
In IEE Proceedings on Software Engineering, 144(3), 175-184, June 1997.

A Formal Framework for Hypertext Systems�

Mark d’Inverno and Mark Priestley Michael Luck

School of Computer Science, Department of Computer Science,

University of Westminster, University of Warwick,

115 New Cavendish Street, Coventry

London, W1M 8JS, UK CV4 7AL, UK

fdinverm,priestmg@westminster.ac.uk mikeluck@dcs.warwick.ac.uk

Abstract

Hypertext and hypertext systems are seeing a remarkably rapid growth in both use and
development. In this paper we aim to consolidate on previous work by presenting a spec-
ification that captures the essential abstractions of hypertext systems. We argue that this
specification provides a framework for hypertext systems in that it provides explicit and
unambiguous definitions of hypertext terms, an explicit environment for the presentation,
comparison and evaluation of hypertext systems, and a foundation for future research and
development in the field.

1 Introduction

Many formal reference models of hypertext have been presented in the literature [1, 14, 20, 25,
26] but, whilst these models give valuable theoretical insights into certain aspects of the struc-
ture of hypertext, they are not in themselves adequate vehicles for the presentation, evaluation
and comparison of different systems. In this paper we describe an approach to the formal specifi-
cation of hypertext systems which allows the development of a common conceptual framework
and provides an environment in which to discuss, design, develop and evaluate them.

We have argued elsewhere [22] that a formal framework must satisfy three distinct require-
ments, described below.

1. It must precisely and unambiguously provide meanings for common concepts and terms
and do so in a readable way. A common conceptual framework will then exist if there is
a generally held understanding of the salient issues involved.

2. It should enable alternative designs of particular models and systems to be explicitly pre-
sented, compared and evaluated.

3. It should provide a foundation for subsequent development of new and increasingly more
refined concepts. In particular, practitioners should be able to choose the level of abstrac-
tion suitable for their purpose.

�An earlier version of this paper has appeared as [11].

1

The use of formal concepts allows explicit and unambiguous descriptions of terms and com-
plex systems to be given. In our model, the Z specification language [24], in particular, is used
as a means of formalisation for a number of reasons. First, the language is based upon primi-
tive mathematical concepts such as set theory and first order logic, making it accessible to re-
searchers from a variety of different backgrounds. Second, it is expressive enough to allow
a consistent, formal and unified account of a system and its associated operations. Third, we
have considerable experience of the benefits of constructing formal models using Z in a number
of fields, including interactive conferencing systems [6], distributed artificial intelligence [5],
multi-agent systems [9, 10] and design methodologies [8]. In particular, we have found Z ap-
propriate for building formal frameworks, necessary to enable a rigorous approach for any dis-
cipline [6, 8, 21, 22].

Such frameworks are provided through well-structured specifications. These describe sys-
tems at their highest level of abstraction, with complexity being added at each successive lower
level, allowing irrelevant information to be removed from consideration. As a result, different
modular components of a system can be isolated and described separately, and commonalities in
different parts of a system can be recognised and presented as such. Abstraction renders preju-
dice about design unnecessary; consequently, a specification of a general system can be written.
Indeed, Z schema boxes are ideal for manipulation in the design process since, viewing in many
cases the design process as a constraint of possible states, design strategies can be presented as
predicates in the appropriate state schemas. Such structured specifications, we argue, are tools
which enable a more systematic analysis of hypertext.

An earlier attempt in the literature to provide a formal specification of a ‘general’ hypertext
system, known as the Dexter Model of Hypertext [17], also used Z, with the motivation — to
capture formally and informally the important abstractions found in a wide range of existing and
future hypertext systems — similar in some respects to our own. The Dexter Model essentially
comprises a collection of components — links and nodes — with an accessor function that maps
a unique identifier to a node and a resolver function that maps descriptions of components to the
components themselves. On top of this base, operations of adding, modifying and retrieving
components are specified.

However, the Dexter Model specification is often obtuse and over-complicated, and only
the most experienced Z practitioner with a good knowledge of hypertext would be able to gain
much from it. Part of the problem is that there is no structuring of the specification. Instead,
it starts with a large collection of given sets and introduces many concepts and functions be-
fore the first state schema is actually presented. In this sense, the specification is flat and does
not aid the reader in building up a picture of the model of a hypertext. Moreover, the specifica-
tion describes hypertext at a very low level of detail and is hence much more oriented towards
implementation concerns. We argue that the immediate complexity does not serve the typical
hypertext practitioner in providing an accessible model that can commonly be adopted by the
hypertext community, and that the lack of abstraction mechanisms within the flat specification
does not provide a framework in which to present and develop ideas concerning the design of
hypertext systems.

A second effort at dealing with this problem is based around the Hypertext Abstract Machine
(HAM) [3], which is a general-purpose server for a hypertext storage system. HAM has sev-
eral features similar to our model, including nodes, links, graphs and attributes, and it describes
the way information is represented before being used in information retrieval. The motivation
of the work is to lay the foundations for a standard terminology in the development of hyper-
text technology. Though an important addition to the field, the model is only concerned with

2

problems of storage, and not with representing an information retrieval session. In addition, the
model is not formal, and consequently does not provide the precision of a mathematical speci-
fication. Our work, by contrast, is both formal and, we argue, sufficiently expressive to provide
a framework within which to detail all aspects of hypertext.

The specification of our framework is split into four parts. The first of these, in Section 2,
presents what we believe is the most straightforward and intuitive description of a model of hy-
pertext systems where nodes are treated as given sets and links as pairs of system nodes. The
second part in Section 3 defines a mechanism for representing and designing history mecha-
nisms. The third part, presented in Section 4, builds on the basic model and increases the level
of specification detail in order to describe the internal details of a node. Both Section 2 and
Section 4 are divided into three subsections: the first defines the structure of the system, the
second defines the state of the system as it is being read, and the third presents a description
of the basic applications of hypertext, namely how it facilitates structured movement through
a particular information space. The last part, in Section 5, outlines how the model can be used
to detail other features and applications of hypertext. Finally, Section 6 provides a summary of
the paper and details current and future work.

