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Abstract: In this work, the authors analyse the estimation of the generalised autoregressive conditional heteroscedastic
(GARCH) process conditional variance based on three non-linear filtering approaches: extended Kalman filter (EKF), unscented
Kalman filter and cubature Kalman filter. The authors present a state model for a GARCH process and derive an EKF including
second-order non-linear terms for simultaneous estimation of state and parameters. Using synthetic data, the authors evaluate
the consistency and the correlation of the innovations for the three filters, by means of numerical simulations. The authors also
study the performance of smoothed versions of the non-linear Kalman filters using real clutter data in comparison with a
conventional quasi-maximum likelihood estimation method for the GARCH process coefficients. The authors show that with all
methods the process coefficients estimates are of the same order and the resulting conditional variances are commensurable.
However, the non-linear Kalman filters greatly reduce the computational load. These kind of filters could be used for the radar
detector based on a GARCH clutter model that uses an adaptive threshold that demands the conditional variance at each
decision instant.

1௑Introduction
Clutter can greatly affect the performance of radar systems. Due to
its random nature clutter is usually modelled as a stochastic
process, whose distribution depends on the radar application.
Given its mathematical tractability, radar detection based on
Gaussian clutter models has been extensively investigated [1–3].
However, for sea radar and for high-resolution radar, clutter
statistics deviates from the Gaussian model [4–7]. In such context,
better suited distributions are log-normal, Weibull, K [8, 9], or the
generalised compound probability density function (pdf) [10–12].
These distributions fit well heavy tailed clutter pdf. However, they
are essentially time invariant, whereas often the radar environment
may change abruptly [13], resulting in a degraded performance in
real scenarios. Additionally, they are not easily mathematically
tractable leading to suboptimal solutions to the detection problem
[14].

Recently, we proposed a different approach to the adaptive
detection problem considering a generalised autoregressive
conditional heteroscedastic (GARCH) process to model the clutter
[15]. A GARCH process is characterised by a time varying
variance that depends on the history of the process and by a heavy
tailed pdf [16], which is desirable for appropriately modelling
clutter. The GARCH-based detector models the clutter considering
the realisations in range (or fast time), i.e. it takes a realisation for
each transmitted pulse, and the detection is performed for all the
range cells in each pulse. One of the advantages of this detection
scheme is that the threshold depends on the conditional variance,
i.e. on the previous clutter samples for each cell under test. Thus, it
is able to respond to fast changes in the clutter. However, for a real-
time application, this detection algorithm requires a considerable
amount of computational load, an optimisation problem has to be
solved to find the estimates of the GARCH process coefficients
before updating the conditional variance.

In order to estimate the unknown GARCH model parameters,
the most commonly used estimation procedure has been the quasi-
maximum likelihood estimation (QMLE) method [16, 17]. Since
this method requires a large number of process samples to obtain

good parameter estimates in practical situations, we modified the
procedure to use several short time series instead of a long one
[15]. The disadvantage of the QMLE algorithms is that they are
computationally intensive. An alternative estimation procedure is
based on the autoregressive moving average model representation
of the squared GARCH process. In [18], the use of the Yule-Walker
estimator for the GARCH(1,1) model is proposed. Simulation
results show that in some conditions this estimator performs
similarly to the QMLE, but its convergence rate deteriorates as the
number of model coefficients increase.

In [19], a discrete-time non-linear state-space formulation is
used to characterise a GARCH (1,1) process and an extended
Kalman filter (EKF) estimator is derived. This approach does not
include the unknown model parameters in the state. Thus, the
estimator works in two steps. In the first one, the QMLE method is
used to find the unknown parameters. In the second step, the state
estimate is calculated using the EKF with the estimated parameters
in the first step. This mathematical representation was also
extended to a GARCH model of arbitrary order [20]. In [21], we
presented an adaptive linear minimum mean square error
(LMMSE) estimator for the conditional variance of a GARCH
process, analogous to the Kalman filter. However, it assumes that
the coefficients are known and it also requires using the QMLE
algorithm. This approach is similar to the estimation method
proposed in [22], where a conditional variance estimator is derived
from the minimum mean square error (MSE) criteria, assuming
that the process parameters are known. However, they are
estimated recursively with a maximum-likelihood procedure,
numerically solved by means of a steepest descent method that
updates the likelihood function gradient as new samples arrive, in
order to keep a low computational load [23]. Recently, [24]
proposed estimating GARCH time-varying parameters via the
Kalman filter recursive equations, adapting the state-space
representation of [20] to non-stationary GARCH models.

