
This is a copy of the published version, or version of record, available on the publisher’s website. This

version does not track changes, errata, or withdrawals on the publisher’s site.

Published version information

Citation: JC Bicarregui et al. ‘Formal methods into practice: case studies in the
application of the B method.’ IEE proceedings on Software Engineering, vol. 144, no.
2 (1997): 119-133.

DOI: 10.1049/ip-sen:19970974

This version is made available in accordance with publisher policies. Please cite only
the published version using the reference above. This is the citation assigned by the
publisher at the time of issuing the APV. Please check the publisher’s website for
any updates.

This item was retrieved from ePubs, the Open Access archive of the Science and Technology

Facilities Council, UK. Please contact epublications@stfc.ac.uk or go to http://epubs.stfc.ac.uk/ for

further information and policies.

Formal methods into practice: case studies in the

application of the B method

JC Bicarregui, DL Clutterbuck, G Finnie, H Haughton, K Lano,

H Lesan, DWRM Marsh, B M Matthews, MR Moulding,

AR Newton, B Ritchie, TGA Rushton, PN Scharbach

https://doi.org/10.1049/ip-sen:19970974
mailto:epublications@stfc.ac.uk
http://epubs.stfc.ac.uk/

Formal methods into practice: case studies in the
application of the B method

J.C.Bicarregui
D.L. Clutterbuck
G.Finnie
H.Haughton
K. Lano
H. Lesan
D.W.R.M. Marsh
B.M. Matthews
M.R. Moulding
A.R. Newton
B. Ritchie
T.G.A. Rushton
P. N, Scha rbach

Indexing terms: Formal methodr, Software development

Abstract: The paper reports on an investigation
into the application of the B method of formal
software development. Six case studies are
described, each exploring a different aspect of the
use of the B methodology and toolkit. The case
studies are drawn from a diverse range of
applications and address different aspects of the
software development lifecycle. The notation,
method and tool support are assessed and
conclusions are drawn concerning the use of B
and formal methods generally.

1 Introduction

Formal methods have long been advocated as a way to
make the development of software into a scientifically
based engineering discipline. Nevertheless, in practice,
very little software is produced using the formal
approach. To some extent, the introduction of formal
methods has been hampered by the lack of quality sup-
port tools. However, there are now commercial prod-
ucts claiming to provide for the use of formality in the
context of the software development task as a whole.

This paper reports on the work of the B user trials
project [Note 11, which investigated the application of
formal methods in software development. A number of
case studies are discussed that apply formal techniques
to different tasks in the software development lifecycle
within a particular development environment, which is
a commercial product supporting formal methods.
Although no quantitative analysis is undertaken, we
discuss our experiences with the method, notation and
0 IEE, 1997
IEE Proceedings online no. 19970974
Paper first received 4th October 1995 and in final revised form 24th June

The authors are with CLRC, Rutherford Appleton Laboratory,
Computing and Information Systems Department, Chilton, Didcot,
Oxfordshire OX1 1 OQX, UK

1996

tools and assess the extent to which the formal
approach yields a viable means to establish a sound
engineering practice.

1. I
The B method [Note 2][1-31 is a ‘model-oriented’ for-
mal method, providing a unified notation and support
tool for many of the activities in the software develop-
ment lifecycle. It is currently being used in several
industrial organisations [4-6]. Modularity is central to
the B method, and this is achieved by structuring spec-
ifications and developments into ‘abstract machines’.

Machines are essentially abstract data types with
state. The state is defined by the construction of a set
theoretic model. Similar constructors to those of other
model-oriented notations are available, although, in
practice, we tend to use a number of variables each of
simple type, rather than building more complex, user-
defined, types as encouraged by VDM [7] or Z [SI.
State initialisation and invariant conditions are given
explicitly.

The invariant and other predicates are given in first-
order predicate calculus and set theory. The underlying
logic is untyped, and typing constraints appear as set
memberships in the invariant, along with the usual
relationships between variables. The foundations are
based on Zermelo set theory, with an axiom of choice,
an axiom of infinity and an axiomatic definition of
Cartesian product.

B method, notation and toolkit

Note 1: The B user trials project was a UK collaborative project between
Lloyd’s Register of Shipping, Program Validation Limited, the Royal
Military College of Science and the Rutherford Appleton Laboratory. It
was jointly funded by the Department of Trade & Industry and the Engi-
neering & Physical Science Research Council.
Note 2: Support for the B method is currently being developed by several
organisations: our study was based upon the B toolkit developed oria-
nally at British Petroleum PLC and subsequently by B-Core (UK) Ltd.
This study was undertaken primarily with the Beta release of this tookit
(Version 2.0) during the period from January 1993 to December 1994,
and a number of the detailed issues concerning the functionality and per-
formance of the B toolkit that arose during the course of the project have
been taken into account in later versions of the product. It is intended
that the experiences reported here also be used to guide its future evolu-
tion

IEE Proc.-Softw. Eng, Vol. 144, No. 2, April 1997 119

Operations are defined as ‘generalised substitutions’.
rhis departure from the before-after predicates of
VDM and Z yields the same expressive power, while
giving the language a more programmatic feel and thus
making it more accessible to those with programming,
rather than mathematical, experience. For example, a
number of constructs are available that mimic the usual
notation for assignment, x := y for x becomes equal to
y , to give loose specifications such as x :E S for x
becomes any member of S. As in Morgan’s refinement
calculus [9], the semantics of operations are given via
the weakest preconditions.

The overall specification is structured using machine
composition. Specifications can be built incrementally
using the ‘sees’ and ‘includes’ mechanisms that, respec-
tively, allow read-only and read-write extensions of a
machine by new variables and operations. Data reifica-
tion is provided by ‘refinements’, and compositional
development is provided by ‘imports’. Low-level
machines, ‘implementations’, can be written in an exe-
cutable subset of the language, and a library of ‘base’
machines can be automatically translated into C code.

Validation is supported by an animation facility that
allows the developer interactively to ‘execute’ a specifi-
cation by providing input to simplify non-executable
constructs or to resolve non-determinism. Verification
is supported through the generation and discharge of
proof obligations, which ensure the consistency of spec-
ifications and the correctness of refinements.

The emphasis on modularity is also applied to proof.
The motivation here is that the overall proof task
should, as far as possible, be decomposed into proofs
concerning individual machines. Once a machine has
been proven consistent and correct, those proofs
should be valid in any context in which this machine is
used as part of a more complex specification. Indeed, it
is this aim that has determined the structuring mecha-
nisms availabe for machines. Thus, a highly composi-
tional method is provided for proof so that, although
numerous, proof obligations are mostly simple and the
majority can be discharged automatically.

Two proof tools are provided: the ‘autoprover’ is
used to discharge automatically the majority of proof
obligations using a ‘rulebase’ of built-in rules and
tactics; and the ‘interprover’ is used to explore interac-
tively the failed proof attempt and extend the rulebase
with user-defined ‘theories’ that provide problem-
specific rules and tactics.

1.2 Overview of paper
This paper reports on six case studies that explore the
use of the B method and toolkit for different aspects of
the software design lifecycle. The first three case studies
address the early phases of development, considering
requirements, validation and prototyping. The next two
case studies address high-level design and data refine-
ment, comparing the B abstract machine notation with
two other model-oriented specification notations,
VDM and Z. The last case study addresses algorithm
development, code generation and verification.

2 Expressing requirements in B

The first case study was concerned with expressing
requirements in the B method. A requirements model
of a short-term conflict alert (STCA) air traffic control
application, previously defined using controlled
requirements expression (CORE), was developed to

120

investigate how effective the B method is for expressing
a requirements model of this type and complexity, and
to evaluate the role of the B toolkit in animating and
proving relevant properties of that model.

CORE is an established structured requirements
analysis method that employs diagrams and supporting
text to construct a functional model of the required
system and its operational environment, using a combi-
nation of hierarchical decomposition, data flow and
data structuring techniques depicting the interaction of
the target system with its environment at various levels
of abstraction. CORE has been the subject of a number
of research projects within the Software Engineering
Group at RMCS since 1986, using the SD variant of
CORE [lo] and its associated Analyst support tool.

This overview presents the experiment that was per-
formed with B and CORE and outlines the resultant
evaluation of the B toolkit.

2. I STCA requirements expression
An STCA is intended to support air traffic controllers
by providing a warning when two aircraft are in danger
of mid-air collision. The STCA CORE analysis used in
the experiment, reported here, was developed for a pre-
vious CAA-funded project [1 11 that investigated the use
of VDM and CSP to formalise a CORE requirements
model. This analysis is based upon the diagram of
Fig. 1, which identifies how the STCA problem domain
can be progressively decomposed into a number of
non-overlapping functional partitions, termed view-
points. The STCA system is successively decomposed,
first into viewpoints representing entities that impact
upon the intended STCA system: the aircraft, which
are directed by the air traffic controllers, the radar
tracking functions of the air traffic control system, the
human-computer interface (HCI) and a catch-all envi-
ronment that contains those entities not contained in
the other named viewpoints at this level. At the next
stage of decomposition, the tracking, STCA and HCI
viewpoints are further decomposed into sub-view-
points, allowing their interaction to be modelled with
greater resolution. The full STCA CORE analysis can
be found in [12] and comprises some 40 pages of dia-
grams and supporting text. Also contained within this
thesis are formal specifications for the STCA sub-view-
points (V31, V32, V33 in the diagram), forming some
1600 lines of VDM-SL distributed across 23 modules.

