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Abstract: The paper reports on an investigation 
into the application of the B method of formal 
software development. Six case studies are 
described, each exploring a different aspect of the 
use of the B methodology and toolkit. The case 
studies are drawn from a diverse range of 
applications and address different aspects of the 
software development lifecycle. The notation, 
method and tool support are assessed and 
conclusions are drawn concerning the use of B 
and formal methods generally. 

1 Introduction 

Formal methods have long been advocated as a way to 
make the development of software into a scientifically 
based engineering discipline. Nevertheless, in practice, 
very little software is produced using the formal 
approach. To some extent, the introduction of formal 
methods has been hampered by the lack of quality sup- 
port tools. However, there are now commercial prod- 
ucts claiming to provide for the use of formality in the 
context of the software development task as a whole. 

This paper reports on the work of the B user trials 
project [Note 11, which investigated the application of 
formal methods in software development. A number of 
case studies are discussed that apply formal techniques 
to different tasks in the software development lifecycle 
within a particular development environment, which is 
a commercial product supporting formal methods. 
Although no quantitative analysis is undertaken, we 
discuss our experiences with the method, notation and 
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tools and assess the extent to which the formal 
approach yields a viable means to establish a sound 
engineering practice. 

1. I 
The B method [Note 2][1-31 is a ‘model-oriented’ for- 
mal method, providing a unified notation and support 
tool for many of the activities in the software develop- 
ment lifecycle. It is currently being used in several 
industrial organisations [4-6]. Modularity is central to 
the B method, and this is achieved by structuring spec- 
ifications and developments into ‘abstract machines’. 

Machines are essentially abstract data types with 
state. The state is defined by the construction of a set 
theoretic model. Similar constructors to those of other 
model-oriented notations are available, although, in 
practice, we tend to use a number of variables each of 
simple type, rather than building more complex, user- 
defined, types as encouraged by VDM [7] or Z [SI. 
State initialisation and invariant conditions are given 
explicitly. 

The invariant and other predicates are given in first- 
order predicate calculus and set theory. The underlying 
logic is untyped, and typing constraints appear as set 
memberships in the invariant, along with the usual 
relationships between variables. The foundations are 
based on Zermelo set theory, with an axiom of choice, 
an axiom of infinity and an axiomatic definition of 
Cartesian product. 

B method, notation and toolkit 

Note 1: The B user trials project was a UK collaborative project between 
Lloyd’s Register of Shipping, Program Validation Limited, the Royal 
Military College of Science and the Rutherford Appleton Laboratory. It 
was jointly funded by the Department of Trade & Industry and the Engi- 
neering & Physical Science Research Council. 
Note 2: Support for the B method is currently being developed by several 
organisations: our study was based upon the B toolkit developed oria- 
nally at British Petroleum PLC and subsequently by B-Core (UK) Ltd. 
This study was undertaken primarily with the Beta release of this tookit 
(Version 2.0) during the period from January 1993 to December 1994, 
and a number of the detailed issues concerning the functionality and per- 
formance of the B toolkit that arose during the course of the project have 
been taken into account in later versions of the product. It is intended 
that the experiences reported here also be used to guide its future evolu- 
tion 
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Operations are defined as ‘generalised substitutions’. 
rhis departure from the before-after predicates of 
VDM and Z yields the same expressive power, while 
giving the language a more programmatic feel and thus 
making it more accessible to those with programming, 
rather than mathematical, experience. For example, a 
number of constructs are available that mimic the usual 
notation for assignment, x := y for x becomes equal to 
y ,  to give loose specifications such as x :E S for x 
becomes any member of S. As in Morgan’s refinement 
calculus [9], the semantics of operations are given via 
the weakest preconditions. 

The overall specification is structured using machine 
composition. Specifications can be built incrementally 
using the ‘sees’ and ‘includes’ mechanisms that, respec- 
tively, allow read-only and read-write extensions of a 
machine by new variables and operations. Data reifica- 
tion is provided by ‘refinements’, and compositional 
development is provided by ‘imports’. Low-level 
machines, ‘implementations’, can be written in an exe- 
cutable subset of the language, and a library of ‘base’ 
machines can be automatically translated into C code. 

Validation is supported by an animation facility that 
allows the developer interactively to ‘execute’ a specifi- 
cation by providing input to simplify non-executable 
constructs or to resolve non-determinism. Verification 
is supported through the generation and discharge of 
proof obligations, which ensure the consistency of spec- 
ifications and the correctness of refinements. 

The emphasis on modularity is also applied to proof. 
The motivation here is that the overall proof task 
should, as far as possible, be decomposed into proofs 
concerning individual machines. Once a machine has 
been proven consistent and correct, those proofs 
should be valid in any context in which this machine is 
used as part of a more complex specification. Indeed, it 
is this aim that has determined the structuring mecha- 
nisms availabe for machines. Thus, a highly composi- 
tional method is provided for proof so that, although 
numerous, proof obligations are mostly simple and the 
majority can be discharged automatically. 

Two proof tools are provided: the ‘autoprover’ is 
used to discharge automatically the majority of proof 
obligations using a ‘rulebase’ of built-in rules and 
tactics; and the ‘interprover’ is used to explore interac- 
tively the failed proof attempt and extend the rulebase 
with user-defined ‘theories’ that provide problem- 
specific rules and tactics. 

1.2 Overview of paper 
This paper reports on six case studies that explore the 
use of the B method and toolkit for different aspects of 
the software design lifecycle. The first three case studies 
address the early phases of development, considering 
requirements, validation and prototyping. The next two 
case studies address high-level design and data refine- 
ment, comparing the B abstract machine notation with 
two other model-oriented specification notations, 
VDM and Z. The last case study addresses algorithm 
development, code generation and verification. 

2 Expressing requirements in B 

The first case study was concerned with expressing 
requirements in the B method. A requirements model 
of a short-term conflict alert (STCA) air traffic control 
application, previously defined using controlled 
requirements expression (CORE), was developed to 
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investigate how effective the B method is for expressing 
a requirements model of this type and complexity, and 
to evaluate the role of the B toolkit in animating and 
proving relevant properties of that model. 

CORE is an established structured requirements 
analysis method that employs diagrams and supporting 
text to construct a functional model of the required 
system and its operational environment, using a combi- 
nation of hierarchical decomposition, data flow and 
data structuring techniques depicting the interaction of 
the target system with its environment at various levels 
of abstraction. CORE has been the subject of a number 
of research projects within the Software Engineering 
Group at RMCS since 1986, using the SD variant of 
CORE [lo] and its associated Analyst support tool. 

This overview presents the experiment that was per- 
formed with B and CORE and outlines the resultant 
evaluation of the B toolkit. 

2. I STCA requirements expression 
An STCA is intended to support air traffic controllers 
by providing a warning when two aircraft are in danger 
of mid-air collision. The STCA CORE analysis used in 
the experiment, reported here, was developed for a pre- 
vious CAA-funded project [ 1 11 that investigated the use 
of VDM and CSP to formalise a CORE requirements 
model. This analysis is based upon the diagram of 
Fig. 1, which identifies how the STCA problem domain 
can be progressively decomposed into a number of 
non-overlapping functional partitions, termed view- 
points. The STCA system is successively decomposed, 
first into viewpoints representing entities that impact 
upon the intended STCA system: the aircraft, which 
are directed by the air traffic controllers, the radar 
tracking functions of the air traffic control system, the 
human-computer interface (HCI) and a catch-all envi- 
ronment that contains those entities not contained in 
the other named viewpoints at this level. At the next 
stage of decomposition, the tracking, STCA and HCI 
viewpoints are further decomposed into sub-view- 
points, allowing their interaction to be modelled with 
greater resolution. The full STCA CORE analysis can 
be found in [12] and comprises some 40 pages of dia- 
grams and supporting text. Also contained within this 
thesis are formal specifications for the STCA sub-view- 
points (V31, V32, V33 in the diagram), forming some 
1600 lines of VDM-SL distributed across 23 modules. 