We consider here the discrete-time non-linear state-space
formulation for GARCH models, in the scenario where the process
coefficients are unknown and they are jointly estimated with the
conditional variance, in a single step. This is akin to simultaneous
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state and parameter estimation in linear models [25], cast as a non-
linear estimation problem of an augmented state system. As far as
we know, the non-linear model with augmented state including the
conditional variance and the parameters is introduced here for
GARCH models. With this formulation we set three Kalman filters
which allow time updating the conditional variance at each instant
with methods significantly less computationally intensive than the
QMLE. We derive an EKF for the augmented state and, unlike the
standard derivation, we include second-order non-linear terms to
reduce the series expansion errors, which is another contribution of
this work. We compare this EKF with the unscented Kalman filter
(UKF) [26] and the cubature Kalman filter (CKF) [27].

The rest of the paper is organised as follows. In Section 2, we
introduce the problem statement and the state model, we derive the
EKF and we describe the sigma points and the cubature points used
for the UKF and the CKF, respectively. We present numerical
simulations results in Section 3 including a study of the filters
consistency and of the correlation of the innovations. In Section 4,
the three filters are tested on real sea clutter data to evaluate their
performance in a real situation. These are also compared with the
QMLE performance; because QMLE uses all the data inside the
processing batch while the Kalman filters only use past data
immediately before the filtering point, we combine each of the
proposed Kalman filters with their smoothed versions to make a
fair comparison [28]. Finally, we present conclusions in Section 5.

1.1 Notation

We adopt the following notation. Math italic is used for scalars x,
uppercase bold for matrices X and lowercase bold for vectors x.
For random variables x, y and z, the variable x (y; z) denotes the
conditional random variable x given y and z. In addition, x^(r k)
denotes the estimate of the state x(r) given information available
up to time k, the predicted value of the state if k < r and the filtered
value when k = r. The expectation and trace operators are denoted
as E{ ⋅ } and tr{ ⋅ } respectively, and CN denotes a circularly-
symmetric normal distribution.

2௑State estimation for a GARCH process
2.1 Problem formulation

For simplicity, consider a complex GARCH (1,1) process c(r)
described by the set of equations [16]

c(r) = σ(r)z(r), (1)

σ
2(r) = k + α1σ

2(r − 1) + β1 c(r − 1)
2
, (2)

where z(r) ∼ CN(0, 1) is a white Gaussian process, σ
2(r) is the

conditional variance of the GARCH process and k, α1 and β1 are
constant process coefficients.

The idea is to develop an algorithm to update a conditional
variance estimate at each instant r, treating σ2(r) as a state and (2)
as the plant equation of a discrete-time dynamic system. However,
the process coefficients are unknown, leading to a linear system
with unknown parameters and we tackle the problem augmenting
the state to include the parameters, turning the problem non-linear
[29].

Thus, the augmented state, consisting of the basic state σ
2(r)

and the parameters k, α1 and β1, is

x(r) ≜ x1(r)x2(r)x3(r)x4(r) T = σ
2(r)kα1β1

T . (3)

We can then write the system as

x(r + 1) = f (x(r)), (4)

where f (x(r)) is a vector function whose first element corresponds
to the non-linear plant equation which from (2) is
f 1(x(r)) = x2(r) + x3(r)x1(r) + x4(r) c(r) 2, and assuming the

parameters are time invariant, their dynamic equations are
f i(x(r)) = xi(r), i = 2, 3, 4.

The observations y(r) consist of the squared magnitude of the
process samples, i.e. c(r)

2
= σ

2(r) z(r)
2 thus,

y(r) = z(r) 2
x1(r) = [v(r) + m2]x1(r) = h(x1(r), v(r)), (5)

where v(r) = z(r) 2 − m2 with mn = E{ z(r) n }. Note that z(r) 2

plays the role of a multiplicative noise.