2.2 Applying B to STCA CORE analysis
This case study used B with CORE for three primary
re as o n s :
(a) to improve the semantic definition of CORE’S func-
tional model
(b) to allow properties of the functional model to be
analysed formally (by proof)
(c) to facilitate animation of the functional model
Initially, a mapping was developed where each view-
point was represented as a machine that was then
developed in two ways, resulting in a behavioural
implementation, which represents the semantics from
the CORE single viewpoint modelling stage, and a
decomposition implementation, which allows a view-
point to be decomposed into sub-viewpoints, represent-
ing the hierarchical structuring information from the
CORE viewpoint structuring stage. However, this
approach was not satisfactory, as the B toolkit’s code

IEE ProcSof tw Eng., Vol. 144, No. 2, April 1997

v o

STCA problem

Fig. 1 STCA CORE viewpoint structure diugrum

generation facilities do not support the passing of
structured data, such as sets and sequences, between B
operations (although B imposes no such restriction).
This means that an object-oriented programming style
has to be adopted, where each structured data type that
is passed between B operations is managed by an
explicit abstract machine, used to create scalar tokens
to identify objects of that type, which are then passed
between operations and de-referenced via the data type
manager. In the case of the STCA model, the very
large number ot structured data types that would have
been needed to be handled rendered the approach
infeasible.

In view of this, an alternative strategy was adopted
that involved the construction of three separate B mod-
els to address different aspects of the CORE model:
(i) a conceptual model, which uses the full features of B
machines and implementations to capture the complete
semantics of the CORE functional model and which is
used to analyse formally the properties of that model
(ii) a viewpoint semantic model, which expresses the
data-processing actions of a single CORE viewpoint
using solely B machines and which can therefore be
animated using the symbolic animation facilities of the
B toolkit.
(iii) a connectivity model, which provides an executable
program for the entire CORE functional model, but
which only captures the data-flow connectivity of
actions; the actions pass data-flow markers around the
model, each tagged with the history of actions that
have processed that marker.
This strategy yielded a conceptual model about one
third of the size of the initial model (6800 lines of B
instead of 20 000). The number of proof obligations
was also reduced from some 2000 in the initial model
to about 200. Of these, about 90% were discharged The
viewpoint semantic model for the configuration view-
point was constructed and animated. The B specifica-
tions for this viewpoint were derived from the VDM
specifications of [12]. The connectivity model was
partly constructed, but was not completed, owing to
problems in building a data type manager for the data-
flow markers.

A full account of the two approaches for using B
with CORE can be found in [13], and details of the
application of these approaches to the STCA CORE
analysis are contained in [14].

IEE Proc.-Softw. Eng, Vol. 144, No. 2, April 1997

2.3 Experiences of this case study
When trying to specify the CORE functional nindt‘l
using B, a number of limitations particular to the B-
language were identified. First, the language does n o t
allow sequencing at the abstract ‘machine’ level; ‘im plc-
mentations’ had to be used resulting in a far moic
detailed specification than desirable for a requirement:;
model. Secondly. the data typing facilities within €3
were found to be limited, and the implicit typing style
was found to lack the clarity of more explicit
approaches, such as that employed in VDM. A serious
omission is the absence of record types, which was
overcome using an algebraic definition style (see Sec
tion 6). Thirdly, the machine structuring facilities of B
prevented two, or more, machines from sharing write
access to the state of a third machine. Although this
restriction is mdde to simplify the proof process, it is a
severe constraint when modelling certain real-world
problems and can lead to very inelegant and unnatural
specifications.

With regard to the methodology, the restriction of
the arguments and returns associated with operations
to scalar types led to our proposal for an enhanced B
method [13], which attempts to separate out the con-
cern of specifying the problem in a ‘conceptual model’,
from the concern of providing an executable program
to address that problem in a ‘constructional model’.
Where applications require little structured data pass-
ing, the distinction between conceptual and construc-
tional models is small. However, for structured analysis
and design approaches applied to data-rich informa-
tion-processing systems, the difference in complexity is
considerable. In fact, such was the predicted complexity
of the constructioiial model for the STCA CORE anal-
ysis, that alternative approaches were devised to pro-
vide animation of the CORE model, in the form of
viewpoint semantic and connectivity models.

With regard to the specific tools available, this study
provided an opportunity to evaluate the B toolkit (ver-
sion 2.0) for a large-scale development. and a number
of areas for improvement were identified. The response
speed of the tool was very slow for a large develop-
ment, and animating a large specification was also
slow, especially when compared with equivalent Prolog
systems. For very large developments, the proof tools
failed to construct proof obligations and carry out
proofs. The animator provides the basis of a very use-
ful tool, but should be enhanced to evaluate nested
LET and ANY clauses, animate refinements and imple-

121

mentations, and provide an improved developer inter-
face, such as the inclusion of batch-testing and roll-
back features.

In summary, this case study showed that the B
method offers potential benefits over other model-
based approaches, such as VDM and Z, in that it pro-
vides a semantically strong object-oriented modularisa-
tion scheme that allows proof to be partitioned,
supports the progressive refinement of specifications
and encourages specification reuse. The inclusion of
animation, proof and code-generation facilities within
the B toolkit also represents a significant enhancement
over the functionality of existing tools for VDM and Z.
However, when using the B method and the B toolkit
for our STCA case study, we encountered a number of
limitations described above, which we feel should be
addressed if this new and advanced technology is to be
used successfully in requirement modelling of complex
information systems.

3

This case study was in the domain of clinical biochem-
istry, which is a branch of pathology. concerned with
the analysis of body fluids to aid diagnosis, prognosis
and monitoring of treatment. Automatic analysers
capable of performing thousands of tests daily are used
widely. Such systems are clearly safety-critical, as send-
ing the wrong test result can result in incorrect treat-
ment.

The B method and B toolkit were used to analyse the
hazards in the laboratory information management sys-
tem employed in the Clinical Biochemistry Department
of the West Middlesex University Hospital (see, for
example, [151 or [161). The hazard analysis technique
used involved the development of a formal specifica-
tion of the system, the identification and formalisation
of system safety properties, and an attempt to prove
the safety properties from the formal specification. This
technique, first discussed in [17] can be regarded as an
extension of the fault tree analysis (FTA) technique
[18] and its extensions to software [19, 201. FTA is a
diagrammatic technique where a potential failure of the
system is traced back and decomposed into a combina-
tion of failures of atomic events. Such an analysis can
be regarded as an informal, backwards proof attempt.
The main differences between FTA and the technique
used here are the use of formality and the proving of
safety, as opposed to showing freedom from failure.
The formal methodology, where formal models arc
compared with the actual system operations is also
reminiscent of the hazard and operability studies
(HAZOP) [21], where guidewords arc used to find pos-
sible deviations of a design from its ‘intended’ use.

We believe that the main contributions of this
approach to hazard analysis are its systematic nature
and its explication of all relevant assumptions about
the system. The formalisation and proof activities also
result in the identification of constraints on various
aspects of the system analysed.

Validation of clinical system safety property

3. I Safety property
The property that largely encapsulates the safety
requirement under investigation can be stated infor-
mally as

the right results will be associated with the right
patient at the right time

The case study considered a slightly simpler problem
by removing the temporal considerations from the
safety property. The main aims of the case study were
to use B to
(a) formalise the safety property
(b) model the operations of the laboratory
(c) prove the safety property from the specification of
the laboratory.
The clarification of the safety property was a major
contribution of this case study. The basic idea behind
this was the separation of the notion of core-analyser,
modelling the component of the automatic analyser
that performs the actual tests, from other functionali-
tics of the automatic analyser, which, for example, is
able to read the laboratory number that is bar-coded
on the sample.

The machinery corresponding to the core-analyser
was not considered in the hazard analysis. The safety
property could then be reformulated as

the result of a test produced by the laboratory proce-
dures is identical to the result of the application of
the core-analyser to the contents of the sample and
test requested

In other words, the laboratory provides a collective
core-analyser service to the requesting clinicians. The
extension of this simple idea to the actual boundaries
of the laboratory requires identification of all appropri-
ate requests from various containers delivered to the
laboratory. Each such request contains a sample, tests
required on the sample and the patient identity. It also
requires the explication and specification of a number
of constraints that are expressed as properties of the
relevant abstract machines.

The laboratory is described in [16]. A full account of
this case study appears in [22].