2.2 Applying B to STCA CORE analysis 
This case study used B with CORE for three primary 
re as o n s : 
(a)  to improve the semantic definition of CORE’S func- 
tional model 
(b) to allow properties of the functional model to be 
analysed formally (by proof) 
(c) to facilitate animation of the functional model 
Initially, a mapping was developed where each view- 
point was represented as a machine that was then 
developed in two ways, resulting in a behavioural 
implementation, which represents the semantics from 
the CORE single viewpoint modelling stage, and a 
decomposition implementation, which allows a view- 
point to be decomposed into sub-viewpoints, represent- 
ing the hierarchical structuring information from the 
CORE viewpoint structuring stage. However, this 
approach was not satisfactory, as the B toolkit’s code 
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v o  

STCA problem 

Fig. 1 STCA CORE viewpoint structure diugrum 

generation facilities do not support the passing of 
structured data, such as sets and sequences, between B 
operations (although B imposes no such restriction). 
This means that an object-oriented programming style 
has to be adopted, where each structured data type that 
is passed between B operations is managed by an 
explicit abstract machine, used to create scalar tokens 
to identify objects of that type, which are then passed 
between operations and de-referenced via the data type 
manager. In the case of the STCA model, the very 
large number ot structured data types that would have 
been needed to be handled rendered the approach 
infeasible. 

In view of this, an alternative strategy was adopted 
that involved the construction of three separate B mod- 
els to address different aspects of the CORE model: 
(i) a conceptual model, which uses the full features of B 
machines and implementations to capture the complete 
semantics of the CORE functional model and which is 
used to analyse formally the properties of that model 
(ii) a viewpoint semantic model, which expresses the 
data-processing actions of a single CORE viewpoint 
using solely B machines and which can therefore be 
animated using the symbolic animation facilities of the 
B toolkit. 
(iii) a connectivity model, which provides an executable 
program for the entire CORE functional model, but 
which only captures the data-flow connectivity of 
actions; the actions pass data-flow markers around the 
model, each tagged with the history of actions that 
have processed that marker. 
This strategy yielded a conceptual model about one 
third of the size of the initial model (6800 lines of B 
instead of 20 000). The number of proof obligations 
was also reduced from some 2000 in the initial model 
to about 200. Of these, about 90% were discharged The 
viewpoint semantic model for the configuration view- 
point was constructed and animated. The B specifica- 
tions for this viewpoint were derived from the VDM 
specifications of [12]. The connectivity model was 
partly constructed, but was not completed, owing to 
problems in building a data type manager for the data- 
flow markers. 

A full account of the two approaches for using B 
with CORE can be found in [13], and details of the 
application of these approaches to the STCA CORE 
analysis are contained in [14]. 
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2.3 Experiences of this case study 
When trying to specify the CORE functional nindt‘l 
using B, a number of limitations particular to the B- 
language were identified. First, the language does n o t  
allow sequencing at the abstract ‘machine’ level; ‘im plc- 
mentations’ had to be used resulting in a far moic 
detailed specification than desirable for a requirement:; 
model. Secondly. the data typing facilities within €3 
were found to be limited, and the implicit typing style 
was found to lack the clarity of more explicit 
approaches, such as that employed in VDM. A serious 
omission is the absence of record types, which was 
overcome using an algebraic definition style (see Sec 
tion 6). Thirdly, the machine structuring facilities of B 
prevented two, or more, machines from sharing write 
access to the state of a third machine. Although this 
restriction is mdde to simplify the proof process, it is a 
severe constraint when modelling certain real-world 
problems and can lead to very inelegant and unnatural 
specifications. 

With regard to the methodology, the restriction of 
the arguments and returns associated with operations 
to scalar types led to our proposal for an enhanced B 
method [13], which attempts to separate out the con- 
cern of specifying the problem in a ‘conceptual model’, 
from the concern of providing an executable program 
to address that problem in a ‘constructional model’. 
Where applications require little structured data pass- 
ing, the distinction between conceptual and construc- 
tional models is small. However, for structured analysis 
and design approaches applied to data-rich informa- 
tion-processing systems, the difference in complexity is 
considerable. In fact, such was the predicted complexity 
of the constructioiial model for the STCA CORE anal- 
ysis, that alternative approaches were devised to pro- 
vide animation of the CORE model, in the form of 
viewpoint semantic and connectivity models. 

With regard to the specific tools available, this study 
provided an opportunity to evaluate the B toolkit (ver- 
sion 2.0) for a large-scale development. and a number 
of areas for improvement were identified. The response 
speed of the tool was very slow for a large develop- 
ment, and animating a large specification was also 
slow, especially when compared with equivalent Prolog 
systems. For very large developments, the proof tools 
failed to construct proof obligations and carry out 
proofs. The animator provides the basis of a very use- 
ful tool, but should be enhanced to evaluate nested 
LET and ANY clauses, animate refinements and imple- 
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mentations, and provide an improved developer inter- 
face, such as the inclusion of batch-testing and roll- 
back features. 

In summary, this case study showed that the B 
method offers potential benefits over other model- 
based approaches, such as VDM and Z, in that it pro- 
vides a semantically strong object-oriented modularisa- 
tion scheme that allows proof to be partitioned, 
supports the progressive refinement of specifications 
and encourages specification reuse. The inclusion of 
animation, proof and code-generation facilities within 
the B toolkit also represents a significant enhancement 
over the functionality of existing tools for VDM and Z. 
However, when using the B method and the B toolkit 
for our STCA case study, we encountered a number of 
limitations described above, which we feel should be 
addressed if this new and advanced technology is to be 
used successfully in requirement modelling of complex 
information systems. 

3 

This case study was in the domain of clinical biochem- 
istry, which is a branch of pathology. concerned with 
the analysis of body fluids to aid diagnosis, prognosis 
and monitoring of treatment. Automatic analysers 
capable of performing thousands of tests daily are used 
widely. Such systems are clearly safety-critical, as send- 
ing the wrong test result can result in incorrect treat- 
ment. 

The B method and B toolkit were used to analyse the 
hazards in the laboratory information management sys- 
tem employed in the Clinical Biochemistry Department 
of the West Middlesex University Hospital (see, for 
example, [ 151 or [ 161). The hazard analysis technique 
used involved the development of a formal specifica- 
tion of the system, the identification and formalisation 
of system safety properties, and an attempt to prove 
the safety properties from the formal specification. This 
technique, first discussed in [17] can be regarded as an 
extension of the fault tree analysis (FTA) technique 
[18] and its extensions to software [19, 201. FTA is a 
diagrammatic technique where a potential failure of the 
system is traced back and decomposed into a combina- 
tion of failures of atomic events. Such an analysis can 
be regarded as an informal, backwards proof attempt. 
The main differences between FTA and the technique 
used here are the use of formality and the proving of 
safety, as opposed to showing freedom from failure. 
The formal methodology, where formal models arc 
compared with the actual system operations is also 
reminiscent of the hazard and operability studies 
(HAZOP) [21], where guidewords arc used to find pos- 
sible deviations of a design from its ‘intended’ use. 

We believe that the main contributions of this 
approach to hazard analysis are its systematic nature 
and its explication of all relevant assumptions about 
the system. The formalisation and proof activities also 
result in the identification of constraints on various 
aspects of the system analysed. 

Validation of clinical system safety property 

3. I Safety property 
The property that largely encapsulates the safety 
requirement under investigation can be stated infor- 
mally as 

the right results will be associated with the right 
patient at the right time 

The case study considered a slightly simpler problem 
by removing the temporal considerations from the 
safety property. The main aims of the case study were 
to use B to 
(a)  formalise the safety property 
(b) model the operations of the laboratory 
(c) prove the safety property from the specification of 
the laboratory. 
The clarification of the safety property was a major 
contribution of this case study. The basic idea behind 
this was the separation of the notion of core-analyser, 
modelling the component of the automatic analyser 
that performs the actual tests, from other functionali- 
tics of the automatic analyser, which, for example, is 
able to read the laboratory number that is bar-coded 
on the sample. 