2.2 Approximation of the non-linear problem

It is not feasible to obtain the optimal filter that minimises the MSE
to estimate the states x(r), i.e. the conditional mean E{x(r) Y

r},
where

Y
r ≜ {y(i), i ≤ r}, (6)

denotes the information set available at time r. Then, as in the EKF,
an estimator will be presented using series expansion of the non-
linear dynamic equation.

Assuming that at time r an estimate of the state, x^(r r), exists,
i.e. an approximation of the conditional mean given by

x^(r r) ≃ E{x(r) Y
r} . (7)

Then to obtain the EKF, the non-linear function in (4) is expanded
in a Taylor series around the latest estimate x^(r r) including terms
up to second order [29]

f (x) ≃ f (x^(r r)) + F(r)[x − x^(r r)]

+
1
2 ∑

i = 1

4

ei[x − x^(r r)]T∇2
f i(r)[x − x^(r r)],

(8)

where ei is a vector whose ith-element is one and the rest are zero,

F(r) ≜
∂ f

∂x x = x^(r r)
, (9)

with

∂ f

∂x
=

∇ f 1
T

∇ f 2
T

∇ f 3
T

∇ f 4
T

=

x3 1 x1 c(r) 2

0 1 0 0

0 0 1 0

0 0 0 1

, (10)

where ∇ f i is the gradient of f i and ∇2
f i(r) is the Hessian of f i

given by

∇2
f i(r) ≜

∂2
f i

∂x∂xT
x = x^(r r)

. (11)

Taking into account (4), it is easily obtained that

∇2
f 1(r) =

0 0 1 0

0 0 0 0

1 0 0 0

0 0 0 0

, (12)

and ∇2
f i(r) = 0, i = 2, 3, 4. Then (8) reduces to

f (x) ≃ f (x^(r r)) + F(r)[x − x^(r r)]

+
1
2

e1[x − x^(r r)]T∇2
f 1[x − x^(r r)],

(13)
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where the argument in the Hessian was omitted because it is
constant.

The observation (5) is linearised to first-order around x^1(r r)
and the mean value of the noise E{v(r)} = 0. Dropping the time
index, leads to

h(x, v) ≃ m2x + x^1(r r)v . (14)

From (13) and (14), the dynamic and observation equations can be
written as

x(r + 1) = f (x^(r r)) + F(r)Δx(r r)

+
1
2

e1ΔxT(r r)∇2
f 1Δx(r r) + w(r)

(15)

y(r) = h
T

x(r) + x^1(r r)v(r), (16)

where hT = [1000], Δx(r r) = x(r) − x^(r r), w(r) and v(r) are the
process noise and the observation noise, respectively. The noise
sequence w(r) is assumed to be zero-mean white and Gaussian,
with covariance E{w(r)wT(r)} = Q(r). Given that z(r) is Gaussian,
the sequence v(r) defined in (5) has a Chi-squared distribution with
2 degrees of freedom with its mean shifted to 0. The noise
sequences are assumed to be mutually independent.

The first component of the process noise, w1(r), is included to
compensate errors introduced by the linearisation. Additionally, the
last three components of the process noise, associated with the
coefficients to be estimated, are artificial noise sequences
preventing the filter-calculated variances of the parameter
estimates from converging to zero and providing adaptivity. The
EKF is not an optimal estimation procedure, and in general it will
not yield consistent estimates of the parameters, i.e. the estimates
will not always converge to the true values. To maintain
adaptability, it is desirable that the covariance does not converge to
zero, otherwise it may lead to estimation errors much larger than
the filter-calculated covariance [30].

2.3 EKF algorithm

We follow the approach of [30] for discrete-time linear systems, to
describe the EKF for (15) and (16). Notice two distinctive points:
(i) the quadratic dynamic equation differs from the standard EKF
linearised to order 1; (ii) the measurement noise is Chi-squared
distributed and appears multiplied by a state dependent gain.

