

i − 2

× (λ + δ) − a− a+ − (λ + δ)
λ + δ

× 1 − G
2πσ∫a−

λ + δ (λ + δ − a−) (a+ − λ − δ)
λ + δ dλ

M − K − i

dλ

= (M − K)!
(i − 2)!(M − K − i)!

G
2πσ

i∫
a−

a+ (λ − a−) (a+ − λ)
λ

× ∫
a−

λ (λ − a−) (a+ − λ)
λ dλ

i − 2

× (λ + δ) − a− a+ − (λ + δ)
λ + δ

× 1 − G
2πσ∫a−

λ + δ (λ + δ − a−) (a+ − λ − δ)
λ + δ dλ

M − K − i

dλ,

(40)

Substituting (39) into (40) will lead to
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f δi
(δ) = (M − K)!

(i − 2)!(M − K − i)!
G

2πσ
i∫

a−

a+ (λ − a−) (a+ − λ)
λ

× 1
4 a− a+

2arcsin −2λ + a− + a+

a− − a+
a−

3/2 a+

+2arcsin −2λ + a− + a+

a− − a+
a+

3/2 a−

+4a+a−arctan 1
2

2a−a+ − a+λ − a−λ
a− a+ (a+ − λ) (λ − a−)

+πa−
3/2 a+ + π a−a+

3/2 − 2a−a+π

+4 a− a+ λ − a− a+ − λ i − 2

× (λ + δ) − a− a+ − (λ + δ)
λ + δ

× 1 − G
2πσ

1
4 a− a+

2arcsin −2(λ + δ) + a− + a+

a− − a+
a−

3/2 a+

+2arcsin −2(λ + δ) + a− + a+

a− − a+
a+

3/2 a−

+4a+a−arctan 1
2

2a−a+ − a+(λ + δ) − a−(λ + δ)
a− a+ (a+ − (λ + δ)) ((λ + δ) − a−)

+πa−
3/2 a+ + π a−a+

3/2 − 2a−a+π

+4 a− a+ (λ + δ) − a− a+ − (λ + δ) M − K − i dλ

(41)

which leads directly to (26) for the probability distribution
function.
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