The machinery corresponding to the core-analyser 
was not considered in the hazard analysis. The safety 
property could then be reformulated as 

the result of a test produced by the laboratory proce- 
dures is identical to the result of the application of 
the core-analyser to the contents of the sample and 
test requested 

In other words, the laboratory provides a collective 
core-analyser service to the requesting clinicians. The 
extension of this simple idea to the actual boundaries 
of the laboratory requires identification of all appropri- 
ate requests from various containers delivered to the 
laboratory. Each such request contains a sample, tests 
required on the sample and the patient identity. It also 
requires the explication and specification of a number 
of constraints that are expressed as properties of the 
relevant abstract machines. 

The laboratory is described in [16]. A full account of 
this case study appears in [22]. 

3.2 Specification and proof 
The laboratory system is formalised by a number of 
abstract machines declaring data structures and the 
constraints upon them, which are seen by an abstract 
machine Lab, formalising the safety property. This 
machine possesses one operation, labtest, which, for an 
input set of samples and test requests, specifies the 
effect of the automatic analyser and checks performed 
on the test results. Machines at this level arc all appli- 
cative; they do not have any state variables. 

A B implementation of Lab, Lab-imp was defined 
that corresponds to one operation cycle of the Labora- 
tory. Lab-imp has one operation labtest, which is a 
sequence of operations of imported machines specifying 
the individual laboratory procedures, from validation 
and numbering of request forms and samples on recep- 
tion, to performing the analyses and collecting the 
results of tests from analysers. Proof of the safety prop- 
erty is then a proof that Lub-amp correctly implements 
Lab. The B toolkit was used to generate this implemen- 
tation proof obligation. 

Although the toolkit was used to discharge some 
other proof obligations associated with the internal 
consistency of a number of specifications, the above 
safety property could not be discharged automatically, 
and user-assisted proof of the safety property could not 
be completed in the time allocated. A semi-formal 
proof of the safety property was, however, completed 
by hand. 
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3.3 Experiences from this case study 
The B technology forces a rigid discipline on many 
aspects of development. An obvious example is the dis- 
tinction in B between the constructs available within 
specifications and refinements. This proved problem- 
atic for the specification of laboratory operations, 
because of the need to use both high- and low-level lan- 
guage elements in the specification. The unavailability 
of the sequential operator at the specification level was 
a main cause of the problems encountered. For exam- 
ple, [16] mentions that the numbering of samples and 
request forms is performed in two consecutive stages. 
This cannot be specified in B. 

The specification of the safety property was perhaps 
the most successful aspect of the work performed. This 
was because the statement corresponding to the safety 
property was specified in the applicative subset of the 
notation. 

We found proof in the B framework to be easier and 
more accessible than in other comparable frameworks. 
The main reason for this was the set theoretic interpre- 
tation of notions of ‘function’ and ‘relation’. 

4 Prototyping a medical system 

This case study provided an opportunity to evaluate 
the facilities provided by the B method and toolkit for 
(a)  automatically generating a system with a prototype 
user interface 
(b) structuring implementations 
(c) proof of the correctness of implementations. 

4. I TANIT application 
Patients in intensive care are connected to various sen- 
sors, each of which monitors a particular aspect of the 
patient’s state. In addition, some patient samples are 
tested off-line There may be as many as 200 patient 
data items to monitor. Because these data are currently 
tracked largely by manual means, nursing staff have to 
carry out many clerical tasks. The telematics in anaes- 
thesia and intensive therapy (TANIT) project is devel- 
oping a pilot patient data management and clinical 
decision support system that will automate these proce- 
dures. 

The case study addressed a subset of this system, the 
renal status assessment module, which derives a 
number of renal parameters and their trends from 
monitored patient data. 

4.2 Renal subsystem specification and 
implementation 
The specification was constructed incrementally, mak- 
ing use of the B structuring constraints SEES and 
INCLUDES. A machine was defined, specifying the 
registration of basic patient data (such as name, 
weight, height, sex) to be used both by the renal sub- 
system and by other systems within the TANIT system. 
This machine was included in a machine that specified 
patient renal data and operations to monitor them. 
This machine, in turn, was included in a machine that 
calculated derived patient renal parameters and 
dynamic trends in these parameters from the monitored 
data. 

As non-negative integers are the only numbers primi- 
tive to B and implemented by standard library abstract 
machines, a machine was specified with operations to 
manipulate rational numbers implemented as pairs of 
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integers. This machine was made available to the renal 
subsystem machine through the SEES construct. 

The machine defining the rational type had to be 
implemented outside the B method, as an operation for 
taking the rational power of a rational number was 
required for the renal calculations. This operation, 
which cannot be fully specified within B, was imple- 
mented using a C routine. 

The renal subsystem was implemented directly by 
seeing the stateless rational type machine and import- 
ing only standard library machines. As a result, opera- 
tion implementations consisted of long series of calls to 
low-level library operations, making the writing of such 
implementations very error-prone. Because of the B 
toolkit memory limitations and the length of the imple- 
mented operations, the B toolkit was unable to gener- 
ate the implementation proof obligations, and so was 
of no help in checking the correctness of the implemen- 
tation. 

A scaled-down version of the case study was then 
reworked, and the development was restructured such 
that the implementation imported a number of user- 
defined machines, themselves implemented on standard 
library machines. In this way, the implementation cor- 
rectness proofs of the imported user-defined machines 
could be separated from those of the renal subsystem. 

4.3 Experiences from this case study 
The novel feature of this case study was the need to 
perform relatively sophisticated numerical calculations, 
which presented a problem because of the minimalist 
approach to numbers adopted by B. This meant that 
these operations had to remain underspecified, and cor- 
rectness proofs could not be given. 

In all but trivial applications, attention must be paid 
early to structuring the development in such a way that 
the implementation imports user-defined machines, 
which themselves are ultimately implemented on the 
library components. Much tedious and time-consuming 
work will have to be done, and duplicated, until stand- 
ard specifications and code for higher-level data struc- 
tures are made available. The provision of the base 
generator tool, which provides specifications and 
implementations for a number of standard entity types, 
is a step in the right direction. 

5 

The aim of this case study was to compare the abstract 
machine notation with that of VDM. The example cho- 
sen was a protocol used to ensure that there is no 
‘data-tearing’ as multiple processes simultaneously read 
and write to a buffer. The example had previously been 
formalised in CCS [23, 241. The VDM development, 
which considers a number of alternative data-models 
for the status flags, was mirrored in B. 

5. I Multiprocessor shared-memory 
information exchange 
The multiprocessor shared-memory information 
exchange (MSMIE) is a protocol that addresses intra- 
subsystem communications with ‘several features which 
make it ideally suited to inter-processor communica- 
tions in distributed, microprocessor-based nuclear 
safety systems’ [25]. It has been used in the embedded 
software of Westinghouse nuclear Systems designs. 

The protocol uses multiple buffering to ensure that 
no ‘data-tearing’ occurs, that is, it ensures that data are 

Comparison of VDM and B notations 
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never overwritten by onc process while being read by 
another. One important requirement is that neither 
writing nor reading processes should have to wait for a 
buffer lo become available; another is that ‘recent’ 
information should be passed, via the buffers, from 
writers to readers. In the simplification considered, it is 
assumed that information is being passed from a single 
writing ‘slave’ process, to several reading ‘master’ proc- 
esses. 

The information exchange is realised by a system 
with three buffers. Roughly speaking, at any time, one 
buffer is available for writing, one is available for read- 
ing, and the third is either in between a write and a 
read and, hence, contains the most recently written 
information, or is between a read and a write and so is 
idle. 

The status of each buffer is recorded by a flag that 
can take one of four values 
(i) s: ‘assigned to slave’. This buffer is reserved for writ- 
ing; it may actually be being written at the moment or 
just marked as available for writing. 
(ii) m: ‘assigned to master’. This buffer is being read by 
one or more processes. 
(iii) n: ‘newest’. This buffer has just been written and 
contains the latest information. It is not being read at 
the moment. 
(iv) i: ‘idle’. ‘This buffer is idle, not being read or writ- 
ten and not containing the latest data. 
The names of the master processes that are currently 
reading are also stored in the state. 