For a filtered state estimate or state prediction at time r, x^(r k),
the estimation error is defined as

Δx(r k) ≜ x(r) − x^(r k) k ≤ r, (17)

and the MSE matrix of x(r) given the data Yk is

P(r k) ≜ E{Dx(r k)DxT(r k) Y
k} . (18)

Thus, the goal is to get a recursion that allows to update the filtered
state estimate at r + 1 and its MSE estimate matrix. The set of EKF
equations can be obtained from the static estimation equations for
the LMMSE estimator [30]. The recursion obtained in this way is
optimal if the problem is linear, and if process and measurement
noises and the initial conditions are Gaussian and independent
among themselves. In our problem, it leads to a suboptimal
solution, i.e. x^(r + 1 r + 1) ≃ E{x(r + 1) Y

r + 1} due to the
linearisation of the non-linear model and observation equation, and
its particular noise distribution.

Table 1 summarises the algorithm steps of the proposed EKF,
once x^(0 0) and P(0 0) have been initialised, for r ⩾ 0. 

2.4 UKF and CKF algorithms

We follow the approach in [29] to implement the UKF algorithm,
based on the system (4) and (5). To propagate the state estimate

and error covariance matrix in the time update stage, the 2N + 1
sigma points ci(r + 1/r + 1) are choosen as [26]

χ0(r + 1 r + 1) = x^(r + 1 r + 1)

χ i(r + 1 r + 1) = x^(r + 1 r + 1) + N + κ[Σ(r + 1 r + 1)]i

χ i + N(r + 1 r + 1) = x^(r + 1 r + 1) − N + κ[Σ(r + 1 r + 1)]i,
(19)

for i = 1, …, N, where κ ∈ ℝ, N is the state dimension,
[Σ(r + 1 r + 1)]i is the ith row of Σ(r + 1 r + 1), with
P(r + 1 r + 1) = Σ

T(r + 1 r + 1)Σ(r + 1 r + 1). The weights ωi

associated with the sigma points are

ω0 = κ /(N + κ)

ωi = 0.5/(N + κ)i = 1, …, 2N .
(20)

To propagate the observation prediction and its covariance in the
measurement update stage, the 2N + 1 sigma points χ i(r + 1/r) are
computed with a set of equations analogous to (19), using
x^(r + 1 r) and Σ(r + 1 r) instead of x^(r + 1 r + 1) and
Σ(r + 1 r + 1) respectively, where

P(r + 1 r) = Σ
T(r + 1 r)Σ(r + 1 r) .

The CKF also works in two steps: the time update and the
measurement update. We use the CKF algorithm detailed in
Appendix A of [31], where the cubature-point set {ξi, ωi} used to
numerically compute the integrals involved is given by

ξi = N[1]i i = 0, …, 2N − 1

ωi = 0.5/N i = 0, …, 2N − 1,
(21)

where [1]i is a vector of N × 1 whose element imod(N) + 1 is 1 for
i = 0, …, N − 1 and −1 for i = N, …, 2N − 1 and the rest are zero.

3௑Numerical simulations
A series of Monte-Carlo simulations were conducted in order to
verify the correct operation of the filters and compare their
performances. To generate the synthetic data, we set the values of
the coefficients to k = 0.5, α1 = 0.2 and β1 = 0.3. With these
coefficients the GARCH process satisfies the stationarity condition
[16], α1 + β1 < 1, and the unconditional variance of the process
results k /(1 − α1 − β1) = 1. In all cases, we fix the initial value of
the conditional variance state equal to the square of the first data
sample, we fix the second state as a random fraction of the square
of the first data sample, and we choose the third and fourth states
randomly but within the corresponding restrictions for the
respective coefficients, which are that α1 > 0, β1 > 0 and
α1 + β1 < 1 [16]. To choose the initial MSE state estimation matrix,

Table 1 Algorithm steps of the EKF (γ = m4 − m2
2)

Step Compute
1. system matrix F(r − 1) through (9)
2. state prediction

x^(r + 1 r) = f (x^(r r)) +
1
2

e1tr{∇2
f 1P(r r)}

3. state prediction
MSE

P(r + 1 r) = F(r)P(r r)FT(r) + Q(r)

