
HAL Id: hal-01857484
https://hal.science/hal-01857484

Submitted on 25 Sep 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Detector based on the energy of filtered noise
Vincent Savaux

To cite this version:
Vincent Savaux. Detector based on the energy of filtered noise. IET Signal Processing, 2018. �hal-
01857484�

https://hal.science/hal-01857484
https://hal.archives-ouvertes.fr


 
 This paper is a postprint of a paper submitted to and accepted for publication in IET Signal Processing and is subject to 
Institution of Engineering and Technology Copyright. The copy of record is available at the IET Digital Library.  



IET Research Journals

Submission Template for IET Research Journal Papers

Detector based on the energy of filtered noise ISSN 1751-8644

doi: 0000000000

www.ietdl.org

Vincent Savaux1

1 Network Interfaces Lab, IRT b<>com, Rennes, France

* E-mail: vincent.savaux@b-com.com

Abstract: This paper deals with the detection of unknown signals in white noise. We present a new detector, based on the difference
of a deterministic function of the energy of the signal and the energy of the same signal, which has been filtered. Unlike usual energy
detector (ED), the proposed detector consists in exploiting the behavior of the energy of filtered white noise, which can be a priori

determined since the used filter is known. Thus, if the measured energy differs from an expected value, the detector decides that a
signal is present in the band. In order to have the same asymptotic complexity as ED, a simple two-tap filter is used. The theoretical
expressions of the probabilities of detection and false alarm are developed, and the optimal threshold is deduced. Simulations show that
the proposed detector achieves better performance than ED, in both additive white Gaussian noise (AWGN) and Rayleigh channels.
Furthermore, the relevance of the analytical results is proved through simulations.

1 Introduction

Energy detector (ED) is undoubtedly the most popular
method for signal detection in noise, mainly due to its simplic-
ity. Furthermore, it is a signal-agnostic approach, in the sense
that ED does not require prior information about the signal to
be detected, unlike match-filter [1], or cyclostationarity-based
detectors [2]. Thus, ED is implemented in many applications,
such as radar detection [3], [4], or in cognitive radio systems
[5], [6], [7], [8]. In the latter application, ED may be used by
secondary users in order to detect the presence of primary
users in licensed bands. Secondary users can then oppor-
tunistically access the detected free bands. A large number
of other sensing techniques are available in the literature, as
described in [5], [6], [7], [8]. Among others, usual techniques
are matched-filter [1], cyclostationarity detector [9], [10], and
methods based on random matrix theory [11], [12]. However,
in this paper, we will focus on energy-based detection.

The principle of ED is based on binary decision, i.e. the
energy of the scanned band is compared with a threshold
[13], [14]: a signal is supposed to be present (resp. absent) in
the band if the energy is higher (resp. lower) than the thresh-
old. However, setting an accurate threshold value requires
the prior knowledge of the noise energy or the signal-to-noise
ratio (SNR). Therefore, the performance of ED is inherently
limited due to noise uncertainty [15], [16], [17]. In order to
improve the performance of classical ED, several techniques
have been proposed, such as described in [18] and references
therein. Moreover, ED can be used in order to reduce the
complexity of signal feature-based detectors. Thus, authors
in [19], [20] propose to exploit benefit of both ED and second
order moment-based detectors such as cyclostationarity and
correlation detectors. In any case, the idea behind detection
is to take advantage of the features of the signal (e.g. the
energy, the shape, or redundancy of the signal) to decide if
the signal is present or not.

In this paper, we examine the issue of energy detection
with another paradigm, as we focus on the properties of the
Gaussian white noise at the output of the receiver front-
end, whereas the usual paradigm is to focus on the energy
of received samples in presence of "useful" signal. Thus, the
power spectral density (PSD) of white noise can be considered
as constant over the whole frequency band that is sensed [13],
[17]. Therefore, in absence of signal, it is possible to deduce
in advance the energy of the noise after any filtering process
downstream of the front-end, since the used filter is known.
Such a deterministic behavior can then be used as a base for

a detector. In fact, in presence of a useful signal in the noise,
the measured energy of the filtered received signal differs from
the expected energy based on the assumption of white noise
only. This allows us to decide if the signal is present in the
band or not.

Based on the previous considerations, the basic principle
of the proposed detector can be summarized as follows: i)
Measure the energy of the received sampled signal at the out-
put of the front-end, and deduce the corresponding energy of
the signal at the output of a predefined filter, based on the
assumption that the received signal is only composed of white
noise, ii) Apply the filtering process to the received signal, and
measure the actual energy of the filtered signal, iii) Compare
the expected value in i) to the measured one in ii): if the
difference is larger than a given threshold, decide that the
signal is present, if not, decide that the signal is absent. It
must be noticed that the amplitude of the frequency response
of the used filter must not be constant over the scanned band.
Should this condition not met, the energy of the filtered signal
is the same as the original received signal, so no conclusion
could be drawn.