The slave and master processes that access the buff- 
ers in parallel are not modelled; rather, the analysis 
concerns only the operations that modify the buffer 
status flags. These operations are protected by a system 
of semaphores that allows each operation uninter- 
rupted access to the state, and thus their behaviour is 
purely sequential. 

f a )  s h e :  this operation is executed when a write fin- 
ishes. slave sets the status of the buffer that is being 
written to ‘newest’, thus replacing any other buffer with 
this status. 
(6) acquire: this is executed when a read begins. The 
new reader name (passed as a parameter) is added to 
the set of readers, and status flags are updated as 
appropriate. 
(c)  release: executed when a read ends, this removes a 
reader from the set and updates flags as appropriate. 
The precise behaviour of the operations is rather intri- 
cate and space does not permit us to describe them fur- 
ther here. The reader is referred to [26] for a detailed 
description of this case study; however, a summary of 
conclusions drawn from the comparison are given 
below. 

There are three of these operations 

5.2 
The system was described at several levels of abstrac- 
tion in both VDM and B, and formal data refinements 
were defined between levels, although there was no 
algorithm development. In this small example, there 
was little scope for the effective use of structuring of 
specifications that is one of the major features of the B 
method, neither was the use of proof explored to any 
great extent. Comparison of these two formal develop- 
ments highlighted three areas where the notations dif- 
fered. 

Experiences from this case study 

5.2, I Invariants: The definition of the state was cen- 
tral in this example. In both notations, the pivotal 
specification was the one where multiple buffering was 
introduced, and, at this level, the state invariant played 
a key role in conveying an understanding of the system 
by defining reachable values of the state and, hence, 
liberating the designer from having to consider other 
cases. 

However, the role of state invariants in operation 
definitions differs in VDM and B. In B, post-conditions 
(in the form of generalised substitutions) have to be 
written so as explicitly to ensure the maintenance of the 
invariant. In VDM, the state invariant is effectively 
part of the state typing information and, as such, is 
implicitly assumed to be maintained by the operation. 

VDM’s implicit maintenance of the invariant leads to 
a choice as to how much of the information that can be 
deduced from the invariant is repeated in a post-condi- 
tion. The example showed that there is often some ten- 
sion between the most concise form that relies on 
properties of the invariant for its correctness, and a 
longer, but more explicit, form that includes some 
redundant information. This choice can be seen as an 
opportunity to prove the stronger forms from the 
weaker. Which form is chosen may make a significant 
difference to the complexity of the proofs: the form 
that most clearly conveys the information may not be 
the form that will be most usable in proofs. Indeed, the 
stronger form is more likely to be helpful when the 
specification is being proved to be a reification of 
another, and the weaker form may be more helpful 
when it is itself being reified. 

In the B notation, on the other hand, operations are 
written so as to imply the preservation of the invariant. 
This style provides the opportunity to prove that the 
operation does indeed do this; however, it can encour- 
age a tendency to describe how the invariant is main- 
tained, which may lead to less abstract specifications. 

5.2.2 Operation definitions: The greater program- 
matic feel of the B notation is reinforced by the use of 
generaliseci substitutions, as opposed to VDM’s rela- 
tional post-conditions. Although the two forms have 
the same expressive power, in some cases, we found it 
convenient to give greater algorithmic detail in the B 
version. This would appear to imply that the B nota- 
tion is more useful for the development of algorithms. 
Indeed, the process of operation decomposition has 
been given greater attention in the B method than for 
VDM. In contrast, VDM’s relational post-conditions 
perhaps give a greater facility for non-algorithmic spec- 
ifications of complex operations. 

5.2.3 Framing: Both notations give syntactic devices 
for specifying the frame of reference for operations. In 
VDM, the read and write frames are given explicitly in 
an operation definition, whereas, in B, the variable 
accesses are implicit in the form of the generalised sub- 
stitution, but are made explicit at the machine level 
through the semi-hiding and full-hiding involved in the 
various forms of machine structuring. 

In VDM operations, the semantic role of the read 
frame is often underplayed. Typically, it is interpreted 
as merely providing syntactic scoping for variables 
appearing in the pre-condition or post-condition. Alter- 
natively, it can be interpreted as a constraint on imple- 
mentations, restricting which state components can be 

IEE Proc -Softw Eng , Vol 144, No 2, April 1997 I24 



read. Thus, rather than think of the externals clauses as 
giving information about the variables mentioned in 
the specification, we see them as giving details of what 
access to state variables an implementation of that oper- 
ation can be allowed to make. (See [27-291 for further 
discussion of his point.) 

In B, similar restrictions can be given through the 
hiding principles inherent in the different forms of 
machine structuring. For instance, where, in the more 
concrete VDM specifications, we are able to narrow 
the read frames, in their B counterparts, there is a 
potential to structure the overall machine. 

The above three areas are where our experiment sug- 
gested that the notations of VDM and B encourage dif- 
ferent specification styles. Each style has its own 
advantages at different stages of the development proc- 
ess. In this example, we found that the process of 
developing implementation code was better addressed 
in abstract machine notation. However, we also found 
VDM’s relational post-conditions more convenient for 
expressing wholly implicit specifications of operations, 
particularly when the data model involved complex 
interdependencies. 

6 
system 

This case study was motivated by a desire to relate for- 
mally (part of) a Z specification of generic graphical 
kernel system (GKS) [20] operations to a set of C lan- 
guage bindings for those operations. The approach 
chosen was to ‘transliterate’ the Z specification into 
abstract machine notation, with the aim of subse- 
quently refining the top-level abstract machines to the 
stage where the data structures and algorithms could 
be mapped directly onto C. 

In the first phase, that of translating Z to B, it was 
considered important that the B should bear a strong 
resemblance to the original Z specification, even where 
this went against the style guidelines emerging from 
other areas of the B user trials project. This iconoclas- 
tic approach raised many problems, both anticipated 
and unexpected. In the subsequent refinement, another 
attempt to break with ‘B tradition’ led to further prob- 
lems. 

Specifying and refining the GKS attribute 

6. ’I GKS specification 
In the GNS standard (and draft revision), GNS func- 
tions are defined using Z in abstract terms on abstract 
data types. Language bindings are defined for these 
functions for C and FORTRAN. 

Though many of the language bindings are 1-1 (each 
abstract function has a direct binding counterpart), for 
practical reasons there are often additional bindings, 
where a single abstract function is implemented by a 
set of concrete functions. 

The GKS primitive attributes are state parameters 
that affect the behaviour of graphics output operations. 
For example they govern the style of line-drawing to be 
used, or the current text font. Primitive attribute values 
are drawn from a type PrimAttr Value, which is defined, 
like a Z free type definition, as a disjoint union of all 
the possible attribute value types 

Prim,AttrValue :: = m a r k e r t y p e ~ ~ ~ a r L e r T y p e ) )  

I markerind(( Marker Ind))  
I . . .  

The state of the attributes is then modelled as a map 
from attribute names to this union type, such that each 
attribute name is associated with a unique (injected) 
type. The use of a single large union type is a specifica- 
tion artefact that makes it possible to define a single 
schema SetPrimAttribute, specifying the operation of 
updating any attribute value, as opposed to a family of 
operations, one per attribute. The schema takes a single 
input, the new value; there is no need to supply the 
attribute name as this can be inferred from the type 
injector of the argument. 

This specification has a fairly direct counterpart in C 
using unions and structures; however, for practical 
reasons, it is more convenient to define the language 
bindings as a family of C functions, with separate 
update functions for each primitive attribute. 

The intention in this case study was to develop an 
analogue of the Z specification in B, then refine this 
using a set of single-attribute machines and develop 
these machines to the stage where it would be feasible 
to produce C code conforming to the GKS language 
bindings. In practice, the problems encountered in 
achieving the first step took up the majority of the 
available time, so that the subsequent stages were less 
well developed, and a separate intention of extending 
the specification to cover more of the original GKS 
specification was never realised. 