+
1
2

e1e1
Ttr{∇2

f 1P(r r)∇2
f 1P(r r)}

4. innovations Δy(r + 1 r) = y(r + 1) − h
T

x^(r + 1 r)

5. obs. prediction
MSE

s(r + 1 r) = h
T
P(r + 1 r)h + γx^1

2(r r)

6. gain K(r + 1) = P(r + 1 r)hs−1(r + 1 r)

7. state estimation x^(r + 1 r + 1) = x^(r + 1 r) + K(r + 1)Δy(r + 1 r)

8. state estimation
MSE

P(r + 1 r + 1) = [I − K(r + 1)hT]P(r + 1 r)
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we assume that the initial state is a normally distributed random
variable with known mean, such that Δx(0 0)T

P(0 0)−1
Δx(0 0) is

Chi-square distributed with 4 degrees of freedom. Then we fix
P(0 0) in order to satisfy the test Δx(0 0)T

P(0 0)−1
Δx(0 0) < a

where a is the upper limit of the 95% confidence region from the
Chi-square distribution [30]. The simulations are performed for
R = 1 × 105 instants or range cells. Since z(r) ∼ CN(0, 1), then
γ = m4 − m2

2 = 1. We adjust the covariance of the noise by means of
simulations to make the filter consistent, with an acceptable rate of
convergence [30, 32]. The covariance matrix is assumed diagonal.
Initially, we fixed the standard deviations of the process noise as a
few percent of the guessed values of the parameters (especial 10%
of the square of the first data sample for the first two components
and, based on the constraint α1 + β1 < 1, 0.1 for the last two
components). We simulate the system and we monitor the errors
that are defined in the filters consistency analysis of the next
sections. Finally, we adjust the noise variances until the filter yields
estimation errors commensurate with the calculated MSE state
estimation matrix. 

Fig. 1a shows the true conditional variance of the GARCH
process and the values estimated by the three filters for the same
run. In Fig. 1b, we present the estimation errors, in order to
appreciate the differences between the true and estimated value of
the conditional variance. Note that once the transient finished, the
error remains <10% most of the time. Similarly, Fig. 2 shows the
true and the estimated value of the process coefficients for the
same run and in Table 2 the mean and the estimation root-mean-
square error (RMSE) of the coefficient estimates are presented for
5000 and 20,000 samples. All the coefficient estimates present the
same behaviour. A transient at the beginning and then a stationary
behaviour, where they vary slightly around a mean value. The k
and α1 estimates of the UKF and of the CKF have a higher bias
than the EKF. On the other hand, for α1 estimates the EKF shows a
longer transient than the UKF and CKF. 

The mean of the conditional variance of a GARCH process is
equal to the unconditional variance of the process, i.e.
E{ c(r)

2
} = E{σ

2(r)}, because σ2(r) and z(r) are independent and
E{ z(r) 2 } = 1. Thus, a measure of the unconditional variance can
be also used to verify the filter evolution. Fig. 3 shows the
estimated values of the unconditional variance obtained in the
simulation by means of the time average, computed as

⟨θ(i)⟩i, r =
1
r
∑
i = 1

r

θ(i), (22)

where θ(i) = y(i) = c(i) 2 when directly estimating from the data,
and θ(i) = x^1(i i) when estimated from the state of each filter. Note
that once the transient disappears all the estimates converge
approximately to the same value and within a 1% of error with
respect to the true value.

These results show that all filters exhibit a similar response. In
the next two subsections, we present an analysis of the consistency
of the proposed filters and of the statistical properties of the
innovations.

3.1 Filter consistency

An estimator of a deterministic parameter is said to be consistent if
the estimate converges to the true value of the parameter in some
stochastic sense [33]. This implies that as the information about the
parameter increases in the estimation procedure, the uncertainty
about its true value reduces asymptotically to zero. This sort of
convergence cannot be guaranteed in non-linear filtering
procedures. In the present problem, state estimation will be
considered consistent (i) when the estimates are unbiased and (ii)
they have a MSE matrix approaching that calculated by the filter,
i.e. if the state estimation errors satisfy the two moment conditions
[30]

E{Δx(r r)} = 0, (23)

E{Δx(r r)ΔxT(r r)} = P(r r), (24)

despite the inherent approximations. We will check consistency by
means of Monte Carlo simulations. 