2 The Basic Hypertext

2.1 Structure

At its highest level of abstraction, a hypertext system consists of a collection of basic elements.
Typically, these elements are called nodes, but the name can vary from system to system. For
example, in NoteCards they are cards [16], in KMS they are frames [2], in Intermedia they are
called documents [27] and in Augment they are known as statements [13]. In the specification
that follows, we choose to refer to these elements as nodes, as it is the most common term.

We start by defining the given set of nodes, and specifying that the contents of hypertext are
just a collection of nodes.

[NODE]

CONTENTS
Nodes : PNODE

On closer examination of hypertext systems, however, a rich and sophisticated structure is
revealed. In particular, between nodes there exist certain connections, known as links, each sug-
gesting some relationship between the nodes they connect. A link is a directional connection,
pointing from one node (sometimes referred to as the parent node) to another node (sometimes
referred to as the child node). It is therefore characterised by the nodes it connects, and can be
defined as such. At this level of representation, links are not physical constructs, but are just
connectivity relations between nodes (though we can add properties to links by elaborating this
representation as shown, for example, in Section 5.1).

LINK == NODE� NODE

LINKS
Links : PLINK

3

Consequently, we define a hypertext system as a collection of nodes and links, where links
must point from an existing system node. However, it is not necessary for a link to point to a
system node; many hypertext systems include the notion that some links only have the potential
to point to such a node. For example, the URL of an anchor in a WWW page could refer to a
non-existent page. This is recognised in the hypertext system definition below.

HYPERTEXT
CONTENTS
LINKS

dom Links � Nodes

2.1.1 Button Nodes

Though the definitions above cover the basic structure of hypertext, there are often some spe-
cial nodes that may be reached without using a link. We call such nodes button nodes. Further-
more, there may also be a default starting node for hypertext when a system is first used in a
session. These special nodes are specified in the schema below, where a StartNode is defined
to be optional. (Definitions of the non-standard optional, and related concepts, may be found
in Appendix A).

ButtonHYPERTEXT
HYPERTEXT
Buttons : PNODE
StartNode : optional [NODE]

Buttons � Nodes

StartNode � Nodes

StartNode � Buttons

2.1.2 Typed Links

A second useful specialisation of the basic structure relates to links. In some hypertext systems,
links may be grouped into Link Functions, as with the Up and Next functions of the emacs
INFO system. Rather than specifying a link the user instead specifies a function which isolates
an appropriate link.

LINKFUNCTION == NODE 7! NODE

TypedLINKS
LINKS
LinkFunctions : PLINKFUNCTION
S
LinkFunctions � Links

As an extra constraint, a particular system might insist that every link should belong to a
function but that a link must not belong to more than one function. In such a case, we would
simply include the following predicate in the above schema.

setdisjoint LinkFunctions ^
S
LinkFunctions = Links

4

2.2 The State of the Hypertext

Now that we have specified the structure of hypertext within this simple model, we must spec-
ify its state as it is used during an information retrieval session. All of the systems that we have
investigated make use of the notion of the position of a user within the information space, and
the history of that user’s information retrieval session. A history provides a record of the nodes
visited by a user in a session and, possibly, the way in which they were visited. Though there
may be several distinct histories maintained in a system for different purposes, we initially con-
sider the simplest kinds of browsing history, defined below by StandardHistory , the sequence
of all the nodes visited (including repeats), and Visited , the set of nodes that have been visited.
(A more detailed analysis of history mechanisms is provided in the next section.)

SimpleHISTORY
StandardHistory : seq NODE
Visited : PNODE

Visited = ran StandardHistory

Now, we represent a user session by the hypertext, the user’s history and current position
within the information space.

HYPERTEXTState
HYPERTEXT
SimpleHISTORY
CurrentNode : NODE

CurrentNode 2 Nodes

As mentioned previously, the buttons that become available during a session might be de-
pendent on the session itself. Here, the variableRunButtons , a superset ofButtons , represents
those nodes that can currently be visited without the use of a link. In particular, it is typical that
any previously visited node can be re-visited without using a link.

ButtonHYPERTEXTState
HYPERTEXTState
ButtonHYPERTEXT
RunButtons : PNODE

(de�ned StartNode) ^ (Visited 6= f g)) head StandardHistory = the StartNode

Buttons � RunButtons

RunButtons � Nodes

Visited � RunButtons

2.3 Applications

One of the benefits of our use of the Z specification language is that the various operations pro-
vided in a system can be specified within the same formal framework. This property is not
shared by many of the mathematical models presented in the literature; for example, Tompa
[26] uses hypergraphs to give a formal account of the structure of a hypertext, but then specifies

5

the operations of reading the hypertext using a mixture of pseudo-code and informal English
description. By contrast, a unified specification as provided here using Z, facilitates the explo-
ration of, and reasoning about, the properties of operations and their effects on the state of the
system in a formal manner.

Continuing with the specification, we state that an operation in an information retrieval ses-
sion will not alter the actual linked structure of the hypertext.

�HYPERTEXTState
HYPERTEXTState
HYPERTEXTState0

�HYPERTEXT

Starting a hypertext session changes the state of the hypertext by resetting the history.

Login
�HYPERTEXTState

StandardHistory 0 = hi

However, the operation depends on whether or not there is a defined start node for the sys-
tem. If no start node is defined, then it must be supplied by the user.

LoginStartNode
Login
�ButtonHYPERTEXT

de�ned StartNode

CurrentNode0 = the StartNode

LoginNoStartNode
Login
�ButtonHYPERTEXT
startnode? : NODE

unde�ned StartNode

startnode? 2 Nodes

CurrentNode0 = startnode?