3.2 Specification and proof
The laboratory system is formalised by a number of
abstract machines declaring data structures and the
constraints upon them, which are seen by an abstract
machine Lab, formalising the safety property. This
machine possesses one operation, labtest, which, for an
input set of samples and test requests, specifies the
effect of the automatic analyser and checks performed
on the test results. Machines at this level arc all appli-
cative; they do not have any state variables.

A B implementation of Lab, Lab-imp was defined
that corresponds to one operation cycle of the Labora-
tory. Lab-imp has one operation labtest, which is a
sequence of operations of imported machines specifying
the individual laboratory procedures, from validation
and numbering of request forms and samples on recep-
tion, to performing the analyses and collecting the
results of tests from analysers. Proof of the safety prop-
erty is then a proof that Lub-amp correctly implements
Lab. The B toolkit was used to generate this implemen-
tation proof obligation.

Although the toolkit was used to discharge some
other proof obligations associated with the internal
consistency of a number of specifications, the above
safety property could not be discharged automatically,
and user-assisted proof of the safety property could not
be completed in the time allocated. A semi-formal
proof of the safety property was, however, completed
by hand.

IEE Proc -Softw Eng , Vol 144, No 2, April 1997

3.3 Experiences from this case study
The B technology forces a rigid discipline on many
aspects of development. An obvious example is the dis-
tinction in B between the constructs available within
specifications and refinements. This proved problem-
atic for the specification of laboratory operations,
because of the need to use both high- and low-level lan-
guage elements in the specification. The unavailability
of the sequential operator at the specification level was
a main cause of the problems encountered. For exam-
ple, [16] mentions that the numbering of samples and
request forms is performed in two consecutive stages.
This cannot be specified in B.

The specification of the safety property was perhaps
the most successful aspect of the work performed. This
was because the statement corresponding to the safety
property was specified in the applicative subset of the
notation.

We found proof in the B framework to be easier and
more accessible than in other comparable frameworks.
The main reason for this was the set theoretic interpre-
tation of notions of ‘function’ and ‘relation’.

4 Prototyping a medical system

This case study provided an opportunity to evaluate
the facilities provided by the B method and toolkit for
(a) automatically generating a system with a prototype
user interface
(b) structuring implementations
(c) proof of the correctness of implementations.

4. I TANIT application
Patients in intensive care are connected to various sen-
sors, each of which monitors a particular aspect of the
patient’s state. In addition, some patient samples are
tested off-line There may be as many as 200 patient
data items to monitor. Because these data are currently
tracked largely by manual means, nursing staff have to
carry out many clerical tasks. The telematics in anaes-
thesia and intensive therapy (TANIT) project is devel-
oping a pilot patient data management and clinical
decision support system that will automate these proce-
dures.

The case study addressed a subset of this system, the
renal status assessment module, which derives a
number of renal parameters and their trends from
monitored patient data.

4.2 Renal subsystem specification and
implementation
The specification was constructed incrementally, mak-
ing use of the B structuring constraints SEES and
INCLUDES. A machine was defined, specifying the
registration of basic patient data (such as name,
weight, height, sex) to be used both by the renal sub-
system and by other systems within the TANIT system.
This machine was included in a machine that specified
patient renal data and operations to monitor them.
This machine, in turn, was included in a machine that
calculated derived patient renal parameters and
dynamic trends in these parameters from the monitored
data.

As non-negative integers are the only numbers primi-
tive to B and implemented by standard library abstract
machines, a machine was specified with operations to
manipulate rational numbers implemented as pairs of

IEE Proc.-Softw Eng, Vol 144, No 2, April 1997

integers. This machine was made available to the renal
subsystem machine through the SEES construct.

The machine defining the rational type had to be
implemented outside the B method, as an operation for
taking the rational power of a rational number was
required for the renal calculations. This operation,
which cannot be fully specified within B, was imple-
mented using a C routine.

The renal subsystem was implemented directly by
seeing the stateless rational type machine and import-
ing only standard library machines. As a result, opera-
tion implementations consisted of long series of calls to
low-level library operations, making the writing of such
implementations very error-prone. Because of the B
toolkit memory limitations and the length of the imple-
mented operations, the B toolkit was unable to gener-
ate the implementation proof obligations, and so was
of no help in checking the correctness of the implemen-
tation.

A scaled-down version of the case study was then
reworked, and the development was restructured such
that the implementation imported a number of user-
defined machines, themselves implemented on standard
library machines. In this way, the implementation cor-
rectness proofs of the imported user-defined machines
could be separated from those of the renal subsystem.

4.3 Experiences from this case study
The novel feature of this case study was the need to
perform relatively sophisticated numerical calculations,
which presented a problem because of the minimalist
approach to numbers adopted by B. This meant that
these operations had to remain underspecified, and cor-
rectness proofs could not be given.

In all but trivial applications, attention must be paid
early to structuring the development in such a way that
the implementation imports user-defined machines,
which themselves are ultimately implemented on the
library components. Much tedious and time-consuming
work will have to be done, and duplicated, until stand-
ard specifications and code for higher-level data struc-
tures are made available. The provision of the base
generator tool, which provides specifications and
implementations for a number of standard entity types,
is a step in the right direction.

5

The aim of this case study was to compare the abstract
machine notation with that of VDM. The example cho-
sen was a protocol used to ensure that there is no
‘data-tearing’ as multiple processes simultaneously read
and write to a buffer. The example had previously been
formalised in CCS [23, 241. The VDM development,
which considers a number of alternative data-models
for the status flags, was mirrored in B.

5. I Multiprocessor shared-memory
information exchange
The multiprocessor shared-memory information
exchange (MSMIE) is a protocol that addresses intra-
subsystem communications with ‘several features which
make it ideally suited to inter-processor communica-
tions in distributed, microprocessor-based nuclear
safety systems’ [25]. It has been used in the embedded
software of Westinghouse nuclear Systems designs.

The protocol uses multiple buffering to ensure that
no ‘data-tearing’ occurs, that is, it ensures that data are

Comparison of VDM and B notations

123

never overwritten by onc process while being read by
another. One important requirement is that neither
writing nor reading processes should have to wait for a
buffer lo become available; another is that ‘recent’
information should be passed, via the buffers, from
writers to readers. In the simplification considered, it is
assumed that information is being passed from a single
writing ‘slave’ process, to several reading ‘master’ proc-
esses.

The information exchange is realised by a system
with three buffers. Roughly speaking, at any time, one
buffer is available for writing, one is available for read-
ing, and the third is either in between a write and a
read and, hence, contains the most recently written
information, or is between a read and a write and so is
idle.

The status of each buffer is recorded by a flag that
can take one of four values
(i) s: ‘assigned to slave’. This buffer is reserved for writ-
ing; it may actually be being written at the moment or
just marked as available for writing.
(ii) m: ‘assigned to master’. This buffer is being read by
one or more processes.
(iii) n: ‘newest’. This buffer has just been written and
contains the latest information. It is not being read at
the moment.
(iv) i: ‘idle’. ‘This buffer is idle, not being read or writ-
ten and not containing the latest data.
The names of the master processes that are currently
reading are also stored in the state.

The slave and master processes that access the buff-
ers in parallel are not modelled; rather, the analysis
concerns only the operations that modify the buffer
status flags. These operations are protected by a system
of semaphores that allows each operation uninter-
rupted access to the state, and thus their behaviour is
purely sequential.

f a) s h e : this operation is executed when a write fin-
ishes. slave sets the status of the buffer that is being
written to ‘newest’, thus replacing any other buffer with
this status.
(6) acquire: this is executed when a read begins. The
new reader name (passed as a parameter) is added to
the set of readers, and status flags are updated as
appropriate.
(c) release: executed when a read ends, this removes a
reader from the set and updates flags as appropriate.
The precise behaviour of the operations is rather intri-
cate and space does not permit us to describe them fur-
ther here. The reader is referred to [26] for a detailed
description of this case study; however, a summary of
conclusions drawn from the comparison are given
below.

There are three of these operations

5.2
The system was described at several levels of abstrac-
tion in both VDM and B, and formal data refinements
were defined between levels, although there was no
algorithm development. In this small example, there
was little scope for the effective use of structuring of
specifications that is one of the major features of the B
method, neither was the use of proof explored to any
great extent. Comparison of these two formal develop-
ments highlighted three areas where the notations dif-
fered.

Experiences from this case study

5.2, I Invariants: The definition of the state was cen-
tral in this example. In both notations, the pivotal
specification was the one where multiple buffering was
introduced, and, at this level, the state invariant played
a key role in conveying an understanding of the system
by defining reachable values of the state and, hence,
liberating the designer from having to consider other
cases.

However, the role of state invariants in operation
definitions differs in VDM and B. In B, post-conditions
(in the form of generalised substitutions) have to be
written so as explicitly to ensure the maintenance of the
invariant. In VDM, the state invariant is effectively
part of the state typing information and, as such, is
implicitly assumed to be maintained by the operation.