6.2 Specifying ’really abstract’ machines 
The greatest difficulty in ‘transliterating’ the Z specifi- 
cation into B arose in handling free-type definitions. A 
Z free-type definition corresponds most closely to a 
property-specified set definition in B. 

The first problem is that, whereas Z uses a special 
notation for free-type definitions, in B we are forced to 
‘unfold’ the notation and expose the underlying struc- 
ture, including, for example, the predicate describing 
the induction property for the specified set. This means 
that the resultant machine looks less elegant than the 
original Z. 

The second, more serious, problem encountered is 
that much of the automated technology of the B toolkit 
is not suited to dealing with property-oriented specifi- 
cations. Consequently, the designer of a machine based 
on free types must also expend some effort in develop- 
ing a new theory to assist in the discharging of proof 
obligations and a separate theory to support simplifica- 
tion of free-type-valued expressions during animation. 
Without this extra work, neither autoproof nor anima- 
tion yields useful results. 

On the positive side, it was possible to use B structur- 
ing to develop separate ‘stateless’ machines for each 
type definition and to use subsequently these machines 
in the final state-based machine. B structuring rules are 
stricter than those for Z’s schema calculus, and so it is 
no surprise that not all of the structure of the Z specifi- 
cation could be reflected in the B structure. In this case 
study at least, this was not considered a drawback. 

The top-level machine includes the stateless machine 
defining the free type PrimAttrValue (as well as the set 
of PrimAttriVumes) and, following the Z specification, 
has a map from names to values as the single state var- 
iable. The use of such a ‘monolithic’ state variable 
forced us to use qome inelegant syntax for state initiali- 
sation. At first sight, it would seem natural to define 
the initial value for this map using a parallel combina- 
tion of nondeterministic substitutions, e.g. 
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attrs ( M A R K E R T Y P E ) :  E ran markertype 1 1  
a t t r s ( M A R K E R I N D )  :E ran marlcerind 1 1  

(this would be the weakest initialisation ensuring the 
invariant that the value associated with each attribute 
name is drawn from the appropriate type). However, 
this breaks a syntactic well-formedness condition in B 
that the written variables of a parallel substitution must 
be disjoint, as the single state variable attrs is being 
modified in each clause. Consequently, it is necessary 
to resort to a considerably less elegant form involving a 
nondeterministic choice using the ‘ANY ... WHERE ...’ 
construct 

ANY mkty, mkind, ... WHERE 

... 

mkty E ran markertype A mkind E ran markerind A ... 
THEN 

attrs := {MARKERTYPE mkty, MARKERIND H 

mkind, ...} 
END 

This circumlocution stems from the over-strictness of a 
purely static syntactic condition on independence of 
parallel substitutions. This is perhaps surprising given 
that the use of map-valued states occurs in many 
‘standard’ B examples. In this particular case, as the 
constants MARKERTYPE, ... are distinct, it should 
have been possible to determine that the first construc- 
tion is non-interfering parallelism by purely static anal- 
ysis. Alternatively, a more general approach would 
defer determination of independence by generating an 
appropriate proof obligation. 

We note that much of the work done in ‘transliterat- 
ing’ the Z free-type definition to a B property-specified 
set could have been automated, as could the generation 
of the proof and animation theories. This could be 
automated in the same manner as the BASE constructs 
already present in the notation, although to do this 
would require access to the internal structure of the B 
toolkit and would be a task for the toolkit developers 
rather than its users. 

6.3 Interface refinement 
The next phase of the case study was to develop a 
family of abstract machines, each managing a single 
attribute. The ability to use both value and type (set) 
parameters in abstract machines made this stage 
simple: a single generic machine was defined, analysed 
and proved self-consistent. 

We wanted to use these machines to construct 
another machine, presenting the same interface and 
behaviour as the machine using a single map-valued 
state, and then, ‘VDM fashion’, to construct a refine- 
ment that effectively linked this machine to the ‘Z-level’ 
machine. However, it was not possible to construct 
such a machine in its own right. 

The arguments and results of the original Z specifica- 
tion’s operations, and therefore in the top-level abstract 
machine, are expressed in terms of the free-type defini- 
tion PrimAttr Value, whereas the arguments and results 
in the individual machines are in terms of the type of 
each individual attribute. In constructing the second- 
level machine from these machines, it is necessary to 
extract the specific argument type based on the injec- 
tion function used for the PrimAttr Value, then supply 
this value to the appropriate attribute machine opera- 
tion, obtain its result and apply the same injection 
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function to that. For example, the getPrimAttr opera- 
tion in the second-level machine would have the form 

vu1 - getPrimAttribute(name) = 
PRE name E PrimAttvName 
THEN 

IF name = MARKERTYPE THEN 

vv - markertype-attr.enq; 
vu1 := markertype(vv) 

VAR vv IN 

END 

VAR vv IN 
ELSIF name = MARKERIND THEN 

vv - markerind-attr.enq; 
vu1 := markerind(vv) 

END 
ELSIF ... 

The need to obtain a value from an operation invoca- 
tion and to ‘wrap’ subsequently an injection function 
around that value meant that it was necessary to use 
sequential substitutions. However, sequential substitu- 
tions cannot be used in machines, only in refinements 
and implementations. Consequently, it was not possible 
to separate the second level of the design into a 
machine in its own right and a separate refinement 
relating it to the first-level machine. 

6.4 Experiences from this case study 
The outcome of this case study is mixed. On the one 
hand, the B toolkit provides a level of integration of 
formal development support that is very significant. It 
is possible to develop reasonably abstract specifications 
of a system in a structured manner, to derive and 
attempt to discharge self-consistency obligations, and 
to animate the specification to determine its fitness for 
purpose. It is also possible to construct and justify 
refinements of specifications and to develop them to 
the stage where code can be generated automatically 
although this was not realised in this case study. This is 
an impressive achievement, well worthy of credit and 
attention. 

On the other hand, this case study also revealed a 
number of areas in which we found that either the 
notation or the tool support was unsatisfactory [31] 
and, hence, consumed much of the available time. In 
particular, the poor support for free types and non- 
interfering concurrency caused problems. In many 
ways, much of our dissatisfaction is, in a way, our own 
fault, for we have knowingly strayed outside the 
‘accepted envelope’ of B style. Nonetheless, it should 
have been easier to make the transition from Z to B. 

7 

The B method advocates that specifications are refined 
until they are sufficiently concrete to support the auto- 
matic generation of code in the desired programming 
language. The resulting code is regarded as an interme- 
diate representation, in itself of limited value to the 
overall process. Correctness is dependent upon the con- 
struction of mathematical proofs of the refinement 
steps. In another study within the B user trials, we 
investigated the refinement of programs to a machine- 
level language [32] and the support for the process of 
proof of the verification of the refinement steps. 

From B to SPARK: a case study 
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A further concern in the construction of high-integ- 
rity software using the B method centres on the implicit 
trust in the automatic code generator. No provision is 
made for the verification of the transformation from 
the lowest-level B design to the program code. In prac- 
tice, the correctness of this transformation is estab- 
lished by generating object code with a compiler and 
testing it against the system requirements. Current 
standards for the development of safety-critical soft- 
ware require additional verification effort beyond 
requirements-based testing. For this reason, to verify a 
product to the required standard, it is necessary to 
work directly with the program code to identify the 
additional test cases required to ensure an acceptable 
test coverage; to ensure data flow properties are sound; 
to demonstrate the absence of run-time errors in each 
subprogram; and even simply to review the code by 
reading it. Such activities clearly require the code to be 
constructed in a manner that makes it readily under- 
stood and analysed. This is difficult to achieve with an 
automatic code generator. 

For this study, we investigated the manual transfor- 
mation of a low-level B design into a subset of the Ada 
language, such that the resulting Ada program would 
support dynamic test, review and static analysis. The 
study centred on a simplified autopilot specification, 
and the SPARK subset of Ada was used for the imple- 
mentation. SPARK [33] is designed specifically for use 
in high-integrity applications. It is supported by a 
formal definition and meets the requirements of current 
standards for safety-related software. The study is 
reported in full in [34]. 