At this point we can show how hypertext is used in an information retrieval session by mov-
ing through an information space using the hypertext system. Essentially, a hypertext system
supports two types of moves: first, a user may move from one node to another by means of a
link from their current node to a related node; second, if a user has some knowledge of a node,
because it is a button node or a previously-visited node, for example, they may move directly
to it without using a link.

The specification is structured by considering the properties that we require of a general
move operation first, before giving details of a particular move. This provides an example of
how Z has enabled us to modularise this specification and thus present the model in levels of in-
creasing detail. In particular, it shows how the small schemas defined in our specification can be
combined to define more sophisticated and complex states and operations. In general, a move

6

operation will alter the state of the hypertext: the current node may change and the history may
change, but the actual linked structure of the hypertext will remain unchanged. In addition, a
move operation may return a message to the user.

Move
�HYPERTEXTState
message! : optional [ERROR]

We can now distinguish between successful and unsuccessful attempts to move. A success-
ful move will update the history list, appending the node that has just been visited, and there
will be no message.

MoveOk
Move

Visited 0 = Visited [fCurrentNodeg

StandardHistory 0 = StandardHistory a hCurrentNodei

unde�ned message!

In contrast, failed moves leave the state of the hypertext unchanged, but require an error
message to be given.

MoveFail
Move
�HYPERTEXTState

de�ned message!

Moving from the current node to another node using a link can then be described as specified
in the following schema.

FollowLinkOk
link : LINK
MoveOk

CurrentNode0 = second link

Such a move can be made in one of two ways given by the schemas UserChoosesLinkOk
and UserChoosesLinkFunctionOkgiven below. In the first case user identifies the link, link?,
itself and in the second case the user identifies a link function, LinkFunction?, intended to iso-
late an appropriate link.

UserChoosesLinkOk
FollowLinkOk[link?=link]

link? 2 Links ^ �rst link? = CurrentNode ^ second link? 2 Nodes

7

FollowLinkFunctionOk
FollowLinkOk
TypedLINKS
LinkFunction? : LINKFUNCTION

LinkFunction? 2 LinkFunctions

CurrentNode 2 (dom LinkFunction?)

link = (CurrentNode;LinkFunction? CurrentNode)

UserChoosesLinkFunctionOk == FollowLinkFunctionOkn (link):

Moves not using links can be made using buttons by supplying as input the node to be visited.

MoveButtonOk
MoveOk
�ButtonHYPERTEXTState
�ButtonHYPERTEXT
button? : NODE

button? 2 RunButtons

CurrentNode0 = button?

Moving back to the previously visited node requires no input node. In the following schema
the history is not updated.

MoveBack
MoveOk

StandardHistory 6= hi

CurrentNode0 = last StandardHistory

An alternative way to update the history can be specified as follows where the last node in
the history is removed.

MoveBackAlternative
Move

StandardHistory 6= hi

unde�ned message!

CurrentNode0 = last StandardHistory

StandardHistory = front StandardHistory

This subsection has shown how, using the simple history mechanisms, structured movement
is facilitated through the information space. Clearly, however, there are a number of other, dif-
ferent possibilities for updating the history. If we are to fulfill the requirements of a framework
as a device to enable the presentation of particular hypertext systems, we require a much more
general history mechanism within which these different mechanisms can be accommodated,
considered next.

8

3 A History Mechanism Framework

In general, a hypertext system comprises a set of histories, each representing a different view of
the current information retrieval session of a user. In order for each of these histories to maintain
a coherent view, they must each be updated according to a well-defined strategy that depends
on the type of move made by the user. For example, in the soft-link hypertext model proposed
by Hu [19], the user’s history is only updated if a link is used. If a button move is made then
the history is not updated.

Now, in order to specify the kind of operations that will need to be performed on history lists
we must first define some generic schemas that specify useful functions on sequences. Below,
the function,Pre�xes , takes a sequence and returns the set of all prefix sequences. RestrictToLast
takes an element and a set of sequences, and returns all those sequences that contain the element
at the end of the sequence. Finally, the Longests and Shortests functions are each applied to a
set of sequences and return all those sequences that have a length greater than or equal to, and
less than or equal to, respectively, all others in the set.

[X]

Pre�xes : seq X � P(seq X)

RestrictToLast : (X � P(seq X))! P(seq X)

Longests : P(seq X)! P(seq X)

Shortests : P(seq X)! P(seq X)

8 x : X ; s : seq X ; ss : P(seq X) �

Pre�xes s = ft : seq X j t � s � tg ^

RestrictToLast(x ; ss) = fs : ss j x = last s � sg ^

Longests ss = fs : ss j (: (9 t : ss � (#t) > (#s))) � sg ^

Shortests ss = fs : ss j (: (9 t : ss � (#t) < (#s))) � sg

We can now specify the operations that may be used to update a particular history in which
the key component data type is a sequence of nodes referred to as a history list. Below, we
specify six such operations. The TruncLast and TruncFirst functions respectively truncate
the history list at the first occurrence of the last-visited node and the last occurrence of the last-
visited node. Add adds the last-visited node to the history list, while Leave leaves a history list
unchanged. The function, NoRepeat , only adds a node to a history if the node is not already in
the history and, finally, NoRepeatShunt behaves like NoRepeat except that when it appends a
node to a history list, the first node in the history is removed. Although this list of operations is
not comprehensive, and more are possible, it should be clear to the reader how other, particular
functions for maintaining histories, may be specified.

In these definitions we use the following type abbreviation.