VDM’s implicit maintenance of the invariant leads to
a choice as to how much of the information that can be
deduced from the invariant is repeated in a post-condi-
tion. The example showed that there is often some ten-
sion between the most concise form that relies on
properties of the invariant for its correctness, and a
longer, but more explicit, form that includes some
redundant information. This choice can be seen as an
opportunity to prove the stronger forms from the
weaker. Which form is chosen may make a significant
difference to the complexity of the proofs: the form
that most clearly conveys the information may not be
the form that will be most usable in proofs. Indeed, the
stronger form is more likely to be helpful when the
specification is being proved to be a reification of
another, and the weaker form may be more helpful
when it is itself being reified.

In the B notation, on the other hand, operations are
written so as to imply the preservation of the invariant.
This style provides the opportunity to prove that the
operation does indeed do this; however, it can encour-
age a tendency to describe how the invariant is main-
tained, which may lead to less abstract specifications.

5.2.2 Operation definitions: The greater program-
matic feel of the B notation is reinforced by the use of
generaliseci substitutions, as opposed to VDM’s rela-
tional post-conditions. Although the two forms have
the same expressive power, in some cases, we found it
convenient to give greater algorithmic detail in the B
version. This would appear to imply that the B nota-
tion is more useful for the development of algorithms.
Indeed, the process of operation decomposition has
been given greater attention in the B method than for
VDM. In contrast, VDM’s relational post-conditions
perhaps give a greater facility for non-algorithmic spec-
ifications of complex operations.

5.2.3 Framing: Both notations give syntactic devices
for specifying the frame of reference for operations. In
VDM, the read and write frames are given explicitly in
an operation definition, whereas, in B, the variable
accesses are implicit in the form of the generalised sub-
stitution, but are made explicit at the machine level
through the semi-hiding and full-hiding involved in the
various forms of machine structuring.

In VDM operations, the semantic role of the read
frame is often underplayed. Typically, it is interpreted
as merely providing syntactic scoping for variables
appearing in the pre-condition or post-condition. Alter-
natively, it can be interpreted as a constraint on imple-
mentations, restricting which state components can be

IEE Proc -Softw Eng , Vol 144, No 2, April 1997 I24

read. Thus, rather than think of the externals clauses as
giving information about the variables mentioned in
the specification, we see them as giving details of what
access to state variables an implementation of that oper-
ation can be allowed to make. (See [27-291 for further
discussion of his point.)

In B, similar restrictions can be given through the
hiding principles inherent in the different forms of
machine structuring. For instance, where, in the more
concrete VDM specifications, we are able to narrow
the read frames, in their B counterparts, there is a
potential to structure the overall machine.

The above three areas are where our experiment sug-
gested that the notations of VDM and B encourage dif-
ferent specification styles. Each style has its own
advantages at different stages of the development proc-
ess. In this example, we found that the process of
developing implementation code was better addressed
in abstract machine notation. However, we also found
VDM’s relational post-conditions more convenient for
expressing wholly implicit specifications of operations,
particularly when the data model involved complex
interdependencies.

6
system

This case study was motivated by a desire to relate for-
mally (part of) a Z specification of generic graphical
kernel system (GKS) [20] operations to a set of C lan-
guage bindings for those operations. The approach
chosen was to ‘transliterate’ the Z specification into
abstract machine notation, with the aim of subse-
quently refining the top-level abstract machines to the
stage where the data structures and algorithms could
be mapped directly onto C.

In the first phase, that of translating Z to B, it was
considered important that the B should bear a strong
resemblance to the original Z specification, even where
this went against the style guidelines emerging from
other areas of the B user trials project. This iconoclas-
tic approach raised many problems, both anticipated
and unexpected. In the subsequent refinement, another
attempt to break with ‘B tradition’ led to further prob-
lems.

Specifying and refining the GKS attribute

6. ’I GKS specification
In the GNS standard (and draft revision), GNS func-
tions are defined using Z in abstract terms on abstract
data types. Language bindings are defined for these
functions for C and FORTRAN.

Though many of the language bindings are 1-1 (each
abstract function has a direct binding counterpart), for
practical reasons there are often additional bindings,
where a single abstract function is implemented by a
set of concrete functions.

The GKS primitive attributes are state parameters
that affect the behaviour of graphics output operations.
For example they govern the style of line-drawing to be
used, or the current text font. Primitive attribute values
are drawn from a type PrimAttr Value, which is defined,
like a Z free type definition, as a disjoint union of all
the possible attribute value types

Prim,AttrValue :: = m a r k e r t y p e ~ ~ ~ a r L e r T y p e))

I markerind((Marker Ind))
I . . .

The state of the attributes is then modelled as a map
from attribute names to this union type, such that each
attribute name is associated with a unique (injected)
type. The use of a single large union type is a specifica-
tion artefact that makes it possible to define a single
schema SetPrimAttribute, specifying the operation of
updating any attribute value, as opposed to a family of
operations, one per attribute. The schema takes a single
input, the new value; there is no need to supply the
attribute name as this can be inferred from the type
injector of the argument.

This specification has a fairly direct counterpart in C
using unions and structures; however, for practical
reasons, it is more convenient to define the language
bindings as a family of C functions, with separate
update functions for each primitive attribute.

The intention in this case study was to develop an
analogue of the Z specification in B, then refine this
using a set of single-attribute machines and develop
these machines to the stage where it would be feasible
to produce C code conforming to the GKS language
bindings. In practice, the problems encountered in
achieving the first step took up the majority of the
available time, so that the subsequent stages were less
well developed, and a separate intention of extending
the specification to cover more of the original GKS
specification was never realised.

6.2 Specifying ’really abstract’ machines
The greatest difficulty in ‘transliterating’ the Z specifi-
cation into B arose in handling free-type definitions. A
Z free-type definition corresponds most closely to a
property-specified set definition in B.

The first problem is that, whereas Z uses a special
notation for free-type definitions, in B we are forced to
‘unfold’ the notation and expose the underlying struc-
ture, including, for example, the predicate describing
the induction property for the specified set. This means
that the resultant machine looks less elegant than the
original Z.

The second, more serious, problem encountered is
that much of the automated technology of the B toolkit
is not suited to dealing with property-oriented specifi-
cations. Consequently, the designer of a machine based
on free types must also expend some effort in develop-
ing a new theory to assist in the discharging of proof
obligations and a separate theory to support simplifica-
tion of free-type-valued expressions during animation.
Without this extra work, neither autoproof nor anima-
tion yields useful results.

On the positive side, it was possible to use B structur-
ing to develop separate ‘stateless’ machines for each
type definition and to use subsequently these machines
in the final state-based machine. B structuring rules are
stricter than those for Z’s schema calculus, and so it is
no surprise that not all of the structure of the Z specifi-
cation could be reflected in the B structure. In this case
study at least, this was not considered a drawback.

The top-level machine includes the stateless machine
defining the free type PrimAttrValue (as well as the set
of PrimAttriVumes) and, following the Z specification,
has a map from names to values as the single state var-
iable. The use of such a ‘monolithic’ state variable
forced us to use qome inelegant syntax for state initiali-
sation. At first sight, it would seem natural to define
the initial value for this map using a parallel combina-
tion of nondeterministic substitutions, e.g.

125 IEE Pvoc.-Softw Eng, Vol. 144, No. 2, April 1997

attrs (M A R K E R T Y P E) : E ran markertype 1 1
a t t r s (M A R K E R I N D) :E ran marlcerind 1 1

(this would be the weakest initialisation ensuring the
invariant that the value associated with each attribute
name is drawn from the appropriate type). However,
this breaks a syntactic well-formedness condition in B
that the written variables of a parallel substitution must
be disjoint, as the single state variable attrs is being
modified in each clause. Consequently, it is necessary
to resort to a considerably less elegant form involving a
nondeterministic choice using the ‘ANY ... WHERE ...’
construct

ANY mkty, mkind, ... WHERE

...

mkty E ran markertype A mkind E ran markerind A ...
THEN

attrs := {MARKERTYPE mkty, MARKERIND H

mkind, ...}
END

This circumlocution stems from the over-strictness of a
purely static syntactic condition on independence of
parallel substitutions. This is perhaps surprising given
that the use of map-valued states occurs in many
‘standard’ B examples. In this particular case, as the
constants MARKERTYPE, ... are distinct, it should
have been possible to determine that the first construc-
tion is non-interfering parallelism by purely static anal-
ysis. Alternatively, a more general approach would
defer determination of independence by generating an
appropriate proof obligation.

We note that much of the work done in ‘transliterat-
ing’ the Z free-type definition to a B property-specified
set could have been automated, as could the generation
of the proof and animation theories. This could be
automated in the same manner as the BASE constructs
already present in the notation, although to do this
would require access to the internal structure of the B
toolkit and would be a task for the toolkit developers
rather than its users.

6.3 Interface refinement
The next phase of the case study was to develop a
family of abstract machines, each managing a single
attribute. The ability to use both value and type (set)
parameters in abstract machines made this stage
simple: a single generic machine was defined, analysed
and proved self-consistent.