In order to limit the complexity of the detector while meet-
ing the previous condition, it is proposed to use the two-tap
filter g = 1

2 [1, 1]. Thus, the samples of the filtered signal are
obtained by a simple linear interpolation of the input sam-
ples. This operation does not involve any multiplication, as
a division by two is obtained by a binary shift, which limits
the complexity of the filtering process. Furthermore, it can
be noted that g is a low-pass filter, which guarantees that
the PSD of the filtered signal is not the same as the received
signal. In order to improve the performance of the presented
detector, it is proposed to carry out several times the filtering
process, in order to obtain different reference measures, which
can be compared with the corresponding expected energy
values.

It is worth mentioning that, since the proposed algorithm
is based on energy measurement, the closest related detector
is the usual ED. For this reason, we use the very common
assumption that the noise at the output of the front-end is
white and Gaussian, such as supposed in [13], [14], [17] and
numerous other papers. Furthermore, we will use ED as a
natural reference for performance comparison. Otherwise, the
filtering processes involved in the proposed method is similar
to a first-order approximation of the derivative of the received
signal. Then, the suggested algorithm could be confused with
the method in [21], [22], in which the derivative of the spec-
trum of the received signal is considered, in order to highlight
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discontinuities in presence of useful signal. However, the fil-
tering processes of the proposed technique are carried out in
time domain, and in frequency domain in [21], [22]. More-
over, the processes are iterative, and then not similar to a
derivative in time domain.

The contributions of the paper are the following:

• To the best of the author’s knowledge, the proposed detec-
tor is original, as the paradigm differs from usual ED,
since the method is based on the behavior of the filtered
noise in absence of useful signal. Furthermore, a simple
implementation is suggested;
• The theoretical aspects of the detector are analyzed as
well, as the theoretical false alarm probability, detection
probability, and optimal detection threshold expressions are
derived;
• The developments are supported by simulations, which
show the relevance of the proposed analysis. In addition, a
performance comparison with ED reveals that the proposed
detector outperforms ED in SNR range of [-20-0] dB;
• Other possible applications of the method are discussed.

The remaining of the paper is organized as follows: Section
2 presents the signal model, and Section 3 describes the pro-
posed detector. The analytical expressions of the probabilities
of detection, false alarm, as well as the optimal threshold
value are developed in Section 4. Simulations results are pre-
sented in Section 5, and other applications of the detector
are introduced in Section 6. Finally, Section 7 concludes this
paper.

2 Signal Model and Hypothesis

We consider that a sensor is scanning and sampling a fre-
quency band with a sampling time ts. Let yn be the n-th
sample of a received signal at the output of the receiver
front-end, including analog low-pass filter, analog-to-digital
converter, sub-sampling, etc. Thus, yn can be expressed as

yn = y(nts) = y(t)δ(t − nts)ΠNts
, (1)

where y(t) is the received analog signal, δ(.) is the Dirac
delta function, and ΠNts

is the (rectangular) observation win-
dow, with n ∈ {0, 1, .., N − 1}. We consider the usual binary
hypothesis used in signal detection, which can be written as

yn =

{H0 : wn

H1 : rn + wn
, (2)

where H0 corresponds to the absence of "useful" signal, and
wn is the n-th sample of noise, which is reasonably assumed
to be complex and white Gaussian N (0, σ2) [13], [14], [17].
Under the hypothesis H1, the received signal rn can be
expressed with the general formulation as follows:

rn =

Lc−1∑

lc=0

hlc
xn−lc

e2jπ∆f nts+jφ, (3)

where xn is the transmitted signal of central frequency
f0 and bandwidth Bx, and hn is the multipath propaga-
tion channel of length Lc. It is assumed than the signal is
narrowband compared with the sensed band, namely [f0 −
Bx/2, f0 + Bx/2] ⊂ [0, 1

2ts
]. The term e2jπ∆f nts points out

a possible frequency offset, due to channel frequency off-
set, and/or Doppler effect for instance. Moreover, φ is an
unknown phase shift. Alternatively, the received signal rn in
(3) can be rewritten in the frequency domain by means of
the discrete Fourier transform (DFT). Let denote by M the
size of the DFT, then the m-th frequency sample, for any
m ∈ {−M/2, −M/2 + 1, .., M/2 − 1}, can be expressed as

Rm = R(fm)

= H(fm + ∆f )X(fm + ∆f )sinc(π(fm + ∆f )Nts)

× e−j(πfm+∆f )Nts+jφ, (4)

where the term sinc(π(fm + ∆f )Nts)e−jπ(fm+∆f )Nts is
due to the rectangular window ΠNts

. The frequency
shift fm + ∆f is due to the convolution by δ(f − ∆f ) =

DF T (e2jπ∆f nts ). Note that we do not provide any detail
on the nature of the signal xn, in order to propose a general
formulation of the detector, which could be used for any kind
of signal. However, we define σ2

r the variance of the signal rn.
Therefore, the energy of the received signal σ2

y can be defined
according to the hypothesis as

σ2
y =

{

H0 : σ2

H1 : σ2
r + σ2

. (5)

In next section, we describe the proposed detector.

