Edinburgh Research Explorer

Identifying and Communicating Expertise in Systems
Reengineering: A Patterns Approach

Citation for published version:

Dewar, R, Lloyd, A, Pooley, R & Stevens, P 1999, 'ldentifying and Communicating Expertise in Systems
Reengineering: A Patterns Approach’, IEE Proceedings - Software, vol. 146, no. 3, pp. 145-152.
https://doi.org/10.1049/ip-sen:19990614

Digital Object Identifier (DOI):
10.1049/ip-sen:19990614

Link:
Link to publication record in Edinburgh Research Explorer

Document Version_:
Peer reviewed version

Published In:
IEE Proceedings - Software

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy

The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

OPEN (75 ACCESS

Download date: 30. Apr. 2024

https://doi.org/10.1049/ip-sen:19990614
https://doi.org/10.1049/ip-sen:19990614
https://www.research.ed.ac.uk/en/publications/84aaa0df-f722-47f3-aa13-a2a83a43468b

Dewar, R., Lloyd, A,
Systems Reengineering:
sen:19990614

Pooley, R., & Stevens, P. (1999). Identifying and Communicating Expertise In
A Patterns Approach. IEE Proceedings - Software, 146(3), 145-152. 10.1049/ip-

Title: Identifying and communicating expertise in
systems reengineering: a patterns approach

Rick Dewar*
Division of Informatics, University of Edinburgh
JCMB, King’s Buildings
Mayfield Road
EDINBURGH EH9 3JZ
Scotland

Ashley D. Lloyd'
Management School, University of Edinburgh
50 George Square EDINBURGH EHS8 9JV Scotland

Rob Pooley*
Computing and Electrical Engineering, Heriot-Watt University
EDINBURGH EH14 4AS
Scotland

Perdita Stevens®
Division of Informatics, University of Edinburgh
JCMB, King’s Buildings
Mayfield Road
EDINBURGH EH9 3JZ
Scotland

June 1, 1999

Abstract

The reengineering of legacy systems — by which we mean those that
have value and yet “significantly resist modification and evolution to meet
new and constantly changing business requirements” — is widely recognised
as one of the most significant challenges facing software engineers. A
complex mixture of business and technical factors must be taken into

*rgd@dcs.ed.ac.uk
TA.D.Lloyd@ed.ac.uk
frjpQ@cee.hw.ac.uk

§ Perdita.Stevens@dcs.ed.ac.uk

ttotterd
Typewritten Text
Dewar, R., Lloyd, A., Pooley, R., & Stevens, P. (1999). Identifying and Communicating Expertise in Systems Reengineering: A Patterns Approach. IEE Proceedings - Software, 146(3), 145-152. 10.1049/ip-sen:19990614

account to ensure success, and there is a wide range of different contexts
each with its own problems. Moreover, the business needs do not stay
constant whilst the technical factors are dealt with. In this paper we argue
that the main problem is not that the necessary expertise does not exist,
but rather, that it is hard for software engineers to become expert in all
of the necessary areas. We propose that systems reengineering patterns
may help to codify and disseminate expertise, and that this approach
has some advantages over conventional methodological approaches. We
support our contention by means of some candidate patterns drawn from
our own experience and supported by information from elsewhere.

1 Introduction and background

In [1] the authors observe that despite an increasing level of activity in research
in reengineering, “reengineering research has had notably little effect on actual
software reengineering practice”. In addition to the reasons that they identify
— such as the difficulty of validating the research — we suggest that a major
problem is that research results are difficult to communicate to the people who
might make use of them. The wide scope of the reengineering problem and the
absence of a commonly agreed classification of its areas exacerbate the problem.
It is difficult for someone who wishes to make use of research in reengineering
to find the material which is relevant to their particular problem.