We wanted to use these machines to construct
another machine, presenting the same interface and
behaviour as the machine using a single map-valued
state, and then, ‘VDM fashion’, to construct a refine-
ment that effectively linked this machine to the ‘Z-level’
machine. However, it was not possible to construct
such a machine in its own right.

The arguments and results of the original Z specifica-
tion’s operations, and therefore in the top-level abstract
machine, are expressed in terms of the free-type defini-
tion PrimAttr Value, whereas the arguments and results
in the individual machines are in terms of the type of
each individual attribute. In constructing the second-
level machine from these machines, it is necessary to
extract the specific argument type based on the injec-
tion function used for the PrimAttr Value, then supply
this value to the appropriate attribute machine opera-
tion, obtain its result and apply the same injection

126

function to that. For example, the getPrimAttr opera-
tion in the second-level machine would have the form

vu1 - getPrimAttribute(name) =
PRE name E PrimAttvName
THEN

IF name = MARKERTYPE THEN

vv - markertype-attr.enq;
vu1 := markertype(vv)

VAR vv IN

END

VAR vv IN
ELSIF name = MARKERIND THEN

vv - markerind-attr.enq;
vu1 := markerind(vv)

END
ELSIF ...

The need to obtain a value from an operation invoca-
tion and to ‘wrap’ subsequently an injection function
around that value meant that it was necessary to use
sequential substitutions. However, sequential substitu-
tions cannot be used in machines, only in refinements
and implementations. Consequently, it was not possible
to separate the second level of the design into a
machine in its own right and a separate refinement
relating it to the first-level machine.

6.4 Experiences from this case study
The outcome of this case study is mixed. On the one
hand, the B toolkit provides a level of integration of
formal development support that is very significant. It
is possible to develop reasonably abstract specifications
of a system in a structured manner, to derive and
attempt to discharge self-consistency obligations, and
to animate the specification to determine its fitness for
purpose. It is also possible to construct and justify
refinements of specifications and to develop them to
the stage where code can be generated automatically
although this was not realised in this case study. This is
an impressive achievement, well worthy of credit and
attention.

On the other hand, this case study also revealed a
number of areas in which we found that either the
notation or the tool support was unsatisfactory [31]
and, hence, consumed much of the available time. In
particular, the poor support for free types and non-
interfering concurrency caused problems. In many
ways, much of our dissatisfaction is, in a way, our own
fault, for we have knowingly strayed outside the
‘accepted envelope’ of B style. Nonetheless, it should
have been easier to make the transition from Z to B.

7

The B method advocates that specifications are refined
until they are sufficiently concrete to support the auto-
matic generation of code in the desired programming
language. The resulting code is regarded as an interme-
diate representation, in itself of limited value to the
overall process. Correctness is dependent upon the con-
struction of mathematical proofs of the refinement
steps. In another study within the B user trials, we
investigated the refinement of programs to a machine-
level language [32] and the support for the process of
proof of the verification of the refinement steps.

From B to SPARK: a case study

IEE Proc-Softw. Eng., Vol. 144, No. 2, April 1997

A further concern in the construction of high-integ-
rity software using the B method centres on the implicit
trust in the automatic code generator. No provision is
made for the verification of the transformation from
the lowest-level B design to the program code. In prac-
tice, the correctness of this transformation is estab-
lished by generating object code with a compiler and
testing it against the system requirements. Current
standards for the development of safety-critical soft-
ware require additional verification effort beyond
requirements-based testing. For this reason, to verify a
product to the required standard, it is necessary to
work directly with the program code to identify the
additional test cases required to ensure an acceptable
test coverage; to ensure data flow properties are sound;
to demonstrate the absence of run-time errors in each
subprogram; and even simply to review the code by
reading it. Such activities clearly require the code to be
constructed in a manner that makes it readily under-
stood and analysed. This is difficult to achieve with an
automatic code generator.

For this study, we investigated the manual transfor-
mation of a low-level B design into a subset of the Ada
language, such that the resulting Ada program would
support dynamic test, review and static analysis. The
study centred on a simplified autopilot specification,
and the SPARK subset of Ada was used for the imple-
mentation. SPARK [33] is designed specifically for use
in high-integrity applications. It is supported by a
formal definition and meets the requirements of current
standards for safety-related software. The study is
reported in full in [34].

7.1 Autopilot specification
The autopilot has two functions: altitude hold and
heading hold. When altitude hold is selected, the auto-
pilot ensures that the aircraft maintains the present alti-
tude. When heading hold is selected, the autopilot
turns the aircraft onto the heading selected by the pilot
and then maintains that heading. These two functions

can be selected independently. The autopilot is control-
led via a control panel that allows the pilot to select the
various functions of the autopilot, as well as to switch
it on and off. The autopilot ‘reads’ the flight instru-
ments (the altimeter, airspeed indicator, etc.) and
‘moves’ the control surfaces (the ailerons, elevators and
rudder) to ‘fly’ the aircraft.

A total of 27 abstract machines were defined to con-
struct the B specification of the autopilot. Fig. 2 shows
the hierarchy of those machines, with internal state or
state-changing operations formed by the use of
INCLUDES. Other auxiliary machines were required,
for example to define the control surfaces and control
operations.

A partial refinement of the autopilot specification
was performed, parts of which were taken down to the
level of an implementation (although we did not
attempt to generate code). It is interesting to note that,
as a result of a restriction preventing the use of shared
constants, the refinement forced some further structural
changes to be made to the specification. This has an
important consequence for the development of specifi-
cations in a functional style: wherever possible, sets and
constants (including functions) should be defined in
separate machines from variables.

7.2 Package structure of SPARK
implementation
The first choice to be made when making the transition
from B to SPARK is how to convert the B structure, a
set of machines, into the SPARK language, whose
principal unit of structure is the package. A simple
scheme for mapping a set of B machines into SPARK
packages was adopted
(a) Each machine is mapped into a separate package.
(b) INCLUDEd machines are mapped into nested
package declarations. For example, if the machine MI
INCLUDES M2, then the package corresponding to
M2 is declared inside the body of the package corre-
sponding to MI.

top-level machine

performs altitude hold

pitch autopikt

maintains state for
m-r* -
 elevators

p e r f m heading hold

roll autopilot

maintains state for
roll-ratecalculations

controls ailerons

yaw autopilot

maintains state for
yaw-rate calculations

controls rudder

user switches controlling autopilot

input from instruments

Fig. 2

IEE Proc-Softw. Eng, Vol. 144, No. 2, April 1997

Hierarchy of machines in autopilot specijkation

127

(e) Packages corresponding to SEEn machines are
declared inside the body of the highest-level package
that provides the required access. Commonly, this is
the package corresponding to the highest-level SEEing
machine, but, where there is more than one such
machine, a common ancestor may need to be used.
Nested packages in Ada allow a package to be visible
only where it is required. In SPARK, they may also be
used in conjunction with state refinement (using the
‘own variable clause’) to ensure that information flow
between operations is described at the appropriate level
of abstraction. It is usually good practice to define, at
the outermost level (the library-level), any packages
that represent external system interfaces, even if their
visibility is only required in one part of the code. In B,
we generally find that an abstract machine describing
an external interface ends up at the ‘bottom’ of an
INCLUDES chain, because it has its own internal state
but its operations do not change the state of any other
machine. Therefore we extended the B-SPARK map-
ping scheme by adding a further rule
(d) machines representing external system interfaces are
mapped into library-level SPARK packages.
In SPARK, it is also necessary to consider the annota-
tions (formal comments) used by the examiner to check
conformance to the static-semantic rules of SPARK.
At a package level, SPARK requires an own-variable
clause to identify package state variables, where
present. The own variable of a package enclosing one
or more embedded packages must represent the overall
state of the outer package, including the embedded
states. This is done in SPARK using own-variable
‘refinement’. To support flow analysis of state varia-
bles, SPARK also requires an initialisation clause to
identify any package whose body initialises its state
variable(s). These may be identified from the INITIAL-
ISATION part of the associated B machine.

In the autopilot implementation, this approach
resulted in the top-level autopilot state being refined in
terms of the states of autopilotcontrols, altitude and
heading. In turn, heading’s internal state was refined in
terms of those of roll and yaw, and so on. It is interest-
ing to note that we had to make use of our insight into
the system requirements to arrive at the final package
structure for the autopilot, in particular to extract
external interfaces and collect together ‘related’
machines. It is likely that an automatic code generator
would have to adopt a more ‘naive’ approach, resulting
in a less understandable SPARK program.

7.3 Operation refinement into SPARK
Once the most appropriate SPARK package structure
had been determined, the outline of these packages was
coded, with B operations mapped into SPARK proce-
dures (or functions if they return a simple result and
are free of side-effects). Functions in B that have not
been refined into operations would also be mapped
into SPARK function definitions. At this stage, appro-
priate SPARK annotations would be added to each
procedure or function specification, enabling the
SPARK examiner to carry out the static semantic
checks to ensure conformance to SPARK. Annotations
for information-flow relationships, which would be
derived from an understanding of the B description of
the system, would be checked for consistency by the
examiner.