7.1 Autopilot specification 
The autopilot has two functions: altitude hold and 
heading hold. When altitude hold is selected, the auto- 
pilot ensures that the aircraft maintains the present alti- 
tude. When heading hold is selected, the autopilot 
turns the aircraft onto the heading selected by the pilot 
and then maintains that heading. These two functions 

can be selected independently. The autopilot is control- 
led via a control panel that allows the pilot to select the 
various functions of the autopilot, as well as to switch 
it on and off. The autopilot ‘reads’ the flight instru- 
ments (the altimeter, airspeed indicator, etc.) and 
‘moves’ the control surfaces (the ailerons, elevators and 
rudder) to ‘fly’ the aircraft. 

A total of 27 abstract machines were defined to con- 
struct the B specification of the autopilot. Fig. 2 shows 
the hierarchy of those machines, with internal state or 
state-changing operations formed by the use of 
INCLUDES. Other auxiliary machines were required, 
for example to define the control surfaces and control 
operations. 

A partial refinement of the autopilot specification 
was performed, parts of which were taken down to the 
level of an implementation (although we did not 
attempt to generate code). It is interesting to note that, 
as a result of a restriction preventing the use of shared 
constants, the refinement forced some further structural 
changes to be made to the specification. This has an 
important consequence for the development of specifi- 
cations in a functional style: wherever possible, sets and 
constants (including functions) should be defined in 
separate machines from variables. 

7.2 Package structure of SPARK 
implementation 
The first choice to be made when making the transition 
from B to SPARK is how to convert the B structure, a 
set of machines, into the SPARK language, whose 
principal unit of structure is the package. A simple 
scheme for mapping a set of B machines into SPARK 
packages was adopted 
(a) Each machine is mapped into a separate package. 
(b) INCLUDEd machines are mapped into nested 
package declarations. For example, if the machine MI 
INCLUDES M2, then the package corresponding to 
M2 is declared inside the body of the package corre- 
sponding to MI. 

top-level machine 

performs altitude hold 

pitch autopikt 

maintains state for 
m-r* - 
 elevators 

p e r f m  heading hold 

roll autopilot 

maintains state for 
roll-ratecalculations 

controls ailerons 

yaw autopilot 

maintains state for 
yaw-rate calculations 

controls rudder 

user switches controlling autopilot 

input from instruments 

Fig. 2 
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(e)  Packages corresponding to SEEn machines are 
declared inside the body of the highest-level package 
that provides the required access. Commonly, this is 
the package corresponding to the highest-level SEEing 
machine, but, where there is more than one such 
machine, a common ancestor may need to be used. 
Nested packages in Ada allow a package to be visible 
only where it is required. In SPARK, they may also be 
used in conjunction with state refinement (using the 
‘own variable clause’) to ensure that information flow 
between operations is described at the appropriate level 
of abstraction. It is usually good practice to define, at 
the outermost level (the library-level), any packages 
that represent external system interfaces, even if their 
visibility is only required in one part of the code. In B, 
we generally find that an abstract machine describing 
an external interface ends up at the ‘bottom’ of an 
INCLUDES chain, because it has its own internal state 
but its operations do not change the state of any other 
machine. Therefore we extended the B-SPARK map- 
ping scheme by adding a further rule 
(d) machines representing external system interfaces are 
mapped into library-level SPARK packages. 
In SPARK, it is also necessary to consider the annota- 
tions (formal comments) used by the examiner to check 
conformance to the static-semantic rules of SPARK. 
At a package level, SPARK requires an own-variable 
clause to identify package state variables, where 
present. The own variable of a package enclosing one 
or more embedded packages must represent the overall 
state of the outer package, including the embedded 
states. This is done in SPARK using own-variable 
‘refinement’. To support flow analysis of state varia- 
bles, SPARK also requires an initialisation clause to 
identify any package whose body initialises its state 
variable(s). These may be identified from the INITIAL- 
ISATION part of the associated B machine. 

In the autopilot implementation, this approach 
resulted in the top-level autopilot state being refined in 
terms of the states of autopilotcontrols, altitude and 
heading. In turn, heading’s internal state was refined in 
terms of those of roll and yaw, and so on. It is interest- 
ing to note that we had to make use of our insight into 
the system requirements to arrive at the final package 
structure for the autopilot, in particular to extract 
external interfaces and collect together ‘related’ 
machines. It is likely that an automatic code generator 
would have to adopt a more ‘naive’ approach, resulting 
in a less understandable SPARK program. 

7.3 Operation refinement into SPARK 
Once the most appropriate SPARK package structure 
had been determined, the outline of these packages was 
coded, with B operations mapped into SPARK proce- 
dures (or functions if they return a simple result and 
are free of side-effects). Functions in B that have not 
been refined into operations would also be mapped 
into SPARK function definitions. At this stage, appro- 
priate SPARK annotations would be added to each 
procedure or function specification, enabling the 
SPARK examiner to carry out the static semantic 
checks to ensure conformance to SPARK. Annotations 
for information-flow relationships, which would be 
derived from an understanding of the B description of 
the system, would be checked for consistency by the 
examiner. 
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With this manual approach to transition from B to 
SPARK, there remains the possibility of additional 
design work being carried out in SPARK. Specification 
information can then be entered as SRARK proof con- 
texts, and the SPARK examiner can be used to gener- 
ate proof obligations. In particular, a restricted form of 
verification, not directly addressed by the B toolkit but 
of key concern for high-integrity program development, 
is the proof of the absence of run-time errors, such as 
subrange violation. With the SPARK toolset, proof 
obligations associated with the relevant statement and 
expression for forms are generated automatically. 

7.4 Experiences from this case study 
The autopilot system is a reactive system, with rela- 
tively few state data and no complex invariants. Its 
main purpose is continuously to adjust the system out- 
puts according to its current inputs. For this a func- 
tional style of specification was fairly natural, and it 
made the transition to SPARK relatively straightfor- 
ward. However, many safety-critical systems have these 
characteristics, and a similar approach is likely to be 
appropriate again. 

In this study, we demonstrated that it is possible to 
produce a well-designed and easily understood SPARK 
implementation from a well-presented B specification, 
in a manner that allows relatively straightforward com- 
parison between the two. A number of proposals were 
made to guide the transition from B machines and 
operations to SPARK packages and subprograms and 
the use of B invariant and initialises clauses in deter- 
mining SPARK own-variable annotations. We also 
investigated how pre- and post-conditions can be 
entered as SPARK proof contexts allowing verification 
of any further design changes, and how it is possible to 
support a proof of the absence of run-time errors 
through the use of B invariants. 

A significant issue in making the transition from B to 
SPARK is determining how far we should first refine 
the B specification. Our experience suggests that to per- 
form some refinement of the specification into a design 
makes the eventual transition easier. In particular, the 
following activities should be carried out: 
(a)  algorithmic refinement of the specification to 
remove parallelism and any non-determinism 
(b) data refinement to a point where the B data types 
have an obvious SPARK counterpart; for example, to 
replace sets by sequences, which can be implemented as 
arrays. 
However, we found that it was not useful to refine the 
entire specification down to the level of a B implemen- 
tation before making the transition to SPARK. Doing 
this would require all explicit state variables to be 
replaced by B toolkit library machines; as these are 
very low-level building blocks, this approach tends to 
result in a more fragmented code and data structure 
than would naturally be written in SPARK. 

The overall aim should be to reduce the gap between 
the refined B and the SPARK code, such that the gen- 
eration of SPARK code becomes a transcription exer- 
cise that can be verified by inspection. The SPARK 
code should be readily understandable in its own right, 
for the benefit of subsequent activities such as review, 
test-case generation, maintenance etc. 