3 Proposed Detector

The basic idea behind ED is to suppose that the measured
energy M = ‖yn‖2, where ‖.‖ is the Euclidian norm, is sta-
tistically higher under hypothesis H1 than under hypothesis
H0. If M is larger than a given threshold, H1 is decided.
Then, it remains to set the best possible threshold value, in
order to maximize the probability of detection. The proposed
detector also uses the energy of the received signal, but is
based on another paradigm. Under hypothesis H0, one can
deduce the energy of any version of filtered noise wn, since
both the PSD of the noise and the used filter are supposed to
be known a priori. As a consequence, it is possible to decide
H0 by comparing the expected energy to that of the actual
filtered noise. More detailed are given hereafter.

3.1 General Principle

Fig. 1 depicts the general principle of the proposed detector,
compared with usual energy detector. The basic idea of the
suggested algorithm is to compare two energy values:

1. a "deterministic" energy value (this value, denoted by σ̃2
(k),

will be defined hereafter), which is obtained from σ2
y. It is

referred as "deterministic" as σ̃2
(k) is deduced from σ2

y through
a predefined process.
2. the energy value of a filtered signal, the samples of which
are obtained by means of an iterative filtering process with
input yn.

It will be shown afterward that the predefined "determinis-
tic" process in Fig. 1 only depends on the filter used in the
iterative process.

Based on the previous description, suppose hypothesis H0,
then the energy of the noise wn after the iterative filtering
process is deterministic (as the filter is known). This is illus-
trated in Fig. 2-(a), where both the PSD of the noise and
the used filter are a priori known. Furthermore, it is close
to the energy value σ̃2

(k), by construction of the deterministic
process. As a consequence, their difference should be close to
zero.

In hypothesis H1, the energy of the filtered signal cannot
be a priori determined, since the different features of the
signal (shape, frequency, energy, etc.) are unknown. This is
illustrated in Fig. 2-(b), where the cases "Signal A" and "Sig-
nal B" lead to very different measures. Therefore, unlike H0,
it is likely that the difference between σ̃2

(k) and the energy of
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Fig. 1: General principle of the proposed detector, compared
with ED.

(a) Under hypothesis H0, the resulting energy is a

priori known.

(b) Under hypothesis H1, the resulting energy can-

not be a priori known.

Fig. 2: Illustration of the proposed detector: (a) in absence of
signal, (b) in presence of signal.

the filtered signal largely differs from zero. This allows us to
define a detector based on the energy of filtered noise.

It must be emphasized that any filter featuring a non-
constant frequency response can be used in the detector.
However, in order to obtain a detector with a complexity sim-
ilar to ED, we propose to use the filter defined as g = 1

2 [1, 1].
The resulting signal samples are simply defined as the lin-
ear interpolation of two consecutive input samples. Note that
the number of iterative filtering processes allows us to obtain
different equivalent filter with their own cutoff frequencies,
such as described in next section. Furthermore, such a filter
only involves additions, since the division by two is obtained
by a binary shift. Therefore, we deduce that the complexity
of the proposed detector is only twice higher than that of
ED, in terms of complex multiplications, which is asymptot-
ically negligible. In the following, we provide the expression
and the properties of such a signal obtained from iterative

linear interpolations using g = 1
2 [1, 1], and then we describe

the hypothesis test.

3.2 Iterative Linear Interpolations

We denote by k the number of iterations of the filtering
process, and Y (k) the vector containing the output sam-
ples yn(k). Thus, Y (0) = [y0(0), y1(0), .., yN−1(0)] is the C

N

vector containing the N successive samples of the received
signal yn(0) = yn, and Y (1) is the C

N−1 vector containing
the interpolated samples yn(1), where

yn(1) =
yn(0) + yn+1(0)

2
. (6)

More generally, for any k < N (in practice, we will limit to
k << N) and n ∈ {0, 1, .., N − k − 1}, we have

yn(k) =
yn(k − 1) + yn+1(−1)

2
=

∑k
p=0

(
k
p

)
yn+p(0)

2k
. (7)

The energy of the multi-interpolated signal yn(k) is defined as
E{yn(k)yn(k)∗}, where E{.} is the mathematical expectation.
Under the hypothesis H1, the expression of this energy cannot
be derived, since both the nature and the features of the signal
are unknown (we assume a general case where rn can be of
any kind). However, under H0, the energy can be developed,
by using the fact that the noise samples are zero-mean and
independent, as follows:

E{yn(k)yn(k)∗} = E{wn(k)wn(k)∗}

= E

{ k∑

p1=0

k∑

p2=0

(
k

p1

)(
k

p2

)

× wn+p1
(0)wn+p2

(0)∗

22k

}

=

∑k
p=0

(
k
p

)2
σ2

22k
= σ̃2

(k). (8)

Alternatively, we can find σ̃2
(k) by using the frequency

response of the filter. We denote by G the DFT of g such
as previously defined. For convenience, we use the time-
continuous version of g. Then, the M -point DFT of such a
filter can be expressed as