HISTORYOP == (NODE� seq NODE)! seq NODE

9

TruncFirst ;TruncLast ;Add ;Leave;NoRepeat ;NoRepeatShunt : HISTORYOP

8 x : NODE; s : seq NODE �

TruncLast(x ; s) =

(� t : seq NODE j ftg = Longests (RestrictToLast (x ;Pre�xes(s))))^

TruncFirst(x ; s) =

(� t : seq NODE j ftg = Shortests (RestrictToLast (x ;Pre�xes(s)))) ^

Add(x ; s) = s a hxi ^

Leave(x ; s) = s ^

x 2 ran s) NoRepeat (x ; s) = s ^ NoRepeatShunt (x ; s) = s ^

x 62 ran s) NoRepeat (x ; s) = hxia s ^ NoRepeatShunt (x ; s) = hxia front s

Every type of move that needs to be distinguished is given a move tag for just that purpose.

[MOVETAG]

In general, a history can be defined by its history list, a function that states which operation
(as defined above) should be used to update the history and, optionally, a pointer to some node
in the history list. Note that the function that identifies the operation to be used to update the
history list is not only applied to the type of move but also to the length of the history (to take
into account bounded lists).

History
List : seq NODE
WhichOp : N ! MOVETAG ! HISTORYOP
Pointer : optional [N]
Length : N

de�ned Pointer) the Pointer 2 dom List

Length = #List

As an example of a particular history, consider the Recent history list in HyperCard, which
enables the user to display up to the last 42 cards visited (with no duplicates). We specify this
particular mechanism in the next schema. This schema states that the length of the history is
never greater than 42, that the history does not contain duplicates, and that there is no pointer In
addition, if the length of the list is less than 42, then the WhichOp function always selects the
NoRepeat operation, but if the length is exactly 42 then it selects theNoRepeatShunt operation.

HyperCardRecent
History

Length � 42
Length = #(dom List)
unde�ned Pointer

Length < 42) (8m : MOVETAG �WhichOp Length m = NoRepeat)
Length = 42) (8m : MOVETAG �WhichOp Length m = NoRepeatShunt)

As already stated, a hypertext system may, in general, maintain a set of histories, each rep-
resenting a different view of the users’s information session, and updated according to a distinct
strategy, specified by the local WhichOp function. IfVisited is taken to be the set of nodes that

10

the user has visited (as previously) then we can specify the constraint that each history list must
contain only nodes visited by the user.

GeneralHISTORY
Histories : F History
Visited : FNODE

8 h : Histories � ran h:List � Visited

We now provide a general definition of how, given a node and a move tag, a history is up-
dated, defined below asUpdate . Here, the history list is updated by applying the operation iden-
tified by the WhichOp function to the node and the current history list. The other variables of
a history are unchanged.

Update : NODE ! MOVETAG ! History ! History

8 n : NODE; mt : MOVETAG; h; h0 : History �
Update n mt h = h0 , h0:List = (h:WhichOp h:Length mt) (n; (h:List)) ^

h0:WhichOp = h:WhichOp ^

h0:Pointer = h:Pointer

After every move, each individual history is updated in this way.

UpdateHistory
�GeneralHISTORY
mt : MOVETAG
node : NODE

Histories 0 = fh; h0 : History j (h 2 Histories) ^ h 0 = Update node mt h � h0g

Visited 0 = Visited [fnodeg

For example, one of these histories might be updated using the Add operation every time a
node is visited using an organisational link. This particular subgraph can then be presented to
the user to show the complete path that a user has taken through the hypertext.

Note that we have not stated how pointers are updated in this specification. To do so, we can
specify extra operations as, for example, given by the operation schema below, MovePointer ,
which simply moves the pointer to a node in the history list.

MovePointer

new? : N
�History

new? � Length

the Pointer 0 = new?
List 0 = List

We can then model pointer-driven data structures such as the Netscape Back and Forward
operations in which moving back and forward through the history decrements or increments the
pointer value by 1, respectively. In addition, whenever a new node is accessed using a link in
Netscape, nodes occurring after the pointer in the history list are truncated.

11

TruncatePointerList

�History

List 0 = (1 : : (the Pointer)) C List

the Pointer 0 = the Pointer + 1

In this section, we have not provided extensive specifications of particular history mecha-
nisms, and instead focussed on the key framework components, illustrating them with exam-
ples. A more extensive treatment in a similar spirit is provided by Dix and Mancini [12], who
compare several mechanisms in more detail.

4 The Highlight Hypertext

In order to model the fact that a node can contain certain hypertext elements, we now lower the
level of description of a hypertext system. These hypertext elements are references, typically
taking the form of highlighted text, which can then serve as the destination of, or source for,
hypertext links. Many hypertext systems facilitate not only links connecting nodes, but regions
within nodes.

4.1 Structure

Each node has a (possibly empty) set of internal hypertext references which we call highlights.

[HIGHLIGHT]

In general a node contains a set of highlights.

HighlightSetNODE
NodeHighlights : PHIGHLIGHT

One possible model for the above description is to represent this set as a sequence. If, in
addition, there are no repeated highlights then an injective sequence can be used. As we shall
see in Section 4.3, this model then supports the operations of scrolling backwards and forwards
through these highlights.

HighlightNODE
Highlights : iseq HIGHLIGHT

The inside of each node then consists of highlights.

HighlightNODES
CONTENTS
GetHighlights : NODE 7! HighlightNODE

dom GetHighlights � Nodes

Next, we extend the notion of a link so that it can point to highlights within a node. We use
the categories of Conklin [4] who differentiates two categories of link by drawing a distinction
between organisational and referential links. We use these categories and introduce a third type
which can be found in current hypertext systems, known as span links.

12

Organisational links Many hypertexts have an underlying structure, either as a consequence
of the information space itself, or of the way in which information space is required to
be presented to a user. Organisational links capture this underlying structure. For exam-
ple, they may be hierarchical in nature so that there could be a standard way within the
hypertext of moving from a given node to a parent, child or sibling node.