To verify the first consistency condition (23), we evaluated the
time average ⟨ei(r)⟩i, M of the state estimation errors,
ei(r) = θi(r) − θ

^

i(r), from M = 50 independent estimates
realisations, where θi(r) and θ

^

i(r) denote the true and the estimated
parameter values respectively for the i-th run. In Fig. 4, we show
the average of the state estimation errors, which gives an idea of
the estimation accuracy. A small bias in the estimation of the
coefficients k and α1 can be seen in these results for the three
filters. However, in the case of the CKF the bias is slightly higher
than the bias of the EKF and of the UKF. This is also noticeable in
Figs. 2a and b. 

To test the second condition (24), we computed the RMS of
each component of the estimation errors. The RMS errors were
obtained from the same M = 50 runs above and they were
computed as ⟨ei

2(r)⟩i, M. Fig. 5 presents the RMS estimation error
for each state, and the RMS error predicted by each filter,

[P(r r)]ii, i = 1, 2, 3, 4, for the single run used to get the estimated
values shown in Figs. 1a and 2. Note that the RMSE of the three
filters are of the same order of the corresponding [P(r r)]ii. This
is the expected behaviour in order to satisfy the second consistency
condition (24). However, for the CKF the RMSE of the coefficients
slightly depart from their corresponding [P(r r)]ii. In view of the
results of Fig. 5, the mean of the state estimation errors do not
depart from zero more than a standard deviation. Thus, we can
argue from a practical point of view that the filters satisfy the
consistency conditions.

3.2 Innovation statistics

Another criterion often used to check the proper behaviour of the
filter is that the innovations are expected to be uncorrelated. 

The previous test assumes that M independent runs have been
made. However, assuming ergodicity of the innovation sequence,
correlation is estimated from a single run, using range (or time)
averages. Then the range-average autocorrelation

ρ̄rt(l, r)

=
∑i = r

r + K − 1 Δy(i i − 1)Δy(i + l i + l − 1)

∑i = r
r + K − 1 Δy

2(i i − 1)∑i = r
r + K − 1 Δy

2(i + l i + l − 1)
,

(25)

can be used as the statistic in a real-time implementation to verify
the innovation property. Fig. 6 shows ρ̄rt(1, r) for the run used to
get the estimated values showed in Figs. 1a and 2, with a range
window of K = 100 samples. Similar results hold for larger values
of l. These results present a low variability and are close to 0 for
the three filters, as expected.

4௑Performance analysis
In this section, the filters are tested on real sea clutter data to
evaluate their performance in a realistic scenario. The data were
collected by the McMaster University IPIX radar, at the Osborne
Head Gunnery Range, Dartmouth, Nova Scotia, Canada [4], and
are available on-line. Specifically, the used data were recorded on
10 November 1993 at 00:34:24 a.m. which corresponds to the
dataset stare6. The IPIX radar has full polarimetric information,
shown results correspond to vertical polarisation only. The dataset
corresponds to inhomogeneous sea clutter without a target. The
height of the sea waves was of ∼0.9 m. The fast time or range
dimension consists of R = 68 samples, the sampling interval is 15 
m and the radar range resolution is 30 m. The number of
transmitted pulses, i.e. the number of samples in the slow time
dimension, is T = 8192, with a pulse repetition frequency of 500 
Hz. 
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The GARCH model for the clutter proposed in [15] considers
the realisations in range. Hence, it is necessary to rearrange the
data because the number of range cells in each pulse is not enough
to extinguish the transient and obtain a reasonable estimation error.
To solve this problem, we concatenated different pulses in a single
vector. Since the coherence time of the environment is greater than
the pulse repetition interval, the pulse samples for a given range
cell are correlated. To avoid this, we do not take consecutive
pulses. Fig. 7 shows the estimated autocorrelation function for the
data in the slow time dimension. It can be seen after 20 ms, or
equivalently after 10 pulses, the autocorrelation function is
approximately zero; in other words, samples from two pulses
separated a time interval >20 ms are not correlated. Hence, to form
the data vector we take 1 in 10 pulses. Note that such
rearrangement can be done in real time and it does not become a
limitation in practical scenarios.