Gm = G(fm) = DF T (
1

2
(δ(0) + δ(ts)))

= ejπfmts cos(πfmts),

= ejπ m
M cos(π

m

M
) (9)

and therefore, the filter corresponding to k iterations is

Gm,(k) = G(k)(fm) = ejπ km
M cosk(π

m

M
). (10)

From (10), we deduce that

E{wn(k)wn(k)∗} =

∫π/2

−π/2

σ2

π
cos2k(x)dx, (11)

which provides in passing a demonstration of the Wallis’ inte-
gral for even orders. In fact, by using the Vandermonde’s

identity
∑k

p=0

(
k
p

)2
=
(

2k
k

)
, we trivially found
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∫π/2

0
cos2k(x)dx =

π

2

∑k
p=0

(
k
p

)2

22k

=
π

2

(2k)!

22k(k)!
. (12)

The asymptotic expansion of the factorial, n! ∼
√

2πk
(

k
e

)k

leads to the following approximation of E{yn(k)yn(k)∗}
under hypothesis H0 when k is large:

E{yn(k)yn(k)∗} ∼ σ2

√
πk

(13)

From (8) and (13), we can deduce that, under hypothesis H0,
the energy of the k-interpolated noise can be entirely deduced
from σ2.

3.3 Hypothesis Test

Based on the previous developments, the test statistic can be
expressed as

T =
∣
∣

1

N − k
||Y (k)||2 − σ̃2

(k)

∣
∣, (14)

where σ̃2
(k) is previously defined. Then, the usual binary

decision rule is

T
H1

≷
H0

η, (15)

where η is a threshold to be fixed, as shown in next section.
Under the hypothesis H1, ||Y (k)||2 can be rewritten by using
the expression of the multi-interpolated signal in the fre-
quency domain (4). Thus, since the DFT size is M = N − k,
we obtain

1

M
||Y (k)||2 =

1

M

M/2
∑

m=−M/2+1

|Gm,(k)(Rm + Wm)|2. (16)

In addition, we assume that M = N − k is large enough to
obtain the following approximation

1

M
||Y (k)||2 ≈ 1

M

M/2
∑

m=−M/2+1

|Gm,(k)Rm|2 + |Gm,(k)Wm|2,

(17)
since the noise is zero-mean. Under the hypothesis H0, (17)
simply becomes:

1

M
||Y (k)||2 =

1

M

M/2
∑

m=−M/2+1

|Gm,(k)Wm|2, (18)

without any approximation.

4 Deriving the False Alarm and Detection
Probabilities

4.1 False Alarm Probability

In this section, we have σ2
y = σ2 since the useful signal is

absent. By definition of (8), (14) can be rewritten as

T =
∣
∣

1

M
||Y (k)||2 − σ̃2

(k)

∣
∣

=
∣
∣

1

M
||Y (k)||2 −

∑k
p=0

(
k
p

)2
σ2

y

22k

∣
∣

=

∣
∣
∣
∣
∣

1

M

M
2∑

m=− M
2

+1

|Gm,(k)Wm|2

−
∑k

p=0

(
k
p

)2

22k

1

M

M
2∑

m=− M
2

+1

|Wm|2
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

1

M

M
2∑

m=− M
2

+1

|Gm,(k)Wm|2

− 1

M

M
2∑

p=− M
2

+1

|Gp,(k)|2

︸ ︷︷ ︸

Γk

1

M

M
2∑

m=− M
2

+1

|Wm|2
∣
∣
∣
∣
∣

=
1

M

∣
∣
∣
∣
∣

M
2∑

m=− M
2

+1

(|Gm,(k)|2 − Γk)|Wm|2
∣
∣
∣
∣
∣
. (19)

Let T̃ be the variable defined as

T̃ =
1

M

M
2∑

m=− M
2

+1

(|Gm,(k)|2 − Γk)|Wm|2. (20)

By using the Lyapounov condition for M >> 1, it can be
proved that T̃ has a Gaussian distribution (a detailed proof
is provided in Appendix), the mean µT̃ and the variance σ2

T̃
of which are:

µT̃ = E{T̃ }

=
1

M

( M
2∑

m=− M
2

+1

|Gm,(k)|2 −
M
2∑

p=− M
2

+1

|Gp,(k)|2
)

σ2

= 0, (21)

and

σ2
T̃

= E{T̃ 2}

=
1

M2
E

{(
∑

m1

∑

m2

(|Gm1,(k)|2 − Γk)(|Gm2,(k)|2 − Γk)

× |Wm1 |2|Wm2 |2
)}

.