It is significant that we had to make use of our 
insight into the system requirements to arrive at a suit- 
able program structure (in particular to extract external 
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interfaces and collect together ‘related’ machines). Such 
improvements to the design would be difficult for an 
automatic code generator to perform. 

8 Proof using B toolkit 

This strand of work in the B user trials project investi- 
gated the facilities for proof provided by the B toolkit. 

8. I Proof support in B toolkit 
A guiding principle in the design of the B method has 
been to make practical the proof of internal consistency 
of specifications and the correctness of their refine- 
ments. Thus the structuring mechanisms in the B 
method decompose the overall proof task into smaller 
proof tasks in a compositional fashion. The verification 
of a development is based on the generation and dis- 
charge of a number of proof obligations that together 
ensure consistency and correctness of design. 

Within the B toolkit, proof is performed in a cycle of 
automation and interaction, given diagrammatically in 
Fig. 3. First, the autoprover is used to discharge obliga- 
tions using the built-in rulebase. Then the user browses 
the remaining un proven obligations and selects one to 
analyse. The leaves of its failed proof search tree are 
examined, and the user selects a leaf that is believed to 
be valid. This is asserted as a lemma that proves the 
selected proof obligation. Lemmas thus generated are 
then proved interactively, using the interprover, by 
adding rules to the user’s rule set. This cycle is repeated 
on other obligations as desired. The proof obligations 
are then discharged when the autoprover is run again. 
This cycle is repeated until all the proof obligations are 
discharged. Each iteration of this cycle introduces a 
new ‘level’ of user theory, thus allowing the addition of 
only those rules that are necessary to prove the current 
obligations. 

Automated proof is based upon a large rulebase of 
built-in rules and associated control tactics. This rule- 
base is not normally visible to the user, but rather pro- 
vides a number of ‘hooks’, whereby user rules for 
forwards and backwards proof are called from the 

automatic process. For the purposes of this project, the 
internal structure of the built-in rulebase was investi- 
gated in greater detail than is normally required 
[Note 31. Within the rulebase, rules are organised into 
‘theories’, linear collections of rules that are searched in 
sequence. Each rule can include a tactic call that directs 
the prover in the proof search, including tactics that 
encode the dependencies between rule sets. Thus the 
theories are not logical theories in the usual sense, as 
they are characterised by their use in proofs rather than 
logical form and provide a control strategy for guiding 
the automatic proof. 

8.2 Investigations into proof process 
We compared proof facilities in the B toolkit with the 
Mural system [35] in its instantiation for VDM [37] on 
a small but non-trivial refinement and proof. The sys- 
tems are comparable as both support fully formal 
development in the model-oriented style, including 
specification, refinement and proof; both support the 
‘posit and prove’ approach, separating out the develop- 
ment of specifications, proof obligations and proofs; 
and both make use of extensive ’base theories’ of proof 
rules supplied with the system and allow for the devel- 
opment of ‘user theories’. However, the two systems 
differ markedly in their mechanisms for constructing 
proofs and maintaining the theory store. A fuller dis- 
cussion of this work can be found in [38]. 

8.2. I Automated search: Although both systems 
automatically generate proof obligations, their 
approaches to discharging them differ radically. The B 
toolkit aims for a highly automated approach with user 
intervention when necessary: the autoprover discharges 
a percentage of the proof obligations immediately, 
using an optimised search strategy based on the 
arrangement of the rulebase as discussed above. This is 
highly effective, especially on the more trivial and unin- 
teresting obligations, typically involving the proof of 

Note 3: The source of the rule base was made available courtesy of B- 
Core (UK) Ltd 

--c 4 proof obligations add user rules 

fail 

fail 
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obligations 
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Fig.3 Proof cycle in B toolkit 
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type assertions. However, when it fails, user interven- 
tion is not well supported. 

In contrast, in Mural, the basic mode of proof is 
highly user-driven, with only minimal automation 
available. The search is user guided; machine search for 
applicable rules is available and effective, but the user 
controls how much of the current context is considered 
in the search. The user gains insight into the proof, but 
this step-by-step proof process is time consuming. 

8.2.2 Reuse of user theories: In the B toolkit, 
when the autoprover fails to prove obligations, the user 
is invited to intervene to prove the remaining obliga- 
tions. This is carried out by adding new rules into a 
user theory file. The rules that the user defines fall 
broadly into three categories: rules that are specific to 
the current machine; generic rules that define user- 
defined functions; and rules that give additional prop- 
erties of the built-in operators. The first are useful only 
in the current machine, the second are likely to be gen- 
erally applicable to the application domain in hand, 
and the third are likely to be re-usable in all domains. 

However, the B toolkit does not encourage the easy 
re-use of user defined rules, as user theories are specific 
to the lemma currently being proved and so cannot be 
re-used for other proofs. The rulebase is opaque so the 
user cannot see what rules have already been defined 
and avoid duplication, or insert rules into the rulebase 
in their ‘logical place’, grouped with similar rules. The 
#include facility of the B toolkit can be used to enable 
re-use, whereby libraries of rules are constructed inde- 
pendently in files and imported into user theories as 
required. However, this is a rather ad hoc method that 
is awkward to use and poorly documented. 

This contrasts with the transparency of the Mural 
system. The user can browse existing theories, adding 
rules to them to cover perceived deficiencies. Further, 
for application-specific functions, user libraries can be 
added into the hierarchy of theories, inheriting base 
theories as appropriate. Thus users can build up a re- 
usable library to support their own application 
domains. However, as proof is performed by hand, typ- 
ically tactics are not introduced to integrate new rules 
into the search procedure. 

8.2.3 Proving lemmas: In the B method, it would 
be desirable to add user defined rules as lemmas and 
give separate proofs to verify them. However, only 
those lemmas that are conjectured by the toolkit can be 
proven. User rules are assumed to be valid and are not 
verified. This is potentially a dangerous facility as 
inconsistent rules can easily be added. 

To synthesise the proof of lemmas, it is possible to 
fabricate a rule similar to the desired lemma in such a 
way that it will be proved each time it is applied. This 
requires building a statement of the rule as a premise of 
the rule itself. Then, when the rule is applied in a back- 
wards proof, the rule becomes a sub-goal and is then 
proven by the system. This method is valid, since the B 
method uses classical logic, and the deduction theorem 
holds, but it is clearly unsatisfactory. 

Again, we contrast with the Mural system, where 
new rules are either marked as being axioms or derived 
rules. Clearly axioms need no proof, and the user risks 
inconsistency. The use of derived rules is preferred, and 
they are marked as unjustified until a separate proof is 
given for them. These derived rules can be used in 
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proofs before they are proven, and the system main- 
tains a record of dependencies between proofs. 

8.3 Experiences from this case study 
Although formal specifications are increasingly being 
used in industrial systems development, few are using 
formal proof to any great extent. Proof is perceived as 
an expensive and highly specialised task that is justifia- 
ble only in the most safety-critical applications. The B 
toolkit does, however, support an approach to deriving 
proof that is reasonably effective. The autoprover often 
works well to discharge automatically a significant per- 
centage of proof obligations. However, large-scale 
development may generate several hundreds of proof 
obligations, and, even if the autoprover discharges, say, 
80% of them, this still leaves very many remaining to 
be considered by user intervention. For interactive 
proof, the B toolkit was found to be in need of 
improvement and the example of the Mural system was 
instructive. 