Nevertheless there is a real problem to solve. Recently the Y2K problem has
exposed to many organisations their lack of corporate expertise in reengineering.
This is, however, a particularly simple example of a reengineering problem, as it
is unusually technical in nature. More typically, the reengineering expert must
consider system(s) which interact with the business’s procedures in complex
ways. This makes the systems reengineering problem more difficult in several
respects. The now-classic decision matrix Figure 1 (see, for example, [2]) cla-
rifies the choices that have to be made about what to do with a legacy system
considered in isolation:

Figure 1: Decision matrix

Changeability
A
Maintain Enhance
Discard Reengineer
Business value

but does not consider how the business value of a system may be changing, for
example because of concurrent changes in the business processes it supports.
Because we are concerned with systems reengineering, we are most interested in
the class of systems which are good candidates for reengineering, because they
are too valuable to the business to be discarded, but are too hard to change to
be enhanced without restructuring. Even without considering changing business
processes, deciding which systems fall into this category is itself a skilled task,
which has been addressed by [3], [4], [5]. In general, the decision about which
systems or parts of systems are good candidates for reengineering has to be

taken in the context of knowledge or expectations about how business processes
are changing, and vice versa.

This complex interaction is particularly obvious when the organisation is
undergoing business process reengineering (BPR); however, recent research has
shown that there is quite a wide variation in the degree of importance placed
on the existing processes when defining the new organisational system. Over 30
years ago Heany observed [6] that the process should be redesigned before the
information technology support can be appropriately specified, since automat-
ing a mess produces, at best, a faster mess. Organisations still need to express
what their processes are intended to achieve; however, there has been a change of
emphasis in the final stages of system re-design. Increasing availability of COTS
solutions has produced an economic incentive to fit the redesigned business pro-
cess to the standard solution. This has had mixed success. Standard accounting
solutions, perhaps benefiting from regulation compliance, have demonstrated
clear efficiency gains. However, systems that deal with a company’s core com-
petitive competencies, such as production planning systems, may encounter a
wider range of interfaces that are specific to the company. These require heavy
modification of the software, which can ultimately eliminate the economic ad-
vantage. One manufacturer implemented a standard solution as a replacement
to its existing systems and found that over 70% of the interfaces had to be spe-
cially programmed, a significant effort with no resulting increase in functionality
[7].

Though this is certainly a cautionary tale, the same article [7] reports that,
of the implementation costs of manufacturers who were identified as making the
most effective and efficient use of IT, 75% were devoted to integrated standard
software. Standard solutions are clearly effective, so the best approach may not
be to identify the requirements of the business process and modify the software
to suit: finding a good solution may require several kinds of flexibility. To be
successful at providing a solution that is properly balanced between ‘maintain’,
‘enhance’, ‘discard’ and ‘reengineer’, the expert must understand how the ex-
isting system supports the current business processes, and what the effects will
be of the various options for change.

The best-understood approach to reengineering legacy systems is “cold tur-
key” — the legacy system is replaced by a new system with the same or improved
functionality. This enables the reengineering problem to be factored into two
phases: first, use reverse engineering and domain analysis to construct a new
set of requirements, possibly identifying and retaining some aspects of the exist-
ing design such as the overall architecture; second, use an appropriate software
development methodology to build a new system. Development is much better
understood than reengineering, so the second step is comparatively tractable.
Increasingly there is tool support available for the first. Unfortunately, however,
for a high proportion of large legacy systems such an approach is utterly infeas-
ible [8]. The risks of making such a huge change in a single step — including that
business requirements and/or processes inevitably change during the reengineer-
ing project itself — are daunting. Even more concretely, where a legacy system
controls a large amount of mission critical data, the downtime that would be

required for the cut-over, including the inevitable data scrubbing, may in itself
be so unacceptable as to rule out cold turkey. Therefore, in many cases, an
incremental approach may be essential.