(22)

Note that the bounds in the sum have been omitted for more
readability. Since the frequency noise samples Wm are inde-
pendent and identically distributed (iid), it can be noticed
that
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σ2
T̃

=
σ4

M2

∑

m1

∑

m2 6=m1

(|Gm1,(k)|2 − Γk)(|Gm2,(k)|2 − Γk)|Wm1 |2|Wm2 |2

︸ ︷︷ ︸

=0

+
2σ4

M2

∑

m

(|Gm,(k)|2 − Γk)2. (24)

Finally, since T̃ ∼ N (0, σ2
T̃

), then T obeys a Chi distri-
bution with 1 degree of freedom, which can be expressed
as

fT (x) =

√

2

πσ2
T̃

exp
(

− x2

2σ2
T̃

)

. (25)

From (25), we deduce the expression of the false alarm
probability Pfa:

Pfa = P(T > η|H0)

=

∫+∞

η
fT (x)dx

= erfc
( η√

2σT̃

)
, (26)

where η is a threshold that will be determined.

4.2 Detection Probability

A first remark concerns the expression of ||Y (k)||2 in (17).
In fact, since the signal xn is band-limited such as 2Bx ≤ 1

ts
,

then ||Y (k)||2 can be rewritten as

1

M
||Y (k)||2 ≈ 1

M

∑

q∈Ωx

|Gq,(k)Rq|2

︸ ︷︷ ︸

Pr,k

+
1

M

M/2
∑

m=−M/2+1

|Gm,(k)Wm|2, (27)

where Ωx is the set of indexes corresponding to the spectral
support of x(t), and Pr,k is the energy of the interpolated
received signal.

4.2.1 Detection Probability for Deterministic Signal: In a
first approach, we assume that the signal is deterministic,
i.e. both hn nor xn are deterministic processes. In that case,
Pr,k is a constant, and the test T can be expressed as

T =
1

M

∣
∣
∣
∣
∣
Pr,k +

M
2∑

m=− M
2

+1

(|Gm,(k)|2 − Γk)|Wm|2

︸ ︷︷ ︸

T̃

∣
∣
∣
∣
∣
, (28)

where T̃ ∼ N (Pr,k, σ2
T̃

). The cumulative distribution func-
tion (cdf) of T can then be derived as

FT |H1
(x) = P(T ≤ x)

= P(x ≤ T̃ ≤ x)

=

∫x

−x

1
√

2πσ2
T̃

exp
(

− (x − Pr,k)2

2σ2
T̃

)

dx

=
1

2

(

−erf
(−x + Pr,k
√

2σ2
T̃

)

+ erf
(x + Pr,k
√

2σ2
T̃

))

.(29)

The probability of detection is expressed from (29) as

Pd = P(T ≥ η|H1)

= 1 − FT |H1
(η). (30)

4.2.2 Detection Probability for Gaussian Random Signal: If
it is supposed that Rq obeys a Gaussian random process, then
Pr,k has a Gaussian distribution, the mean and variance of
which are

µP =
1

M

∑

q∈Ωx

|Gq,(k)|2E{|Rq|2}, (31)

where E{|Rq|2} is the energy of the received signal before any
interpolation, and without noise contribution, and

σ2
P =

1

M2

∑

q1∈Ωx

∑

q2∈Ωx

|Gq1,(k)|2|Gq2,(k)|2E{|Rq1 |2|Rq2 |2}.

(32)
As a consequence, T̃ (which is defined as previously) is a sum
of two uncorrelated Gaussian variable, then T̃ ∼ N (µP , σ2

P +
σ2

T̃
), and finally, the cdf of T is

FT |H1
(x) = P(T ≤ x)

=
1

2

(

−erf
( −x + µP
√

2(σ2
P + σ2

T̃
)

)

+ erf
(

x + µP
√

2(σ2
P + σ2

T̃
)

))

. (33)

Finally, the probability of detection is expressed exactly as in
(30).

4.3 Threshold Value η

We here suppose that the threshold value is set according to
the false alarm probability Pfa (it could be equivalently set
according to the detection probability Pd). Thus, from (26),
we deduce that from a desired (target) Pfa value, we find η
by solving (inverting) (26), i.e.

η =
√

2σT̃ erfc−1(Pfa). (34)

We deduce from (34) and (24) that, in addition to the tar-
get pfa, the optimal threshold value depends on the noise
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variance and the number of samples M . This particularity is
similar to the energy detector. The specificity of the proposed
detector is that the η value also depends on the number of
interpolations, which appears in the expression of σT̃ .

5 Simulations Results

The aims of the presented simulations results are 1) to val-
idate the previous analytical results, and 2) to compare
the performance of the proposed detector with that of the
usual ED. In fact, both detectors are energy-based methods,
therefore agnostic to the received signals, and have similar
complexity. To show the latter assertion, from Section 3,
we deduce that the proposed detector requires the following
operations:

• σ̃2
(k): N multiplications and N additions;

• ||Y (k)||2: M multiplication, since the multiplications by 1
2

in the filtering processes are "costless" in term of complexity,
and kM + M additions.

Then, since N >> k we approximate M ≈ N , hence the com-
putation cost of T in (14) is 2N multiplications and (k + 1)N
additions. The complexity of ED is N multiplications and N
additions, then we deduce that the proposed detector is of
the same order of complexity as that of ED.