128

With this manual approach to transition from B to
SPARK, there remains the possibility of additional
design work being carried out in SPARK. Specification
information can then be entered as SRARK proof con-
texts, and the SPARK examiner can be used to gener-
ate proof obligations. In particular, a restricted form of
verification, not directly addressed by the B toolkit but
of key concern for high-integrity program development,
is the proof of the absence of run-time errors, such as
subrange violation. With the SPARK toolset, proof
obligations associated with the relevant statement and
expression for forms are generated automatically.

7.4 Experiences from this case study
The autopilot system is a reactive system, with rela-
tively few state data and no complex invariants. Its
main purpose is continuously to adjust the system out-
puts according to its current inputs. For this a func-
tional style of specification was fairly natural, and it
made the transition to SPARK relatively straightfor-
ward. However, many safety-critical systems have these
characteristics, and a similar approach is likely to be
appropriate again.

In this study, we demonstrated that it is possible to
produce a well-designed and easily understood SPARK
implementation from a well-presented B specification,
in a manner that allows relatively straightforward com-
parison between the two. A number of proposals were
made to guide the transition from B machines and
operations to SPARK packages and subprograms and
the use of B invariant and initialises clauses in deter-
mining SPARK own-variable annotations. We also
investigated how pre- and post-conditions can be
entered as SPARK proof contexts allowing verification
of any further design changes, and how it is possible to
support a proof of the absence of run-time errors
through the use of B invariants.

A significant issue in making the transition from B to
SPARK is determining how far we should first refine
the B specification. Our experience suggests that to per-
form some refinement of the specification into a design
makes the eventual transition easier. In particular, the
following activities should be carried out:
(a) algorithmic refinement of the specification to
remove parallelism and any non-determinism
(b) data refinement to a point where the B data types
have an obvious SPARK counterpart; for example, to
replace sets by sequences, which can be implemented as
arrays.
However, we found that it was not useful to refine the
entire specification down to the level of a B implemen-
tation before making the transition to SPARK. Doing
this would require all explicit state variables to be
replaced by B toolkit library machines; as these are
very low-level building blocks, this approach tends to
result in a more fragmented code and data structure
than would naturally be written in SPARK.

The overall aim should be to reduce the gap between
the refined B and the SPARK code, such that the gen-
eration of SPARK code becomes a transcription exer-
cise that can be verified by inspection. The SPARK
code should be readily understandable in its own right,
for the benefit of subsequent activities such as review,
test-case generation, maintenance etc.

It is significant that we had to make use of our
insight into the system requirements to arrive at a suit-
able program structure (in particular to extract external

IEE Proc.-Sojtw. Eng., Vol. 144, No. 2, April 1997

interfaces and collect together ‘related’ machines). Such
improvements to the design would be difficult for an
automatic code generator to perform.

8 Proof using B toolkit

This strand of work in the B user trials project investi-
gated the facilities for proof provided by the B toolkit.

8. I Proof support in B toolkit
A guiding principle in the design of the B method has
been to make practical the proof of internal consistency
of specifications and the correctness of their refine-
ments. Thus the structuring mechanisms in the B
method decompose the overall proof task into smaller
proof tasks in a compositional fashion. The verification
of a development is based on the generation and dis-
charge of a number of proof obligations that together
ensure consistency and correctness of design.

Within the B toolkit, proof is performed in a cycle of
automation and interaction, given diagrammatically in
Fig. 3. First, the autoprover is used to discharge obliga-
tions using the built-in rulebase. Then the user browses
the remaining un proven obligations and selects one to
analyse. The leaves of its failed proof search tree are
examined, and the user selects a leaf that is believed to
be valid. This is asserted as a lemma that proves the
selected proof obligation. Lemmas thus generated are
then proved interactively, using the interprover, by
adding rules to the user’s rule set. This cycle is repeated
on other obligations as desired. The proof obligations
are then discharged when the autoprover is run again.
This cycle is repeated until all the proof obligations are
discharged. Each iteration of this cycle introduces a
new ‘level’ of user theory, thus allowing the addition of
only those rules that are necessary to prove the current
obligations.

Automated proof is based upon a large rulebase of
built-in rules and associated control tactics. This rule-
base is not normally visible to the user, but rather pro-
vides a number of ‘hooks’, whereby user rules for
forwards and backwards proof are called from the

automatic process. For the purposes of this project, the
internal structure of the built-in rulebase was investi-
gated in greater detail than is normally required
[Note 31. Within the rulebase, rules are organised into
‘theories’, linear collections of rules that are searched in
sequence. Each rule can include a tactic call that directs
the prover in the proof search, including tactics that
encode the dependencies between rule sets. Thus the
theories are not logical theories in the usual sense, as
they are characterised by their use in proofs rather than
logical form and provide a control strategy for guiding
the automatic proof.

8.2 Investigations into proof process
We compared proof facilities in the B toolkit with the
Mural system [35] in its instantiation for VDM [37] on
a small but non-trivial refinement and proof. The sys-
tems are comparable as both support fully formal
development in the model-oriented style, including
specification, refinement and proof; both support the
‘posit and prove’ approach, separating out the develop-
ment of specifications, proof obligations and proofs;
and both make use of extensive ’base theories’ of proof
rules supplied with the system and allow for the devel-
opment of ‘user theories’. However, the two systems
differ markedly in their mechanisms for constructing
proofs and maintaining the theory store. A fuller dis-
cussion of this work can be found in [38].

8.2. I Automated search: Although both systems
automatically generate proof obligations, their
approaches to discharging them differ radically. The B
toolkit aims for a highly automated approach with user
intervention when necessary: the autoprover discharges
a percentage of the proof obligations immediately,
using an optimised search strategy based on the
arrangement of the rulebase as discussed above. This is
highly effective, especially on the more trivial and unin-
teresting obligations, typically involving the proof of

Note 3: The source of the rule base was made available courtesy of B-
Core (UK) Ltd

--c 4 proof obligations add user rules

fail

fail

proven
obligations

u
Fig.3 Proof cycle in B toolkit

IEE P?oc.-Sojtw. Eng, Vol. 144, No. 2, April 1997 129

type assertions. However, when it fails, user interven-
tion is not well supported.

In contrast, in Mural, the basic mode of proof is
highly user-driven, with only minimal automation
available. The search is user guided; machine search for
applicable rules is available and effective, but the user
controls how much of the current context is considered
in the search. The user gains insight into the proof, but
this step-by-step proof process is time consuming.

8.2.2 Reuse of user theories: In the B toolkit,
when the autoprover fails to prove obligations, the user
is invited to intervene to prove the remaining obliga-
tions. This is carried out by adding new rules into a
user theory file. The rules that the user defines fall
broadly into three categories: rules that are specific to
the current machine; generic rules that define user-
defined functions; and rules that give additional prop-
erties of the built-in operators. The first are useful only
in the current machine, the second are likely to be gen-
erally applicable to the application domain in hand,
and the third are likely to be re-usable in all domains.

However, the B toolkit does not encourage the easy
re-use of user defined rules, as user theories are specific
to the lemma currently being proved and so cannot be
re-used for other proofs. The rulebase is opaque so the
user cannot see what rules have already been defined
and avoid duplication, or insert rules into the rulebase
in their ‘logical place’, grouped with similar rules. The
#include facility of the B toolkit can be used to enable
re-use, whereby libraries of rules are constructed inde-
pendently in files and imported into user theories as
required. However, this is a rather ad hoc method that
is awkward to use and poorly documented.

This contrasts with the transparency of the Mural
system. The user can browse existing theories, adding
rules to them to cover perceived deficiencies. Further,
for application-specific functions, user libraries can be
added into the hierarchy of theories, inheriting base
theories as appropriate. Thus users can build up a re-
usable library to support their own application
domains. However, as proof is performed by hand, typ-
ically tactics are not introduced to integrate new rules
into the search procedure.

8.2.3 Proving lemmas: In the B method, it would
be desirable to add user defined rules as lemmas and
give separate proofs to verify them. However, only
those lemmas that are conjectured by the toolkit can be
proven. User rules are assumed to be valid and are not
verified. This is potentially a dangerous facility as
inconsistent rules can easily be added.

To synthesise the proof of lemmas, it is possible to
fabricate a rule similar to the desired lemma in such a
way that it will be proved each time it is applied. This
requires building a statement of the rule as a premise of
the rule itself. Then, when the rule is applied in a back-
wards proof, the rule becomes a sub-goal and is then
proven by the system. This method is valid, since the B
method uses classical logic, and the deduction theorem
holds, but it is clearly unsatisfactory.

Again, we contrast with the Mural system, where
new rules are either marked as being axioms or derived
rules. Clearly axioms need no proof, and the user risks
inconsistency. The use of derived rules is preferred, and
they are marked as unjustified until a separate proof is
given for them. These derived rules can be used in

130

proofs before they are proven, and the system main-
tains a record of dependencies between proofs.