Referential links Referential links are typically non-hierarchical. They connect a highlight,
which can be a point or a region within a node, to another node. Referential links are
motivated by the content of a node, rather than by the underlying structure of the hypertext
or information space.

Span links We define span links to be links which connect a highlight within a node to a high-
light within another node. The notion of a cross-reference, for example, could be mod-
elled in this fashion.

In this specification, we differentiate between these three types of link: we call organisa-
tional links orglinks, referential links reflinks and span links spanlinks. Some other mathemati-
cal models have had problems defining different kinds of link. Garzotto et al. [15] describe this
ability to distinguish different kinds of link as an “innovative feature”. In order to specify this
more detailed hypertext, we must define a new type to represent links between highlights, and
define each of the three link categories as subtypes.

HighlightLINK
From;To : NODE
FromHighlight ;ToHighlight : optional [HIGHLIGHT]

OrgLINK
HighlightLINK

unde�ned FromHighlight ^ unde�ned ToHighlight

RefLINK
HighlightLINK

de�ned FromHighlight ^ unde�ned ToHighlight

SpanLINK
HighlightLINK

de�ned FromHighlight ^ de�ned ToHighlight

From 6= To

We may wish to reason about these links in terms of the nodes that they connect without
concern for the kind of link. In order to do this, we introduce a function which maps our new
representation of links to our old representation.

RecoverLink : HighlightLINK !! LINK
RecoverLinks : PHighlightLINK !! PLINK

8 c : HighlightLINK; cs : PHighlightLINK �
RecoverLink c = (c:From; c:To) ^
RecoverLinks cs = RecoverLink(j cs j)

13

The set of all links of the hypertext can now be given, and the two representations of organ-
isational link within the model can be related.

HighlightLINKS
LINKS
OrgLinks : POrgLINK
RefLinks : PRefLINK
SpanLinks : PSpanLINK
HighlightLinks : PHighlightLINK

HighlightLinks = OrgLinks [RefLinks [SpanLinks

Links = RecoverLinks OrgLinks

Our new model of hypertext is then provided by the following schema which ensures that
all links are well defined.

HighlightHYPERTEXT
HYPERTEXT
HighlightLINKS
HighlightNODES

8 l : HighlightLinks � (l :From 2 Nodes) ^

(l :FromHighlight � ran (GetHighlights l :From):Highlights)

Typing the links is similar to that given in the basic model, but the definition of what con-
stitutes a link function is slightly different. A link function is any set of links for which no two
links have the same from-node and from-highlight. In other words, there is only one way to
leave a given position given a particular link function. Furthermore, we assert that a typed link
function will only contain links which are either all organisational, all referential, or all span.

HlightLINKFUNCTION == fxs : PHighlightLINK j
(8 x ; y : HighlightLINK � ((x 2 xs) ^ (y 2 xs) ^ (x 6= y)))

(x :From; x :FromHighlight) 6= (y:From; y:FromHighlight)) � xsg

TypedHighlightLINKS
HighlightLINKS
OrgLinkFuns ;RefLinkFuns ;SpanLinkFuns : PHlightLINKFUNCTION
S
OrgLinkFuns � OrgLinks

S
RefLinkFuns � RefLinks

S
SpanLinkFuns � SpanLinks

As before, if we additionally require that no link of a particular subtype (say span) belonged
to two functions, and that every link of a certain type (say span again) belonged to a function,
we would write the following predicate.

setdisjoint SpanLinkFunctions ^
S
SpanLinkFunctions = SpanLinks

14

4.2 State

Given the structure of the hypertext, we can define the position of a user within it. This not
only includes the current node and history from the state of the basic model, but also the posi-
tion of a user within a node. Such a position will be either de�ned, in which case the user will
be positioned at some highlight, or unde�ned, which occurs, for example, when a node has no
highlights or an organisational link has just been used to move to the current node.

HighlightHYPERTEXTState
HYPERTEXTState
HighlightHYPERTEXT
Position : optional [HIGHLIGHT]
HighlightNODE

�HighlightNODE = GetHighlights CurrentNode

Position � (ran Highlights)

4.3 Applications

A change in the state will not affect the structure.

�HighlightHYPERTEXTState
HighlightHYPERTEXTState
HighlightHYPERTEXTState0

�HighlightHYPERTEXT

Joining the hypertext is easily defined in terms of the basic model.

HighlightLogin
Login
�HighlightHYPERTEXTState

Any move using highlights may affect the state.

HighlightMove
�HighlightHYPERTEXTState
Move

We distinguish between two types of move. Internal moves involve the user scrolling through
or selecting one of the highlights of the current node. External moves, by contrast, involve the
user taking a link or moving to a button node. An internal move will not affect the state of the
basic hypertext — the current node and history are not altered — and can only be made if the
current node actually contains highlights.

InternalMoveOk
HighlightMove
�HYPERTEXTState
MoveOk

Highlights 6= hi

15

There are three basic internal moves within a node. The first two, moving to the next high-
light and moving to the previous highlight, both require the current position to be defined. The
third move simply involves moving to a chosen highlight. For a definition of CycleNext and
CyclePrevious, see Appendix A.

NextHighlight
InternalMoveOk

de�ned Position

the Position0 = CycleNext ((the Position);Highlights)

PreviousHighlight
InternalMoveOk

de�ned Position

the Position0 = CyclePrevious ((the Position);Highlights)

SelectHighlight
InternalMoveOk
highlight? : HIGHLIGHT

highlight? 2 (ran Highlights)

the Position0 = highlight?

The general external move may affect the position and the current node. Note, however,
that the use of buttons is not changed in any way in this more sophisticated model.