5.1 Validation of Theoretical Developments

In Fig. 3 is depicted the η value versus the false alarm proba-
bility. The results obtained through simulation are compared
with those obtained with (34), for different SNR values (-
20 to -5 dB). Furthermore, N = 1000 samples are used, and
k = 4 iterations. It can be clearly observed that theoretical
results match with simulations, which validates the previous
developments.
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Fig. 3: η versus the false alarm probability. Comparison of
the simulations and the analysis (34).

5.2 ROC Performance

The performance of the proposed detector is analyzed
through the receiver operating characteristic (ROC), and is
compared with the energy detector. Fig. 4 shows the spec-
trum |Y (f)| of the received signal in absence and in presence
of the noise, for a SNR of -10 dB (in all simulations, the signal
energy has been normalized). The considered signal in Fig. is
OFDM with 1000 subcarriers of 1 kHz each. It can be seen
that the signal is concealed in noise.
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Fig. 4: Spectrum |Y (f)| of the received signal in absence and
in presence of the noise, SNR=-10 dB. The signal is OFDM.

First series of simulation shows the ROC performance
of the detector, considering the previous OFDM signal, in
absence of channel. In all the simulations, the proposed detec-
tor is used with ten iterations. The central frequency of the
signal has been randomly (uniformly) chosen in the interval
[500, 9500] kHz. Fig. 5 depicts the ROC performance of the
proposed detector compared with energy detector, by using
N = 1000 samples. Figs. 5-(a), (b), and (c) correspond to
SNRs of -10, -15, and -20 dB, respectively. It can be observed
that the proposed detector outperforms the energy detector
for SNR=-10 and -15 dB, and both achieves almost the same
performance at SNR=-20 dB.

Other series of simulations have been carried out in order to
compare the proposed method to ED. Results are presented
in Fig. 6. The same observations as previously can be drawn
from Fig. 6-(a), where N = 10000: the proposed detector out-
performs the energy detector at both SNR=-15, and -20 dB.
Obviously, both detectors achieve better performance in Fig.
6-(a) than in Fig. 5, due to the larger number of samples.

In Fig. 6-(b), we compare the performance of the proposed
detector with the ED in presence of a Rayleigh channel. The
SNR is set to -15 dB. It can be observed that the proposed
detector still outperforms the energy detector. Moreover,
both of them achieve a slightly weaker performance than in
AWGN, due to the presence of the channel. Then, the simu-
lations results show that, with similar computation cost, the
proposed detector outperforms ED.

Fig. 6-(c) shows the ROC performance of the proposed
detector for different kinds of signals: sinusoid, OFDM, and
chirp. The SNR has been set to -15 dB, and the sensing
duration corresponds to N = 1000 samples. The detector per-
forms better when applied to sinusoid than OFDM, and when
applied to OFDM than chirp. This result is mainly due to the
bandwidth of the different signals: the narrowest the signal
bandwidth, the better the performance of the detector.

6 Other Possible Applications

6.1 Estimation of the Parameters f0 and ∆f

It has been aforementioned that the multiple interpolations
act like a low-pass filter. Under several conditions, it becomes
possible to estimate the parameters f0 and ∆f in presence
of useful signal rn. In fact, it must be pointed out that the
largest k, the lowest the "cutoff frequency" of Gm,(k). There-

fore, according to f0, and assuming that Bx << 1
ts

, it may
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Fig. 5: ROC performance of the proposed detector compared
with energy detector, N = 1000.

happen that for a given k = k1, we have 1
M ||Y (k)||2 > σ̃2

(k)
(when f0 is lower than the cutoff frequency of Gm,(k1)), and

for k = k2 > k1, we have 1
M ||Y (k)||2 < σ̃2

(k) (when f0 is much

larger than the cutoff frequency of Gm,(k2)).
As a consequence of the above remark, it exists k∗ ∈ R

∗
+

and k1 < k∗ < k2, such as 1
M ||Y (k∗)||2 = σ̃2

(k∗). Note that k∗

has no physical sense since it may be not an integer. However
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(b) N = 10000, in presence and absence of Rayleigh channel.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false alarm probability

de
te

ct
io

n 
pr

ob
ab

ili
ty chirp

OFDM

sinusoid

(c) Comparison for different signal kinds, N = 1000 in AWGN

channel.

Fig. 6: ROC performance of the proposed detector compared
with energy detector, for various parameters.

it is possible, mathematically speaking, to extend k∗ from
integer to real domain. In practice, k∗ corresponds to the
point where the linearly-interpolated trajectories of ||Y (k)||2
and σ̃2

(k) intersect.
In order to estimate f0 and ∆f , some conditions must be

assumed:
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• The signal is narrow-band with Bx << 1
ts

.
• As a consequence, we suppose that |Rq| = C (C is a
constant) for any q in Ωx.
• The values 1

M ||Y (k)||2 has been computed for every k
value, in such a way that k∗ has been estimated.
• N is large enough to consider that the approximation

1

M

∑

m

|Gm,(k)Wm|2 ≈
∑k

p=0

(
k
p

)2
σ2

22k

holds.