8.3 Experiences from this case study
Although formal specifications are increasingly being
used in industrial systems development, few are using
formal proof to any great extent. Proof is perceived as
an expensive and highly specialised task that is justifia-
ble only in the most safety-critical applications. The B
toolkit does, however, support an approach to deriving
proof that is reasonably effective. The autoprover often
works well to discharge automatically a significant per-
centage of proof obligations. However, large-scale
development may generate several hundreds of proof
obligations, and, even if the autoprover discharges, say,
80% of them, this still leaves very many remaining to
be considered by user intervention. For interactive
proof, the B toolkit was found to be in need of
improvement and the example of the Mural system was
instructive.

We propose the following suggestions for improving
the B toolkit’s approach to the development of proof in
the software development cycle.
(a) User viewing: clarity and openness of the rulebase
are essential in a user-directed proof in order for the
user to guide the system in the use of existing rules and
to allow inspection and analysis of the rulebase to
establish confidence in its consistency.
(b) Aiding the autoprover: as the proof cycle alternates
between automated and interactive proof, inevitably, it
is necessary for the user to help the autoprover by sup-
plying appropriate rules and tactics. These are cur-
rently added though a number of predefined ’hooks’,
whereby user defined tactics or rules can be called. It
would often be more convenient to be able to modify
the existing rules and tactics in situ.
(c) Re-use of rules: to ease the discharge of large num-
bers of obligations, it is necessary to be able to build
libraries of user-defined rules that can be re-used,
rather than regenerated, as needed. These rules also
need to be to be proven themselves to ensure that
inconsistency is not introduced.
(d) Efficient search: the B toolkit already provides an
efficient search for its autoprover using its base rules. It
would be helpful, in addition, to provide a search facil-
ity to help the user browse the proof space in the inter-
prover.
(e) Managing change: the machine needs to recognise
dependencies between the formal objects to maintain
the integrity of the system. In a development environ-
ment specifications are continually evolving. When a
modification occurs, the system should, to a large
extent, be able to re-establish the consistency of proofs
without intensive user involvement.
(f> Graceful failure: when a machine proof fails and
control is returned to the user, it is worthwhile making
an effort to ‘fail gracefully’ and present the current
state of the proof in a form that will aid understanding
of why the failure has occurred and how best the user
can intervene to proceed with the proof.

9 Overall conclusions

9. I Methodology
The B abstract machine notation provides a semanti-
cally strong, formally based development methodology

IEE Proc.-Softw. Eng., Vol. 144, No. 2, April 1997

supporting stepwise refinement with a rich modularisa-
tion mechanism. The structuring mechanisms provided
yield a highly compositional approach to development
and proof construction, such that the validity of imple-
mentations and proofs is maintained when specification
components are used in larger structures. However, this
underlying quest for compositionality does lead to
some constraints that can be restricting in software
development:

9. I. 1 Machine structuring: The structuring mecha-
nisms provided impose a rigid discipline that may cause
problems for developers accustomed to other method-
ologies, such as VDM or Z. In particular, an object-
based style of architecture is prescribed for implemen-
tations in which only scalar values (object identifiers)
are passed between operations. A less prescriptive
method is likely to be more effective for data-rich
structured analysis and design.

The static nature of the machine structuring required
to enable proof decomposition imposes constraints on
the possibilities for system decomposition. For examo-
ple, a multiple-read, single-write discipline is required
for machine inclusion.

9.1.2 Language: Some useful constructs are not
available; for example, record types had to be imple-
mented algebraically and there is little support for
numerical calculations. Furthermore, there are addi-
tional restrictions on the use of certain constructs, such
as sequencing in abstract specifications.

The untyped logic leads to a uniform treatment of
proofs of typing and other obligations; however, this
merges different aspects of verification that could well
be better separated. In particular, many proofs are
required that would be part of the type checking in a
typed language and would thus never arise as proof
obligations in that setting.

The requirement for operations to maintain the
invariant explicitly, while providing an opportunity to
prove the internal consistency of a machine, does tend
to encourage a less abstract definition of operations.
Furthermore, the use of generalised substitutions and,
in particular, the programmatic syntactic sugars,
focuses attention on algorithm development.

9.1.3 Refinement and implementation:
Although we were able to conduct refinements success-
fully, it was not considered the best use of resources
blindly to attempt to refine to code and prove a whole
specification. Rather, some enlightened focusing of
resources on areas where greatest attention is merited is
beneficial.

The standard library machines to which implementa-
tions must ultimately be targeted are rather low level,
and so the use of the code generation facilities incurs
the overhead of adjusting specifications and develop-
ments towards implementations on target machines
manipulating simple data structures. These machines
and their implementations should also be proved cor-
rect, once and for all, by the developers of the B
method and tools.

In code generation, it was not always the case that
the desired program structure was that that arose from
the code generation. However, this may well always be
a problem with automatic code generation.

IEE Proc.-Softw. Eng, Vol. 144, No 2, April 1997

9.2 Tools
The B toolkit provides a rare breadth of support for
formal development. It combines facilities for the con-
struction of structured abstract specifications, their ani-
mation and the proof of their internal consistency, with
support for verifiable data refinement and operation
decomposition through a combination of interactive
and automatic proof and the ability automatically to
generate code from low-level specifications.

At the time of this evaluation, however, there were
some shortcomings in the toolkit that caused us prob-
lems:

9.2. I Specifications: The tool support was at best
slow for large specifications and, for our largest specifi-
cations, the proof obligation generation and autoproof
tools appeared not to terminate. Naturally, this might
also be attributed to a failure on the user’s part to
structure the specification sufficiently. The facilities for
multi-person development were also rather restrictive.

9.2.2 Animation: The animation support was an
extremely useful and successful means of validating and
debugging our specifications. However, it could be
improved by the provision of a greater library of sim-
plification rules as, presently, the user has to provide
many rules to aid the simplifier. It would also be help-
ful if the support for animation were extended to
refinements and implementations. Another useful facil-
ity would be support for a ‘batch’ style of animation to
enable the running of test suites.

9.2.3 Proof: Compared with some other proof tools,
the proof support provided by the B toolkit is relatively
accessible, and it was quickly possible to begin success-
ful proving. However, in the long term, the approach is
limited by its prescriptive style and opacity. For exam-
ple, the built-in rules that are provided for the basic
constructs of the language are not available for inspec-
tion. Thus, when the proof fails, it is unknown whether
this is because of a shortcoming in the logic of the rules
or the tactic for constructing the proof.

There is no direct support for building a structured
collection of user rules, and thus a naive user would be
required to add the same rule to many user theories.
Neither is it possible to build a multi-level justification
of a rule. Rules added by the user are treated as axioms
and are not subject to proof themselves. There is also a
lack of integration of rules between different aspects of
the toolkit. Sometimes, the same definition had to be
entered three times, as a definition in the specification,
as a rule in the animation theory and as another rule in
the proof theory.

For these and other reasons, many proof obligations
remained unproven, and it is likely that B will be used
primarily for its ability to provide tool-supported for-
mal specification, development and code generation
facilities, while proofs are either left unattempted, per-
formed only at the most abstract specification level, or
only for small critical system subcomponents.

Further discussion of the B method and toolkit can
be found in [39].

9.3 Applicability
Overall, the case studies have shown the feasibility of
the formal approach to software development for a
variety of development tasks and in a variety of types

131

of system. Our experience of the B method and toolkit
was mixed: it does provide a range of support for many
parts of the development lifecycle; however, our success
in different tasks varied.

In the requirements phase, where system descriptions
are wanted that are as close as possible to ‘the real
world’, B did not perform so well. This is not so much
a failing of the formal approach generally, but specific
to the B method, which adopts a minimalist approach
to specification to facilitate the subsequent develop-
ment task.

The B method’s major strength, in common with
other model-oriented formal methods, was shown to be
in the high-level - low-level design stages. The B toolkit
provides support for the development of structured
abstract specifications, for the animation of those spec-
ifications and for the generation and discharge of con-
sistency proof obligations. It is also possible to
construct and justify data and algorithm refinements
and to develop them to the stage where code can be
generated automatically from them. For these design
activities, compared with other model-oriented formal
methods, B favours the latter stages of development,
the decomposition of system into modules and the
development of each module towards code. This focus
does, however, tend to discourage abstraction in high-
level designs.

The support for low-level design is geared towards
the automatic generation of code, a feature that
worked well provided a prescribed architectural
approach was adopted. However, to conform to certain
standards for safety-critical software, it was not appro-
priate to rely on the integrity of an automatic code gen-
erator, and manual translation from an intermediate
design into the target language was preferred. TI-‘ 11s was
found to be a viable alternative and led to a satisfac-
tory design. B’s philosophy regarding proof is towards
a high degree of automation. The automatic proof
facilities were certainly useful to filter out the simplest
proof obligations. However, with the state of current
theorem-proving technology, it seems that some degree
of user intervention in the proof process is inevitable,
and therefore attention must be paid to providing
industrial-strength support for interactive proof.