ExternalMoveOk
HighlightMove
MoveOk
�HighlightHYPERTEXT

To use a link successfully, the parent node of the link must necessarily be the current node. If
we use an organisational link then this is sufficient; they can be used from any position within a
node. However, if we use a span link or referential link then the link must have a from-highlight
equal to the current position. We re-use our basic model definition as follows.

FollowHighlightLinkOk
ExternalMoveOk
FollowLinkOk
highlightlink : OrgLINK

highlightlink :From = CurrentNode

highlightlink 2 OrgLinks _ (highlightlink 2 (RefLinks [SpanLinks)^

Position = highlightlink :FromHighlight)

link = (highlightlink :From; highlightlink :To)

Position0 = highlightlink :ToHighlight

Just as with the top level representation of a link, the user chooses either the highlight link or
a highlight link function intended to isolate the required highlight link. This would be specified
in exactly the same way as in the UserChoosesLinkOk and UserChoosesLinkFunctionOk
schemas of Section 2.3 for the top level link representation, so the extra schemas are omitted
here.

16

5 Extensions

Although many formal models of hypertext have been proposed in the literature, there is still
little consensus about what a definitive model should be. Indeed, one might argue that, in view
of the rapid progress of the technology, it is probably premature to attempt a definitive formal-
isation. However, a significant benefit of using Z that we have discovered in this respect is that
it does not restrict the specifier to any particular mathematical model; rather it provides a gen-
eral mathematical framework within which different models, and even particular systems, can
be defined and contrasted.

This claim is justified here by considering a number of more sophisticated features of hy-
pertext and showing how the model defined in the previous sections can be elaborated to define
and describe features and extensions found in a variety of hypertext systems.

5.1 Types and Values

A node or link may have a collection of types with associated values that may be used to struc-
ture the state space. In this case, the hypertext can be structured so that only certain types of
links have access to certain types of nodes. In the following schema, we assert that for any two
nodes connected by a link, the link and the nodes must have an associated type in common.

[TYPE;VALUE]
TYPEVALUEPAIRS == P(TYPE �VALUE)

TypedHYPERTEXT
HighlightHYPERTEXT
NodeType : NODE ! TYPEVALUEPAIRS
HighlightLinkTypes : HighlightLINK ! TYPEVALUEPAIRS

dom NodeType = Nodes

dom HighlightLinkTypes = HighlightLinks

8 c : HighlightLinks j c:To 2 Nodes �

(9 t : TYPE � (t 2
T
f�rst(j HighlightLinkTypes c j);

�rst(j NodeType (c:To) j); �rst(j NodeType (c:From) j)g))

This mechanism can enable more effective information retrieval. For example, links of a
particular type could be traversed in an order based on the values related to that type. Suppose
that an information space contained information concerning various aspects of a city. Through
appropriate use of typing, several distinct traversals of the hypertext might be possible, each re-
lating to different aspects such as travel information, museums and galleries, or economic data,
for example.

5.2 Specifying Different Topologies

The topology of a hypertext describes the way in which the nodes are connected. In the simplest
case, a hypertext is seen as being a mere directed graph, but other organisations are possible to
facilitate the successful movement though an information space. Van Dyke Parunak [23] pro-
vides a survey of possible topologies and, as an example, we define a hypertext which has a

17

hierarchical structure. This is defined in terms of the organisational link function, Parent , and
a set of organisational link functions called Children .

HierarchicalHYPERTEXT
HighlightHYPERTEXT
TypedHighlightLINKS
ButtonHYPERTEXT
Parent : HlightLINKFUNCTION
Children : PHlightLINKFUNCTION

Parent 2 OrgLinkFuns

Children � OrgLinkFuns

de�ned StartNode

ran (RecoverLinks (
S
Children)) = Nodes n StartNode

(RecoverLinks Parent)�1 = RecoverLinks (
S
Children)

5.3 User Navigation

A number of proposals have been made for defining paths through a document [25] as a means
for helping a user navigate through it. A path would offer a reader a pre-defined route through a
subset of the document, thus enabling an overview of the hypertext, or of a particular subject to
be presented. A path can be just a sequence of nodes. Equally, it can take the form of a sequence
of highlight links which actually take the user through particular highlights in the hypertext.

SIMPLEPATH == seq NODE
PATH == seq HighlightLINK

SimplePATHS
CONTENTS
SimplePaths : PSIMPLEPATH

ran (
S
SimplePaths) � Nodes

PATHS
HighlightLINKS
paths : PPATH

8 p : paths � (8 l ;m : HighlightLINK j hl ;mi inp �
(l :To; l :ToHighlight) = (m:From;m:ToHighlight))

5.4 Content of Nodes

So far in this specification, we have not considered the text that is stored at each node. In elabo-
ration of this basic model, we define TextHYPERTEXT which includes a mapping from nodes
to identifiers, and a mapping from identifiers to text. Thus, if text is altered then all nodes that
map to the associated identifier of the text will map to the altered text. In this way, we allow

18

for the possibility of different nodes sharing the same content. Indeed, such an organisation has
been cited as an advantage of the hypergraph model by Tompa [26]. The predicate part of the
schema simply states that all nodes point to some text.

[CHAR]
[TEXT ID]
STRING == seq CHAR
TEXT == [text : STRING]

TextHYPERTEXT
HYPERTEXT
Text : NODE 7! TEXT ID
Text Val : TEXT ID 7! TEXT

dom Text = Nodes

ran Text � dom Text Val

Once a notion of content has been defined, it is then possible to define a further class of move
operations that Conklin calls keyword links [4]. A simple example of this would be to search for
all nodes containing a given string, and a successful operation for it is described in the schema
below, where the input, keyword?, is the search string, and the set of nodes in the document
containing the string is returned in the set, found !. One of these found nodes may then become
the current node.