Furthermore, for a clarity purpose, we note f0,∆ = f0 + ∆f .
According to the above assumption and using (27), the
equality 1

M ||Y (k∗)||2 = σ̃2
(k∗) leads to

1

M

∑

q∈Ωx

|Gq,(k∗)Rq|2 +
1

M

M/2
∑

m=−M/2+1

|Gm,(k∗)Wm|2

=

(
2k∗

k∗

)

22k∗
(σ2

r + σ2)

⇔ 1

M

∑

q∈Ωx

|Gq,(k∗)Rq|2 =

(
2k∗

k∗

)

22k∗

1

N

∑

q∈Ωx

|Rq|2

⇔
∑

q∈Ωx

|Gq,(k∗)|2C =

(
2k∗

k∗

)

22k∗

M |Ωx|C
N

⇔
∑

q∈Ω+
x

|Gq,(k∗)|2 =

(
2k∗

k∗

)

22k∗+1

M |Ωx|
N

, (35)

where
(

2k∗

k∗

)
= Γ(2k∗ + 1)/Γ(k∗ + 1)2. Since |G(πx)| is a

strictly decreasing function for any x ∈ [0, 1], then it exists
a unique Ω+

x which is the solution of (35). Finally, since f0,∆
is the (scaled) central frequency of the signal, then it can be
estimated as

f̂0,∆ =
max(Ω+

x ) + min(Ω+
x )

2

1

Mts
. (36)

Furthermore, if f0 is known in advance, then ∆f can be
estimated by

∆̂f = f̂0,∆ − f0. (37)

6.2 Detection of Colored Noise

It is possible to take advantage of the nature of low-pass
filter linear interpolator to detect colored noise, and to decide
whether it is pink or blue noise. In that case, the detection
hypothesis can be rewritten as

yn =

{H0 : wn

H1 : w̄n
, (38)

where w̄n is the colored sample. The decision test (15)
remains, but the detector decides whether the noise is white
or colored. Furthermore, it can detect the kind of color, by
applying the test:

1

M
||Y (k)||2 − σ̃2

(k)

pink
≷

blue
0. (39)

Fig. 7 shows the trajectories of ||Y (k)||2 in cases of pink,
white, and blue noises versus the number of interpolations.
Since the white noise corresponds to the case 1

M ||Y (k)||2 ≈
σ̃2

(k), the test statistic (39) can be verified from Fig. 7.
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Fig. 7: Trajectories of the energy of interpolated pink, white,
and blue noises versus the number of interpolations.

7 Conlusion

In this paper, we have presented a new detector of narrow-
band signals in noise, based on the difference of a determin-
istic function of the energy of the signal and the energy of
the filtered signal. Unlike ED, the proposed detector con-
sists in exploiting the behavior of the energy of filtered white
noise, which can be a priori determined since the used fil-
ter is known. Thus, if the measured energy differs from an
expected value, it is decided that the signal is present in the
band. In order to reduce the complexity of the method, it has
been proposed to use a simple two-tap filter. The false alarm
and detection probabilities expressions have been derived, as
well as the optimal threshold value. Furthermore, theoret-
ical results have been verified through simulations. It has
been shown that the new detector outperforms the usual
ED. Finally, two other possible applications of the detector
have been presented. Future work will consist in investigating
these pending issues, and to analyze the inherent limits of the
proposed detector due to noise uncertainty.
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8 Appendices

In this appendix, we prove that, for M >> 1, T̃ in (20) has a
Gaussian distribution. Let Xm = 1

M (|Gm,(k)|2 − Γk)|Wm|2
(in (20)) be a random variable, which obeys a Chi-squared
distribution with two degrees of freedom. The Lyapounov
condition states that: if the 2 + α-th moment (with α > 0)
of independent variables Xm exists, the mean µm and the
variance σ2

m are finite, and if

lim
M→+∞

rM

sM
= 0, (40)

where

r2+α
M =

M∑

m=1

E{|Xm − µm|2+α}, (41)

and

s2
M =

M∑

m=1

σ2
m, (42)

then
∑

m = Xm tends toward a Gaussian distribution, the
mean and the variance of which are (21) and (24). In the
following, we set α = 2. Note that, due to the symmetry
of |Gm,(k)|2, we can limit to the positive index of m. It is
straightforward to show that

µm =
1

M
(|Gm,(k)|2 − Γk)σ2, (43)

σ2
m =

σ4

M2
(|Gm,(k)|2 − Γk)2, (44)

and

E{|Xm − µm|4} =
9σ8

M4
(|Gm,(k)|2 − Γk)4. (45)

Let define G the R
M vector which contains the elements

|Gm,(k)|2 − Γk, then we can rewrite rM

sM
in (40) as

rM

sM
= 91/4 ||G||4

||G||2
, (46)

where ||.||4 and ||.||2 are the 4-norm and the Euclidian norm,
respectively. We now prove that the ratio of the two norm in
(46) tends to zero when M tends to the infinity.