Reengineering, especially incremental reengineering in the presence of a
changing business environment, is hard chiefly because of the wide range of
factors (or forces) which must be taken into account in evaluating candidate
solutions. An expert in reengineering is someone who understands how to de-
liver an appropriate technical solution whose business value is clear throughout
the project: reengineering projects are particularly prone to ‘political’ failure.
Apprenticeship is probably the most effective way to learn; a software engineer
is a member of a team for one reengineering project, gathering experience which
will be helpful in running a later project. However, experts in reengineering are
much rarer than are experts in design, and engineers in most SMEs will not
have access to anyone with a significant amount of experience.

Earlier work in this project was reported in conference proceedings [9]. The
present paper takes a wider, less purely software engineering view of the sub-
ject, and gives more detail, e.g. fuller versions of the patterns. Recently Bern’s
Software Composition Group has independently considered using patterns for
reengineering [10]; their focus so far is on some specific technical issues in reen-
gineering object oriented systems, however.

In summary, we believe that the most important problem is not an absence
of expertise but the difficulty of transferring that expertise to those who
need it.

2 Patterns as an approach

We aim to understand how experienced practitioners undertake the reengineer-
ing of legacy systems, so that we can develop better techniques and material
for transferring expertise. In particular, we want to address the problem of syn-
thesising expertise in ‘pure’ systems reengineering with that which concentrates
on the organisation, to help people acquire both in parallel. This has proved
difficult in the past; both areas of study are large, and tend to be addressed by
different communities. As we have explained, however, both are important to
practical reengineering problems.

Given the recent phenomenal success of design patterns as a means of codi-
fying and communicating expertise in design, it is natural to consider patterns
as an approach also to the reengineering problem. Indeed, patterns have been
adopted in several fields other than software design, some of which are relevant
to systems reengineering. Cunningham’s EPISODES [11] describes patterns for
a process, in his case the software development process, emphasising the pro-
cess of making decisions; an episode is a sequence of mental states leading to an
important decision. Coplien has also worked in this area [12] and that of organ-
isational patterns [13]. Appleton has written in [14] about patterns for software
process improvement. In business process reengineering, the term reengineering
pattern has been coined by Michael Beedle in [15] (which is why we use the

slightly clumsy phrase systems reengineering pattern to describe our very dif-
ferent class of patterns). We think that patterns will complement over-arching
methodologies for reengineering. Patterns, being small and specific, may be
validated individually, and information about the circumstances under which
they are appropriate and their advantages and disadvantages, can be collated.
They can be domain-specific, helping practitioners to select relevant patterns.
They may even be organisation-specific; and pattern-writing may contribute to
the knowledge management process. Future methodologies might incorporate
patterns which are appropriate to the assumptions underlying the methodology.
An important advantage is that patterns, by codifying a manageable amount
of expertise involving both business and technical factors and forces, may be
helpful in the synthesis of work in these areas.

2.1 The scope of systems reengineering patterns

At present we prefer a broad interpretation of what might constitute a valid
reengineering pattern. We propose, however, some ideas on what does not count
as a systems reengineering pattern.

Systems reengineering patterns are not design patterns

Design patterns are frequently useful in reengineering projects, but the systems
reengineering patterns we consider here are concerned with social and organisa-
tional issues as much as, if not more than, technical issues. Whereas a design
pattern specifies something about the structure of the target system, a reengin-
eering pattern specifies something about the process by which the target should
be reached. Similarly, the applications of patterns to software development,
to organisations, to process improvement and to business process reengineer-
ing cited above are interesting and relevant, but none addresses the particular
combination of process, technical and organisational issues that arise in systems
reengineering.

Having said this, there is an important class of reengineering problem in-
volving decisions about whether and how to introduce a design pattern into a
system, especially when the introduction has to be done in several stages.

Systems reengineering patterns are not rules of thumb
They should be supported by a discussion of their merits and demerits so that
the reader can understand whether or not the use of a pattern is appropriate.