10 Acknowledgments

We are indebted to Dr Richard Fink and Susan
Oppert, of the West Middlesex University Hospital,
and Dr Paul Collinson, of the Mayday Hospital, for
their help in the formulation of the medical informa-
tion management case studies. Clive Lee and Andrew
Storey collaborated in the evaluation of the B method
and toolkit and in the development of training courses
and a B method manual [36]. Finally, we thank B-Core
UK for their interest in the project, for their support
and their professional approach towards collecting and
addressing our problems.

11 References

1 ABRIAL, J.-R.: ‘The B-book’ (Cambridge Unicersity Press, 1996)
2 LANO, K.: ‘The B language and method: a guide to practical for-

mal development’ (Springer-Verlag, 1996), FACIT series
3 WORDSWORTH, J.: ‘Software engineering with B’ (Addison-

Wesley Longman, 1996)

BICARREGUI, J.C., DICK, J., and WOODS, E.: ‘Quantitative
analysis of an application of formal methods’, Proceeding of
FME’96. third international svmDosium of Formal methods
Europe, ’(Springer-Verlag, March 1’996), pp. 60-73 (LNCS 1051,
ISBN: 3-540-60973-3)
HOARE, J., DICK, J., NEILSEN, D., and SORENSEN, 1.:
‘ADolving the B technologies to CICS’. Proceeding of FME’96.
thcra inikrnational symGsium of Formal metKods Europe,
(Springer-Verlag, March 1996), pp. 74-84 (LNCS 1051, ISBN: 3-
540-60973-3)
DEHBONEI, B., and MEJIOA, F.: ‘Formal methods in the rail-
ways signaling industry’ in NAFTALIN, M., and DENVIR, T.
(Eds.): ‘Proceedings of Formal methods Europe ’94’. Lecture
notes in computer science, (Springer-Verlag, 1994), pp. 26-34
JONES. C.B.: ‘Svstematic software develonment using VDM’
(Prentice-Hall, 1990-
SPIVEY, J.M.: ‘The Z notation: a reference manual’ (Prentice-

-
Hall, 1989)
MORGAN, C.: ‘Programming from specifications’ (Prentice-
Hall, 1990)

10 ‘CORE - the method’. SD CORE manual, SD Software Technol-
ogy Centre, April 1989

11 MOULDING, M.R., and SMITH, L.C.: ‘Combining formal
specification and CORE: an experimental investigation’, Softw.
Eng. J., 1995, 10, pp. 3142

12 SMITH, L.C.: ‘Formalising CORE requirements’. PhD thesis,
Cranfield Institute of Technoloev. 1993

13 MOULDING, M R ‘Using XMN with CORE’. RMCS ref

14 MOULDING, M R , NEWTON, A R , and RUSHTON,
BUT/RMCS/MRM/I EXT/vl, January 1995

T.G.A.: ‘A practical evaluation of AMN and the B toolkit for use
with CORE’. RMCS ref: BUTIRMCSIMNRI2.EXTIv. 1, May
1995

15 FINK, R. et al.: ‘Data management in clinical laboratory infor-
mation systems’ in REDMIL, F., and ANDERSEN, T. (Eds.):
Directions in safety-critical systems’ (Springer-Verlag, 199 3)

16 OPPERT, S.: ‘WMH case study, system definition’. MORSE/
WHMISOI 1 /V 1

17 HESAN, H. et al: ‘Safety properties’. Lloyds register of shipping,
MORSEILLOYDSIHALI44N2

18 ROBERTS, N.H. et al.: ‘Fault tree handbook’. U.S. Nuclear
Regulatory Commission, NUREF-0492, January 1986

19 LEVESON, N.G., and HARVEY, P.R.: ‘Analysing software
safety’, ZEEE Trans. Softw. Eng., 1983, SE-9, (5), pp. 569-579

20 CLARKE, S.J., and MCDERMID, J.A.: ‘Software fault trees
and weakest preconditions: a comparison and analysis’, ZEE
Softw. Eng. J., 1993, 8, pp. 225-236

21 ‘A guide to hazard and operability studies’. Chemical Industries
Association, CIA/CISHEC/9006/1000/9.5C, 1991

22 LESAN, H.: ‘Final report on the use of B for hazard analysis’. B
User Trials External Deliverable Dll(3.1/3), 1995

23 BRUNS, G., and ANDERSON, S.: ‘The formalization and anal-
ysis of a communications protocol’, Form. Asp. Comput., 1994, 6,

24 BICARREGUI, J.C.: ‘A model-oriented analysis of a communi-
cations protocol’. Rutherford Appleton Laboratory Technical
report RAL-93-099

LUND, C.J., and GRIST, W.D.: ‘Multiprocessor shared-memory
information exchange’, IEEE Tvans. Nucl. Sci., 1989, 36, (l), pp.
626-633

26 BICARREGUI, J.C., and RITCHIE, B.: ‘Invariants, frames and
postconditions: a comparison of the VDM and B notations’ in
WOODCOCK, J.C.P., and LARSEN, P.G., (Eds.): “Proceedings
of Formal methods Europe ’93’. Lecture notes in computer sci-
ence, vol. 670, (Springer-Verlag, 1993), reprinted in IEEE Trans.
Softw. Eng., 1995, 21, (2)

27 BICARREGUI, J.C.: ‘Algorithm refinement with read and write
!rames’ in WOODCOCK, J.C.P., and LARSEN, P.G. (Eds.):
Proceedings of Formal Methods Europe ’93’. Lecture notes in

computer science, vol. 670, (Springer-Verlag, 1993)
28 BICARREGUI, J.C.: ‘Operation semantics with read and write

frames’ (Springer-Verlag, 1994 (Sixth refinement workshop,
Workshops in computer science))

29 BICARREGUI, J.C.: ‘Intra-modular structuring in model-ori-
ented specification: expressing non-interference with read and
write frames’. PhD thesis, University of Manchester (UMCS-95-
10-1)

30 ‘Information technology-Computer graphics and image process-
ing-Graphical KErnel System (GKS) Part 1 : functional descrip-
tion’. International Organisation for Standardization, (Draft
Internation Standard), 1993

31 BICARREGUI, J.C., RITCHIE, B., and HAUGHTON, H.:
‘Experiences in using the abstract machine notation in a GKS
case study’ in NAFTALIN, M., and DENVIR, T. (Eds.): ‘Pro-
ceedings of Formal methods Europe ’94’. Lecture notes in com-
nuter science. (Snringer-Veralg. 1994)

(l), pp. 92-112

25 SANTOLINE, L.L., BOWERS, M.D., CREW, A.W., ROS-

32 ‘CLUTTERBUdK, 6.L.: ‘Thekification of low-level code using
the R-toolkit’. B User Trials Deliverable 3.2/2, BUTIPVLI

1
~~~ ~ . . .... 

PRFREPIl .L 
33 CARRE, et al.: ‘SPARK - the SPADE Ada Kernel edition 3.1’. 

Program’ Validation Ltd, 26 Queen’s Terrace, Southampton 

IEE Pvoc.-Softw. Eng., Vol. 144, No. 2, Apvil 1997 15L 



34 FINNIE. G.J.. and CLUTTERBUCK. D.L.: ‘AMN to SPARK 
implementation case study’. B User ’ Trials Deliverable 3.213, 
BUTIPVLISPKREPIvl , 1 

35 JONES, C.B., JONES, K.D., LINDSAY, P.A., and MOORE, 
R.: ‘Mural: a formal development support system’ (Springer- 
Verlag, 199 1) 

36 SCHARBACH, P.N., and STOREY, A,: ‘B method manual’. B 
User Trials Exteranl Deliverable, D 9  (2.216) 

37 BICARREGUI, J.C., FITZGERALD, J.S., LINDSAY, P.A., 
MOORE, R., and RITCHIE, B.: ‘Proof in VDM: a practitioners 
guide’ (Springer-Verlag, 1994) 

38 BICARREGUI, J.C., and MATTHEWS, B.M.: ‘Formal methods 
in practice: a comparison of two support systems for prooP in 
BARTOSEK et al. (Eds.): ‘Proceedings of SOFSEM ’95: Theory 
and practice of informatics’ (Springer-Verlag, November 1995), 
pp. 184205 

39 CLUTTERBUCK, D.c., LESAN, H.A., NEWTON, A.R., 
RUSHTON. T.G.A.R.. SCHARBACH. P.N., and STOREY. 
A.C.: ‘Report on the use of the B method and toolkit’. B User 
Trials External Deliverable D6(2.113), 1994 

40 “B-toolkit user’s manual, release version 2.0’. B-Core (UK) Ltd, 
1994 

IEE Proc -Softw. Eng, Vol. 144, No. 2, Apvil 1997 133 

View publication statsView publication stats

https://www.researchgate.net/publication/3420121

	Formal.pdf
	formalmethodsintopractice (1).pdf