The initial conditions are chosen in the same way as described
for the numerical simulations. The covariance of the noise is
chosen to have an intermediate value as a trade-off between
convergence rate and estimates variability.

We compare the estimates obtained with the three versions of
Kalman filters to the results obtained by a conventional GARCH
coefficient estimation method, the QMLE. A detailed description
of this method can be found in [15].

The coefficients estimation by the QMLE method is performed
using first a variable window which was increased to include up to
103 realisations, in all cases separated by 10 pulses, as explained
above. Each pulse has R = 68 samples, giving a total of 7004
samples, enough to achieve an acceptable estimation error [15]. 

The QMLE uses all the data inside the processing batch while
the Kalman filters only use data up to the filtering point. Thus, the
resulting estimates of the QMLE will present a lower variability,
especially when filtering did not advance for long enough time. To
make a fair comparison, we combine each of the proposed Kalman
filters with their smoothed versions so that they also use all the
available data. Once the filtering has been performed and x^(r r),
x^(r + 1 r), P(r r) and P(r + 1 r) for r = 0, 1, …, N − 1 have been
stored, the smoothing requires a backward iteration that consists of
the steps presented in Table 3 for r = N − 1, …, 1, 0 [30].

4.1 Results

We ran all the estimation methods in the described conditions.
Fig. 8a shows the estimates of the conditional variance obtained by
means of (2) with the QMLE estimated coefficients, and by the
EKF, the UKF and the CKF after smoothing. In Fig. 8b, we present
the time average and the RMS value of the difference between the
conditional variance approximations obtained with each Kalman
filter and the conditional variance computed with the QMLE.
Fig. 9 shows the coefficients estimated through QMLE and the

Fig. 1௒ Conditional variance
(a) Estimated values, (b) Estimation error

 Fig. 2௒ Estimated values of the process coefficients
(a) Coefficient k, (b) Coefficient α1, (c) Coefficient β1

 
Table 2 Mean and RMSE of the coefficient estimates
Filter Coefficient 5000 samples 20,000 samples

Mean RMSE Mean RMSE
EKF k 0.50 0.08 0.52 0.05

α1 0.22 0.09 0.17 0.07
β1 0.27 0.06 0.29 0.04

UKF k 0.56 0.09 0.54 0.06
α1 0.13 0.09 0.12 0.09
β1 0.29 0.06 0.32 0.06

CKF k 0.57 0.08 0.54 0.06
α1 0.13 0.09 0.13 0.08
β1 0.29 0.06 0.32 0.06

 

Fig. 3௒ Unconditional variance of the GARCH process
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Kalman filters. Despite the slight differences, they are all of the
same order. In Fig. 10, we present the unconditional variance
estimated as the sample average from the square magnitude of the
data; from the conditional variance obtained by means of (2) with
the coefficients estimated by QMLE; and from the conditional
variance estimated by the smoothed versions of the EKF, the UKF
and the CKF. While the transient is longer in the CKF case, and
shorter in the data and the QMLE cases, all the unconditional
variance estimates are of the same order and tend approximately to
the same value after the transient. Finally, Fig. 11 shows the real-
time innovation correlation. It is usually ∼0.15 instead of 0 as
expected. An explanation for this behaviour is that the data are
correlated between adjacent range cells, since the sampling interval
is 15 m and the radar resolution is 30 m.

5௑Discussion and conclusion
We presented three algorithms to sequentially estimate the
conditional variance of a GARCH process. The estimation

Fig. 4௒ Mean of the state estimation error from 50 Monte Carlo runs
(a) Conditional variance σ2(r), (b) Coefficient k, (c) Coefficient α1, (d) Coefficient β1

 
Fig. 5௒ RMSE of the state estimation from 50 Monte Carlo runs
(a) Conditional variance σ2(r), (b) Coefficient k, (c) Coefficient α1, (d) Coefficient β1

 

Fig. 6௒ Innovation autocorrelation for l = 1
 

Fig. 7௒ Autocorrelation function estimate of the IPIX radar stare6 data set
 

Table 3 Smoother Kalman filter algorithm steps
Step Compute
1. smoother gain C(r) = P(r r)FT(r)P−1(r + 1 r)