Systems reengineering patterns are not a methodology

A systems reengineering pattern has a deliberately limited scope, and even a
catalogue of reengineering patterns will not be a reengineering methodology, any
more than a catalogue of design patterns is a design methodology. Eventually,
experts will want to study both methodologies and patterns. Where it is best

to start is partly a matter of individual psychology, though lack of time may
make a relevant pattern catalogue more attractive than a large methodology.

In the future we may hope to have a pattern language for reengineering; that
is, a collection of patterns which work together in a synergistic way, because their
interactions are well understood. (See section 3.1 below.)

Systems reengineering patterns are not formal objects

We do not mean to imply that there is no place for formality within a pattern
description. Precise models of busines processes, of other aspects of the business
context, and of the design of the systems involved will all at different times be
useful.

However, we must remember what makes patterns useable: that they de-
scribe a solution — which may be described formally — in conjunction with an
essentially informal discussion about what is good and bad about the solution in
particular environments. (A particularly interesting example of rigorous design
pattern work which does not fall into this pitfall is [16]: it would be interesting
to see whether this kind of approach can be extended.)

The same danger is present in reengineering patterns. Many relevant facts
about the business environment, in particular, are not likely to be formalisable
in practice but must be included. In our current work we focus on careful, but
informal, pattern descriptions.

Systems reengineering patterns are not a panacea

We propose them as a complement to, not a replacement for, other work in the
area. We believe that they will add value to other approaches.

3 Developing patterns and pattern languages

An important difficulty in identifying design patterns is that of deciding what
should be in the description and what should be abstracted away. Experience
in getting this right is growing in the design pattern community, and we try to
learn from that experience here. (The constructive criticism that we received on
earlier versions has already helped us to improve the examples presented here:
for example, our early examples were justifiably criticised for abstracting away
so much that it was difficult to identify the cases where the pattern applied.)
This work will share with all work in reengineering the difficulty of validating
what has been done. It is easy to write guidelines — particularly the “motherhood
and apple pie” variety! — much harder to find out whether they are correct and
useful. We hope that the manageable size of patterns will ease this problem.
There are several areas of disagreement in the patterns community which
have implications for our work too. The deepest concerns what constitutes a
pattern: must a pattern embody knowledge which is widespread and uncontro-
versial in the relevant community? (This is the “patterns are by definition not
new” approach which was our own starting point.) Or may a pattern embody a

new technique, an advance on the state of the art? Discussion of this question,
prompted by the different initial approaches of our group and the Bern Software
Composition Group, came to the conclusion that both approaches are valuable.
It is important, however, that the reader of a pattern should understand how
controversial it is: for example, while an expert might be most interested in
novel patterns which presented new ideas, someone less experienced would be
better served by trustworthy, uncontroversial patterns. We recommend that
pattern descriptions should include a Status section describing the confidence
which may be placed in the pattern.

A further related problem, to which we have not found a solution, is that or-
ganisations are often unwilling to allow data about their reengineering projects
to be published, especially when it relates to projects which were not completely
successful. The poses problems for the pattern writer, who wishes to include
a Known Uses section in the pattern; this section describes cases where the
pattern has been used successfully, giving specific names of products or com-
panies. The need to include such a section is a good discipline, ensuring that
patterns have some claim to applicability. However, finding examples where it
is permissible to give enough detail to be helpful can be a problem; we do not
have such an example for Divide and Modernise, for example.!

Some experts hold that a pattern should always include a motivating Ex-
ample. We are not sure that this is always helpful; one of the examples given
in full here includes one, the other does not.

Patterns are described in a set format for ease of reference. What that set
format should be is a matter for debate. Process patterns, like [12, 14], tend to
follow Alexander’s original patterns in having a relatively unstructured format.
They also tend to be short (typically under one page), because to make them
longer tends to over-specialise the problem to the point of not being widely
applicable. Design patterns on the other hand tend to have a highly prescribed
format and to be longer, since they have to describe implementation techniques
in some detail [17, 18]. Our experience so far suggests that it is useful to maintain
the structured form of a design pattern, with modifications discussed above, and
that reengineering patterns tend to be intermediate in length between process
and design patterns.