KeywordSearch
TextHYPERTEXT
keyword? : STRING
found ! : PNODE

found ! = fn : Nodes j keyword? in(Text Val(Text n)):text � ng

5.5 Properties of Hypertext

It is straightforward in this framework to define additional properties of hypertext, and we de-
scribe two examples here. The first additional property, that of accessibility, states that every
node in the hypertext can be reached from the start node of a user session (whether user or sys-
tem defined) using organisational links only. The second property enforces the constraint that no
nodes are dead ends or, equivalently, that there is always at least one organisational, referential
or span link out of any node.

Accessibility
ButtonHYPERTEXT

de�ned StartNode) Nodes � ran (StartNode C Links?)

unde�ned StartNode) (8 n : Nodes � Nodes � ran (fngC Links?))

NoDeadEnds
HighlightHYPERTEXT
TypedHighlightLINKS

Nodes � dom (RecoverLinks HighlightLinks)

19

5.6 Authoring

In addition to operations for reading an information space using hypertext, many systems also
provide authoring operations by means of which nodes and links can be added to a hypertext to
represent the information space in a more effective way. For example, a link to another node is
added in the WWW by the including a URL in an existing node. Adding a new node is known
as indexing, and adding a new link is known as hyperization. Some example operations for
authoring, which enable us to specify the addition of an organisational link (AddOrgLink) are
specified below.

AddLink
�HYPERTEXT
�CONTENTS
link? : LINK

link? 62 Links

�rst link? 2 Nodes

Links 0 = Links [flink?g

Adding a link to a highlight hypertext depends on the type of link that is being added. The
common aspects of these operations are given in the following schema.

AddHighlightLink
�HighlightHYPERTEXT
highlightlink? : HighlightLINK

highlightlink? 62 HighlightLinks

highlightlink?:From 2 Nodes

highlightlink?:FromHighlight �

(ran ((GetHighlights highlightlink?:To):Highlights))

Then, the operation of adding an organisational link, for example, is specified as follows.
The operations of adding referential and span links are defined similarly.

AddOrgLink
AddHighlightLink
AddLink

highlightlink? 2 OrgLINK
OrgLinks 0 = OrgLinks [fhighlightlink?g

RefLinks 0 = RefLinks

SpanLinks 0 = SpanLinks

link? = (highlightlink?:To; highlightlink?:From)

6 Summary

In this paper we have presented a specification that defines a formal framework for hypertext
systems. This specification addresses all three concerns identified at the beginning of the pa-
per as being of fundamental importance in the construction of such formal frameworks, in the

20

context of the hypertext community. The first requirement of providing precise definitions of
relevant terms and concepts in a readable way has been achieved by means of the well-known
Z specification language. In addition, the resulting specification provides a strong and clear
base enabling alternative designs of particular models and systems to be explicitly presented,
compared and evaluated. Finally, the specification provides a foundation for subsequent de-
velopment of new and increasingly more refined concepts and, as stated earlier, it should, in
particular, allow practitioners to choose the level of abstraction suitable for their purpose. For
example, the specification has provided the foundation upon which to build a formal model of a
new intelligent hypertext system [7, 18, 19]. This system uses statistical information collected
in information retrieval sessions over a period of time to learn how best to aid the user in navi-
gating through a given information space. Since our framework specification is well structured,
we were able to choose the appropriate level of abstraction relevant to our purpose of modelling
this new system. In this case, the learning model is concerned only with organisational links be-
tween nodes, and so we have developed the formalisms of the learning techniques within our
most abstract model of hypertext.

The framework has been applied to produce specifications of existing hypertext systems in-
cluding HyperCard and the World Wide Web and, as a result, we have been able to systemati-
cally evaluate and compare these systems. Further work continues in developing a more general
version of the specification as we apply it to an increasing number of existing hypertext systems.

Acknowledgements

Thanks to Claire Cohen, Jennifer Goodwin, Paul Howells, Mike Hinchey, Michael Hu and Colin
Myers for comments on earlier versions of this paper. The anonymous referees were especially
helpful in providing comments and suggestions that have significantly improved the paper, and
in identifying some errors. The specification contained in this paper was checked for correctness
using the f UZZ package.

References

[1] F. Afrati and C. Koutras. A hypertext model supporting query mechanisms. In Hypertext:
Concepts, Systems and Applications. Proceedings of the European Conference on Hyper-
text, pages 52–66, 1990.

[2] R. Akscyn, D. McCracken, and E. Yoder. KMS: A distributed hypertext for managing
knowledge in organizations. Communications of the ACM, 31(7), July 1988.

[3] B. Campell and J. Goodman. HAM: A General Purpose Hypertext Abstract Machine.
Communications of the ACM, 31(7):856–861, 1988.

[4] J. Conklin. Hypertext: An Introduction and Survey. Computer, 20(9):17–41, 1987.

[5] M. d’Inverno. Using Z to capture the essence of a contract net. Master’s thesis, Program-
ming Research Group, Oxford University, 1988.

[6] M. d’Inverno and J. Crowcroft. Design, specification and implementation of an interactive
conferencing system. In Proceedings of IEEE Infocom, Miami, USA. Published IEEE,
1991.

21

[7] M. d’Inverno and M. J. Hu. A Z specification of the soft-link hypertext model. In M. G.
Hinchey, editor, ZUM’97: 10th International Conference of Z Users, Lecture Notes in
Computer Science, pages 297–316, 1997.

[8] M. d’Inverno, G. R. Justo, and P. Howells. A formal framework for specifying design
methodologies. Software Process: Improvement and Practice, 2(3):181–195, September,
1996.

[9] M. d’Inverno and M. Luck. A formal view of social dependence networks. In Distributed
Artificial Intelligence Architecture and Modelling: Proceedings of the First Australian
Workshop on Distributed Artificial Intelligence, Lecture Notes in Artificial Intelligence,
1087, pages 115–129. Springer Verlag, 1996.