We propose the following suggestions for improving 
the B toolkit’s approach to the development of proof in 
the software development cycle. 
(a)  User viewing: clarity and openness of the rulebase 
are essential in a user-directed proof in order for the 
user to guide the system in the use of existing rules and 
to allow inspection and analysis of the rulebase to 
establish confidence in its consistency. 
(b) Aiding the autoprover: as the proof cycle alternates 
between automated and interactive proof, inevitably, it 
is necessary for the user to help the autoprover by sup- 
plying appropriate rules and tactics. These are cur- 
rently added though a number of predefined ’hooks’, 
whereby user defined tactics or rules can be called. It 
would often be more convenient to be able to modify 
the existing rules and tactics in situ. 
(c) Re-use of rules: to ease the discharge of large num- 
bers of obligations, it is necessary to be able to build 
libraries of user-defined rules that can be re-used, 
rather than regenerated, as needed. These rules also 
need to be to be proven themselves to ensure that 
inconsistency is not introduced. 
(d) Efficient search: the B toolkit already provides an 
efficient search for its autoprover using its base rules. It 
would be helpful, in addition, to provide a search facil- 
ity to help the user browse the proof space in the inter- 
prover. 
(e) Managing change: the machine needs to recognise 
dependencies between the formal objects to maintain 
the integrity of the system. In a development environ- 
ment specifications are continually evolving. When a 
modification occurs, the system should, to a large 
extent, be able to re-establish the consistency of proofs 
without intensive user involvement. 
(f> Graceful failure: when a machine proof fails and 
control is returned to the user, it is worthwhile making 
an effort to ‘fail gracefully’ and present the current 
state of the proof in a form that will aid understanding 
of why the failure has occurred and how best the user 
can intervene to proceed with the proof. 

9 Overall conclusions 

9. I Methodology 
The B abstract machine notation provides a semanti- 
cally strong, formally based development methodology 
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supporting stepwise refinement with a rich modularisa- 
tion mechanism. The structuring mechanisms provided 
yield a highly compositional approach to development 
and proof construction, such that the validity of imple- 
mentations and proofs is maintained when specification 
components are used in larger structures. However, this 
underlying quest for compositionality does lead to 
some constraints that can be restricting in software 
development: 

9. I. 1 Machine structuring: The structuring mecha- 
nisms provided impose a rigid discipline that may cause 
problems for developers accustomed to other method- 
ologies, such as VDM or Z. In particular, an object- 
based style of architecture is prescribed for implemen- 
tations in which only scalar values (object identifiers) 
are passed between operations. A less prescriptive 
method is likely to be more effective for data-rich 
structured analysis and design. 

The static nature of the machine structuring required 
to enable proof decomposition imposes constraints on 
the possibilities for system decomposition. For examo- 
ple, a multiple-read, single-write discipline is required 
for machine inclusion. 

9.1.2 Language: Some useful constructs are not 
available; for example, record types had to be imple- 
mented algebraically and there is little support for 
numerical calculations. Furthermore, there are addi- 
tional restrictions on the use of certain constructs, such 
as sequencing in abstract specifications. 

The untyped logic leads to a uniform treatment of 
proofs of typing and other obligations; however, this 
merges different aspects of verification that could well 
be better separated. In particular, many proofs are 
required that would be part of the type checking in a 
typed language and would thus never arise as proof 
obligations in that setting. 

The requirement for operations to maintain the 
invariant explicitly, while providing an opportunity to 
prove the internal consistency of a machine, does tend 
to encourage a less abstract definition of operations. 
Furthermore, the use of generalised substitutions and, 
in particular, the programmatic syntactic sugars, 
focuses attention on algorithm development. 

9.1.3 Refinement and implementation: 
Although we were able to conduct refinements success- 
fully, it was not considered the best use of resources 
blindly to attempt to refine to code and prove a whole 
specification. Rather, some enlightened focusing of 
resources on areas where greatest attention is merited is 
beneficial. 

The standard library machines to which implementa- 
tions must ultimately be targeted are rather low level, 
and so the use of the code generation facilities incurs 
the overhead of adjusting specifications and develop- 
ments towards implementations on target machines 
manipulating simple data structures. These machines 
and their implementations should also be proved cor- 
rect, once and for all, by the developers of the B 
method and tools. 

In code generation, it was not always the case that 
the desired program structure was that that arose from 
the code generation. However, this may well always be 
a problem with automatic code generation. 
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9.2 Tools 
The B toolkit provides a rare breadth of support for 
formal development. It combines facilities for the con- 
struction of structured abstract specifications, their ani- 
mation and the proof of their internal consistency, with 
support for verifiable data refinement and operation 
decomposition through a combination of interactive 
and automatic proof and the ability automatically to 
generate code from low-level specifications. 

At the time of this evaluation, however, there were 
some shortcomings in the toolkit that caused us prob- 
lems: 

9.2. I Specifications: The tool support was at best 
slow for large specifications and, for our largest specifi- 
cations, the proof obligation generation and autoproof 
tools appeared not to terminate. Naturally, this might 
also be attributed to a failure on the user’s part to 
structure the specification sufficiently. The facilities for 
multi-person development were also rather restrictive. 

9.2.2 Animation: The animation support was an 
extremely useful and successful means of validating and 
debugging our specifications. However, it could be 
improved by the provision of a greater library of sim- 
plification rules as, presently, the user has to provide 
many rules to aid the simplifier. It would also be help- 
ful if the support for animation were extended to 
refinements and implementations. Another useful facil- 
ity would be support for a ‘batch’ style of animation to 
enable the running of test suites. 

9.2.3 Proof: Compared with some other proof tools, 
the proof support provided by the B toolkit is relatively 
accessible, and it was quickly possible to begin success- 
ful proving. However, in the long term, the approach is 
limited by its prescriptive style and opacity. For exam- 
ple, the built-in rules that are provided for the basic 
constructs of the language are not available for inspec- 
tion. Thus, when the proof fails, it is unknown whether 
this is because of a shortcoming in the logic of the rules 
or the tactic for constructing the proof. 

There is no direct support for building a structured 
collection of user rules, and thus a naive user would be 
required to add the same rule to many user theories. 
Neither is it possible to build a multi-level justification 
of a rule. Rules added by the user are treated as axioms 
and are not subject to proof themselves. There is also a 
lack of integration of rules between different aspects of 
the toolkit. Sometimes, the same definition had to be 
entered three times, as a definition in the specification, 
as a rule in the animation theory and as another rule in 
the proof theory. 

For these and other reasons, many proof obligations 
remained unproven, and it is likely that B will be used 
primarily for its ability to provide tool-supported for- 
mal specification, development and code generation 
facilities, while proofs are either left unattempted, per- 
formed only at the most abstract specification level, or 
only for small critical system subcomponents. 

Further discussion of the B method and toolkit can 
be found in [39]. 

9.3 Applicability 
Overall, the case studies have shown the feasibility of 
the formal approach to software development for a 
variety of development tasks and in a variety of types 
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of system. Our experience of the B method and toolkit 
was mixed: it does provide a range of support for many 
parts of the development lifecycle; however, our success 
in different tasks varied. 

In the requirements phase, where system descriptions 
are wanted that are as close as possible to ‘the real 
world’, B did not perform so well. This is not so much 
a failing of the formal approach generally, but specific 
to the B method, which adopts a minimalist approach 
to specification to facilitate the subsequent develop- 
ment task. 

The B method’s major strength, in common with 
other model-oriented formal methods, was shown to be 
in the high-level - low-level design stages. The B toolkit 
provides support for the development of structured 
abstract specifications, for the animation of those spec- 
ifications and for the generation and discharge of con- 
sistency proof obligations. It is also possible to 
construct and justify data and algorithm refinements 
and to develop them to the stage where code can be 
generated automatically from them. For these design 
activities, compared with other model-oriented formal 
methods, B favours the latter stages of development, 
the decomposition of system into modules and the 
development of each module towards code. This focus 
does, however, tend to discourage abstraction in high- 
level designs. 

The support for low-level design is geared towards 
the automatic generation of code, a feature that 
worked well provided a prescribed architectural 
approach was adopted. However, to conform to certain 
standards for safety-critical software, it was not appro- 
priate to rely on the integrity of an automatic code gen- 
erator, and manual translation from an intermediate 
design into the target language was preferred. TI-‘ 11s was 
found to be a viable alternative and led to a satisfac- 
tory design. B’s philosophy regarding proof is towards 
a high degree of automation. The automatic proof 
facilities were certainly useful to filter out the simplest 
proof obligations. However, with the state of current 
theorem-proving technology, it seems that some degree 
of user intervention in the proof process is inevitable, 
and therefore attention must be paid to providing 
industrial-strength support for interactive proof. 
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