Even for design patterns several formats exist, differing in details. We use a
variation of that used in [17], with elements:

Name: a few words, describing as evocatively as possible the overall nature of
the pattern.

Status: a few words, describing how well established the pattern is.
Example: which may be made up for illustrative purposes.

Context: a situation giving rise to a problem.

1'We have seen it several times, however, and believe it to be common: we would be grateful
for citable examples!

Problem: the recurring problem arising in that context.
Solution: a proven resolution of the problem.

Consequences: notes on the merits and demerits of the resolution described,
with references to other possible solutions or relevant patterns where ap-
propriate.

Known uses: of this pattern.

3.0.1 How can candidate patterns be identified?

We propose the following techniques, which we have begun to use to identify
our initial candidates, some of which are described in the next section:

e Study particular projects in industrial collaborators, using some or all of
the tactics:

1. Take part in and contribute to informal discussions of the project as
it proceeds;

2. Attend design reviews and other meetings of the project;

3. Interview a senior designer on a project about the strategy they are
adopting in the reengineering of a system, and why;

4. Interview both senior decision-makers and junior engineers, at various
stages of the project, about the progress of the project.

The first two techniques may be the most useful, since they do not affect
the progress of the projects adversely. Taking people away from their
project work to be interviewed is unfortunately often impossible at the
most interesting stages of the projects!

e Using our observations gained above, we hope to observe the problems that
arise and the tactics that the project team use to address them, paying
particular attention to any areas where the behaviour of the team seems
to deviate from the strategy planned in advance.

e Interview experienced reengineers about the projects they have been in-
volved with, aiming to identify the patterns that they (consciously or
unconsciously) use. Linda Rising and Jim Coplien, quoted in a mailing
list? discussion about how design patterns are identified, contributed some
particularly useful questions that also seem relevant to reengineering pat-
terns:

— What would you share with someone you are mentoring?
— What would be lost to the company if you left tomorrow?

— What problems have you solved successfully on several projects?

2patterns-discussion@cs.uiuc.edu

— What have [you] done a thousand times that [you] think everyone
knows?

— What do you say repeatedly at project meetings that never gets doc-
umented?

An additional point for reengineering patterns is that reengineering pro-
jects are often not identified as such by the people carrying them out: it
is sometimes necessary to discuss modifications to systems more generally
to elicit the examples.

e Study published work on reengineering projects, extracting candidate pat-
terns by abstraction from description of techniques that worked. Unfortu-
nately such published work is in short supply. A variant is to mine work
on reengineering methodology for patterns.

e Draw on one’s own experience of reengineering, preferably in consultation
with people outside the particular project.

e Solicit input and comments from the reengineering community and the
patterns community at large, making appropriate use of workshops, con-
ferences, mailing lists and newsgroups.

3.0.2 How can patterns be validated?

This requires collaboration with as many people as possible who have experience
of reengineering. We can draw on our own software engineering experience as
an initial “sanity check”, but this is not sufficient in itself. Indeed, the whole
point of patterns is not that they are amenable to formal validation, but that
they allow the sharing of experience concerning success in a field of endeavour.
Validation equates very closely with acceptance in the relevant community.

e Within our own research project, we can observe whether our candidate
patterns occur in the later reengineering projects we observe. Since the
number of projects that we will be able to observe directly in a few years
is small, this technique is limited.

e Discuss candidate patterns with other reengineers, in face to face inter-
views, on the mailing list and at workshops and conferences.

3.1 Developing a pattern language

The ultimate aim is to develop a pattern language: that is, a collection of pat-
terns which work together effectively in documented ways. The patterns are
the words of such a language; the ways in which they can work together are the
syntax and grammar. Thus a pattern language, to add value to its individual
patterns, must be more than just a collection of patterns. Like programming
language design, pattern language design involving non-trivial numbers of pat-
terns is a hard problem, which moreover is insufficiently understood to date.