[10] M. d’Inverno and M. Luck. Formalising the contract net as a goal directed system. In
W. Van de Velde and J. W. Perram, editors, Agents Breaking Away: Proceedings of the
Seventh European Workshop on Modelling Autonomous Agents in a Multi-Agent World,
LNAI 1038, pages 72–85. Springer-Verlag, 1996.

[11] M. d’Inverno and M. Priestley. Structuring a Z specification to provide a unifying frame-
work for hypertext systems. In J. P. Bowen and M. G. Hinchey, editors, ZUM’95: 9th
International Conference of Z Users, Lecture Notes in Computer Science, pages 83–102,
Heidelberg, 1995. Springer-Verlag.

[12] A. Dix and R. Mancini. Specifying history and backtracking mechanisms. In P. Palanque
and F. Paterno, editors, Formal Methods in Human-Computer Interaction. Springer-
Verlag, To appear, 1997.

[13] D. Englebart. Authorship provisions in Augment. In Proceedings of the IEEE COMPCON,
Spring 1984.

[14] P. Garg. Abstraction Mechanisms in Hypertext. Communications of the ACM, 31(7):862–
870, 1988.

[15] F. Garzotto, P. Paolini, and D. Schwabe. HDM–A Model-Based Approach to Hypertext
Application Design. ACM Transactions on Information Systems, 11(1):27–50, 1993.

[16] F. Halasz. Reflections on NoteCards: Seven Issues for the Next Generation of Hypermedia
Systems. Communications of the ACM, 31(7), July 1988.

[17] F. Halasz and M. Schwartz. The Dexter Hypertext. Communications of the ACM,
37(2):30–39, 1994.

[18] M. J. Hu. An Intelligent Information System. PhD thesis, UCL, 1994.

[19] M. J. Hu and P. Kirstein. An Intelligent Hypertext System. In The First International
Workshop on Intelligent Hypertext (CIKM-93), Washington, November 1993.

[20] D. Lange. A formal model for hypertext. In Proceedings of the NIST Hypertext Standard-
ization Workshop, 1990.

22

[21] M. Luck and M. d’Inverno. A formal framework for agency and autonomy. In Proceedings
of the First International Conference on Multi-Agent Systems, pages 254–260. AAAI Press
/ MIT Press, 1995.

[22] M. Luck and M. d’Inverno. Structuring a Z specification to provide a formal framework
for autonomous agent systems. In J. P. Bowen and M. G. Hinchey, editors, ZUM’95: 9th
International Conference of Z Users, Lecture Notes in Computer Science, pages 48–62.
Springer-Verlag, 1995.

[23] H. Van Dyke Parunak. Hypermedia Topologies and User Navigation. In Hypertext ’89
Proceedings, 1989.

[24] J. M. Spivey. The Z Notation. Prentice Hall, Hemel Hempstead, 2nd edition, 1992.

[25] D. Stotts and R. Furata. Petri-Net-Based Hypertext: Document Structure with Browsing
Semantics. ACM Transactions on Information Systems, 7(1):3–29, 1989.

[26] F. Tompa. A Data Model For Flexible Hypertext Database Systems. ACM Transactions
on Information Systems, 7(1):85–100, 1989.

[27] N. Yankelovich, B. Haan, N. Meyrowitz, and S. Drucker. Intermedia: The concept and
the construction of a seamless information environment. IEEE Computer, 1988.

A Z Extensions

We have found it useful in a specification to be able to assert that an element is optional. For
example, in the specification given in this paper, the error message returned by a hypertext move
is optional. If the move is unsuccessful an error message is generated, but if it is successful then
there is no error message. The following definitions provide for a new type, optional T , for any
existing type,T , along with the predicates de�ned and unde�ned which test whether an element
of optional T is defined or not. The function, the, extracts the element from a defined member
of optional T . We further define a prefix relation, setdisjoint, which holds for a set of sets if all
the members of that set of sets are pairwise disjoint. Lastly we define two functions that cycle
forwards and backwards through non-empty injective sequences.

optional [X] == fxs : PX j # xs � 1g

[X]

de�ned ; unde�ned : P(optional [X])

the: optional [X] 7! X

8 xs : optional [X] � de�ned xs , # xs = 1 ^

unde�ned xs , # xs = 0

8 xs : optional [X] j de�ned xs �

the xs = (� x : X j x 2 xs)

23

[X]

setdisjoint : P(P(PX))

8 xss : P(PX) � setdisjoint xss , (8 xs ; ys : PX �

((xs 2 xss) ^ (ys 2 xss) ^ (xs 6= ys))) (xs \ ys) = ?)

[X]

CycleNext; CyclePrevious: (X � iseq X) 7! X

Index: (X � iseq X) 7! N

8 s : iseq X ; x : X j x 2 (ran s) � Index (x ; s) = s�1x ^

Index (x ; s) 6= #s) CycleNext (x ; s) = s(Index (x ; s) + 1) ^

Index (x ; s) = #s) CycleNext (x ; s) = head s ^

Index (x ; s) 6= 1) CyclePrevious (x ; s) = s (Index (x ; s)� 1) ^

Index (x ; s) = 1) CyclePrevious (x ; s) = last s

B Alternative notion of types for links

One problem with the specification is that the type of a link is altered as we build up our model.
The alternative would have been to use a free type as follows.

LINK2 ::= simplehhLINKii
j ref hhLINK� optional [HIGHLIGHT]ii
j spanhhLINK� optional [HIGHLIGHT]� optional [HIGHLIGHT]ii

However, this would have led to an inappropriate and unnecessarily complicated specifica-
tion. For example, the basic hypertext model of hypertext would have to be written as follows.

HYPERTEXT2

CONTENTS
Links : PLINK 2

Links � (ran simple)

�rst (j (simple�1)(j Links j) j) � Nodes

24