2. smoothed state x^(r N) = x^(r r) + C(r)[x^(r + 1 N) − x^(r + 1 r)]

3. covariance of the
smoothed state

P(r N) = P(r r) + C(r)[P(r + 1 N)

−P(r + 1 r)]CT(r)
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procedures are based on non-linear Kalman filters, the EKF, the
UKF and the CKF. The GARCH process presents a better
characterisation of the sea clutter statistics than most of the time
invariant distributions [15]. The detector based on the GARCH
clutter model is an adaptive detection algorithm with a threshold
scaled by the process conditional variance. The proposed filters
aim at updating the conditional variance at each decision instant.

Based on a state model for a GARCH process, we derived the
EKF algorithm using a linearisation up to second-order terms. By
means of Monte-Carlo simulations we numerically evaluated the
performance of the estimation methods. We also analysed the
consistency of the filters and the statistics of the innovations using
synthetic data. The EKF and UKF filters present a better
performance than the CFK from the consistency viewpoint.
However, all three have acceptable results, with only a small bias
in the estimation of two of the process coefficients. One possible
reason for this behaviour is the observability of the state model,
following the approach presented in [34]. The approach suggests
that a primary cause of inconsistency occurs when the dimension
of the observable space of the linearised model is larger than that
from the non-linear system. A possible next step is to study the
consistency of the proposed GARCH parameter estimators based
on the Kalman filters from the perspective of observability.
However, in [15] we have shown that the GARCH detector is
robust with respect to changes in the parameters.

Regarding the results with real clutter data, the QMLE method
seems to have smaller variability in the coefficients estimates than
the non-linear Kalman filters. However, this is due to the Kalman
filters use only past data immediately before the filtering point
while QMLE uses the whole data batch. In order to compare both
approaches, smoothed versions for all three Kalman filters were
included obtaining similar performance to the QMLE.

It is worth pointing out that the proposed filters have a
limitation. The covariance matrix of the process noise is adjusted in
order to get errors commensurate with the calculated MSE state
estimation matrix, with an acceptable rate of convergence.
However, one of the sources of uncertainty while working with
Kalman filters, even with linear models, is due to the unknown a
priori statistics of the noise. This suggests modifying the filters
using an adaptive algorithm to estimate the noise covariance
matrix. A possible approach for the EKF is the extended
expectation-maximisation proposed in [35], which avoids the
computational efforts involved in computing the gradients of the
objective function in the maximum likelihood framework. On the
other hand, adaptive algorithms for the UKF and the CKF proposed
in this work might be developed based on the robust Masreliez–
Martin UKF [36].

The great advantage of the Kalman filters is the computational
load reduction when compared to QMLE. It is not straightforward

to make a detailed analysis of the computational burden, especially
in the case of the QMLE due to its iterative nature. However, all
estimation methods were run in the same desktop computer
exclusively dedicated to this task. In this condition, the EKF and
the smoother EKF evaluated the 55,759 state estimates in ∼4 and 7
s, respectively, and the smoothed versions of the UKF and of the
CKF spend ∼15 s to evaluate the 55,759 state estimates.
Meanwhile, the QMLE spent 450 s to obtain 816 coefficients
estimates, and this does not include the computation of the
conditional variance. Clearly, the proposed method presents a
significant advantage in the computational load. To further reduce
the computational complexity of the EKF, the decoupled EKF
could be used [37], which has shown good performance in
multilayer neural network training.

Fig. 8௒ Conditional variance
(a) Estimated values, (b) Estimated difference

 

Fig. 9௒ Estimated values of the process coefficients from data
(a) k, (b) α1, (c) β1

 

Fig. 10௒ Estimated values of the data unconditional variance
 

Fig. 11௒ Real time autocorrelation of the innovation for l = 1
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Finally, it might be of interest to investigate the use of the
Kalman filters to GARCH clutter parameter estimation in
conjunction with the radar detector derived in [15] and to compare
with the detection performance when the standard algorithm for
GARCH parameter estimation is used.
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