10

Some good (not formally published, but available) sources discussing the devel-
opment of pattern languages are [19, 20].

What should a reengineering pattern language look like? This section is
necessarily speculative: we describe some early ideas on the subject. There are
several ways in which patterns may be related.

Two patterns may present alternative solutions to problems which are closely
related, so that someone faced with such a problem would want to consider both
solutions. We do not yet have examples of this from within reengineering, but
the phenomenon arises in design patterns (consider Presentation-Abstraction-
Control and Model-View-Controller [17], for example) and in more general de-
velopment process patterns. For example we have recently begun to observe
patterns WarRoom and WorkShop, which describe different possible approaches
to solving severe communication problems between parties to a development,
which are appropriate in subtly different circumstances.

Two patterns may be particularly useful when applied in conjunction with
one another. For example, Ezxternalising an Internal Representation (described
below) and Portability through Backend Abstraction (briefly described in [9] —
unfortunately space restrictions forbad including it here) are complementary.

More revealingly, patterns which deal with problems which occur at different
levels in the organisation, as the concern of different individuals, may synergise.
More work is needed here but as a preliminary example, one could imagine
writing a business-level pattern which described circumstances in which a good
strategy was to turn an existing product into something which could evolve more
readily in response to user demand, and discussed the business-level changes re-
quired to do this. Such a pattern might refer to Deprecation (described below),
which is a technical systems level reengineering pattern describing how to man-
age the updating of an API.

It is interesting to note that patterns which are not themselves reengineering
patterns may be usefully connected to those which are. It may be that rather
than thinking of a reengineering pattern language, it is more appropriate to
develop reengineering patterns as part of a wider-ranging pattern language for
software intensive organisations.

4 Examples

In this section we mention four candidate reengineering patterns, drawn (in one
case) from interviews with people in a large company which undertakes many
reengineering projects, and (in three cases) from our own experience of working
on reengineering projects in business and academia. For reasons of space, we
give two in detail, and only brief descriptions of the other two. Comments,
criticisms and suggestions from readers of this paper are welcomed, as part of
the validation process.

11

4.1 Modularity in phased processing systems

This pattern is closely related to possible design patterns which would emerge
in constructing similar systems from scratch. These reengineering patterns can
be seen as capturing the expertise embodied in the decision that it is possible
and desirable to migrate in a certain incremental way to a new system which
itself makes use of certain design patterns, rather than writing a new system
from scratch.

Name: Externalising an internal representation

Status: Draft: seen several times, but not often enough to be fully confident
that this is the right abstraction.

Example: A common example comes from the world of compilers. Most pro-
gramming language compilers are able to perform optimisations on the
output of syntax and semantic analysis, transforming parts of the syntax
tree. These techniques evolved some years after most commercially pro-
duced Fortran compilers were in widespread use. Such optimisations are
computationally expensive and may cause problems in locating runtime
errors, so they must remain optional. On the other hand they are incre-
mental, so that new forms of optimisation may be added later. Equally,
when compiling for vectorising or parallel computers, suitable restructur-
ing may be done at the same stage, to take advantage of the features of
these machines. Most compilers evolved from monolithic programs, where
the syntax tree was held in memory, and now use intermediate formats
such as triples or quads, written onto temporary files [21].

Context: Technical:

A gystem in which data is processed notionally in a number of phases,
where the phases are invoked by a driver program which itself is easily
modified. This is shown in Figure 2a.

Business:

There is a requirement — typically coming from the need to match com-
peting products — to add new (optional) phases between phases which
previously were always called consecutively. It is expected that other new
phases may be required in future, for example because of a fast changing
market.