Proof : Let p : [xl, xu] 7→ [−1, 1] be a function of class C1

on the interval [xl, xu], where (xl, xu) ∈ R
2 and are finite

number. Let f− and f+ two piecewise linear functions on
[xl, xu] such as, ∀x ∈ [xl, xu], we have

{

f−(x) ≤ p(x) ≤ f+(x), if p(x) ≥ 0

f−(x) ≥ p(x) ≥ f+(x), if p(x) ≤ 0
. (47)

Fig. 8 illustrates the above definition of f−(x) compared with
p(x). In this example p(x) is the cos function.

In the following, we only focus on f−, as the developments
remain the same for f+. We suppose that f− is defined on
NI distinct intervals Ii = [xi, xi+1] such, such that for any
1 ≤ i ≤ NI and x ∈ Ii, we have

f−(x) = aix + bi, (48)

where |ai| < +∞ and |bi| < +∞, since p is of class C1 on
[xl, xu].

We define F
− and P two vectors of size M , which cor-

respond to the regularly sampled versions of f− and p on
[xl, xu], respectively. For a sake of simplicity, but without loss
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Fig. 8: Illustration of p(x) and f−(x).

of generality, we suppose that any element pm of P is positive.
As a consequence, for any m = 1, .., M , we can write

0 ≤ f−
m = pm − ǫm ≤ pm, (49)

where ǫm is a real positive value. By definition of the sampling
process, f−

m can be expressed as

f−
m = ai(xl + (m − 1)

xu − xl

M − 1
) + bi. (50)

The first step of the proof is to show that it is possible to find
F

− such that

||F−||4
||F−||2

≥ ||P||4
||P||2

⇔ ||F−||44
||F−||42

≥ ||P||44
||P||42

⇔
∑

m(pm − ǫm)4

(
∑

m(pm − ǫm)2)2
≥ ||P||44

||P||42
. (51)

To this end, we analyzes the gradient of
||F−||4

4

||F−||4
2

. For any

1 ≤ m ≤ M , we define the function V (ǫm) as

V (ǫm) =

A
︷ ︸︸ ︷
∑

k 6=m

(pk − ǫk)4 +(pm − ǫm)4

(∑

k 6=m

(pk − ǫk)2

︸ ︷︷ ︸

B

+(pm − ǫm)2
)2

, (52)

the derivative of which is

∂V (ǫm)

∂ǫm
=

1
(
B + (pm − ǫm)2

)3
×

4(pm − ǫm)
(

A − B(pm − ǫm)2
)

. (53)

From (53), we deduce that the numerator of
∂V (ǫm)

∂ǫm

is null for ǫm ∈ {pm −
√

A
B , pm, pm +

√
A
B }. Moreover, a

straightforward analysis shows that
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∂V (ǫm)

∂ǫm
≥ 0, if pm −

√

A

B
≤ ǫm ≤ pm (54)

∂V (ǫm)

∂ǫm
≤ 0, if pm ≤ ǫm ≤ pm +

√

A

B
. (55)

Therefore, V (ǫm) reaches a local minimum at ǫ = pm −
√

A
B ,

and a local maximum at ǫ = pm. It can be noted that:

1. 0 ≤ ǫm ≤ pm (from (49)),
2. Since |p| ≤ 1, then A ≤ B, hence it can be straightfor-
wardly shown that V (0) ≤ V (pm)

As a consequence of the above remarks, we deduce that, for
any 1 ≤ m ≤ M , it is ever possible to find ǫm, pm ≥ ǫm ≥
pm −

√
A
B if pm −

√
A
B ≥ 0 or pm ≥ ǫm ≥ 0 if pm −

√
A
B ≤

0 such that V (ǫm) ≥ V (0). Therefore it exists a vector ǫ

containing the elements ǫm, F
− = P − ǫ, such that (51)

holds.
From the above result, we can now provide an upper bound

of
||P||4

||P||2
. In fact, when M is large, then from (50):

||F−||2 =

(
∑

m

|f−
m|2
)1/2

∼
(
∑

m

β2
m2

M2

)1/2

∼
(

β2M

3

)1/2

, (56)

since the sum of the M first terms in m2 is equivalent to
M3

3 . The term β2 is the sum of (ai(xu − xl))
2 and. The same

reasoning leads to

||F−||4 =

(
∑

m

|f−
m|4
)1/4

∼
(
∑

m

β4
m4

M4

)1/4

∼
(

β4M

5

)1/4

, (57)

since the sum of the M first terms in m4 is equivalent to M5

5 ,
and β4 is a constant independent of M . Therefore, we deduce
that, when M is large enough:

β
1/4
4 31/2

β
1/2
2 51/4M1/4

≥ ||P||4
||P||2

, (58)

which concludes the proof.

IET Research Journals, pp. 1–11

c© The Institution of Engineering and Technology 2015 11