Problem: Phases are not currently well encapsulated: wherever two phases are
currently consecutive, they always share an internal data representation
which is adapted to the needs of those two specific phases, not designed to
be an interface format for arbitrary processing. Adding the new optional
phases to the system as it stands requires either that functionality of the
existing phases be duplicated, or that some optional phase use the “intern-
al” format which was not designed as an interface format. Either course
will create maintenance problems which are unacceptable in this context,

12

given that there is an anticipated need to add further phases in future.
In addition, the current system’s functionality must not be compromised,
otherwise existing customers may move to competing products.

Solution: 1. Incrementally replace the internal format with a newly defined
and fully documented interface format, open to use by new phases.
Modify the original first to output the new format as an optional
alternative to the current means of sharing the information.

2. Develop the new optional phase using the new interface format as
first input and then output. The working of the new phase can be
checked by feeding its own input back into itself. At this point, shown
in Figure 2b, the original first phase outputs two formats depending
on what its successor will be.

3. Modify the old subsequent phase to input the new format. The old
format can now be abandoned, and the ability of the old first phase
to output the old internal format can be removed, as shown in Figure
2c. The structure of the new system is now modular, with the driver
program as a Mediator, as in the design pattern[18].

Consequences: The generation of an externally readable version of the rep-
resentation allows new modules to be attached with no further alteration
of the existing system, apart from the easily modifiable driver program.
This creates a more open system.

The original means of communication between the first and subsequent
phase can be preserved as an option until the new external representation
is fully tested. This avoids compromising existing uses during reengineer-
ing.

Depending on the nature and use of the old intermediate format, the new
system may possibly be slower than the old, since the interface format is
no longer so well adapted to the particular needs of the two originally com-
municating phases. If speed is critical, this effect needs to be considered
in designing the new format and the altered phases.

The use of an external file, rather than memory, is an option with the new
structure. This may be beneficial where memory is at a premium.

The new architecture may also allow more portability to new back-ends.
Known uses: Two uses were observed personally by one of the authors (Pooley).

1. A commercially marketed Fortran compiler, written at the Edinburgh
Regional Computer Centre, was adapted to include optional optim-
isation phases. Maintaining existing correct behaviour was a major
constraint, while fierce competition was a driver for change.

2. During the development of the Integrated Modelling Support Envir-
onment (IMSE) as part of an ESPRIT collaboration [22], the graph-
ical interface was supported by a generic platform, known as the

13

Figure 2: The stages in externalising an internal representation

Output

Driver
First
Source |— phase Shared Subsequent
private phase g
data
a. System before reengineering
Driver
First
e e Sub: it
i uen
== private Seq
] data phase
Source \
Shared £ Optional
public data intermediate
phase

b. System during intermediate stage of reengineering

Driver

First
Source | = phese

Shared
= public data

\V/

T
Optional
intermediate phase

Subsequent
phase

J Output

c. System when reengineering is complete

Graphical Interface System (GIS). This had been developed in-house
by ICL before the IMSE collaboration. In opening this front end up to
the other eleven partners, ICL developed a shareable text based rep-
resentation, known as the Graphical Description Language (GDL),
to replace a private, internal representation in use originally. This

J‘ Output

led to successful integration of several new facilities.

4.2 Changing interfaces in a client-friendly way

This example embodies practice in APIs to large systems used in various ver-
sions by a number of developers: two examples familiar to us are Sun’s Java
Development Kit and emacs lisp. It also draws on Stevens’ experience reengin-
eering the Edinburgh Concurrency Workbench. This highly complex system had
evolved a structure which was clearly far from ideal, but resources limitations
made it impractical to impose a new structure and newly designed interfaces in

one go.

14

Name: Deprecation
Status: Folklore: “all experts knows this”

Context: Technical:

Parts of a system are accessed using interfaces which are unsatisfactory:
for example, the interfaces expose information which should be encapsu-
lated, or they are inconsistent and hard to use.

Business:

However, there is too much code using the interface to change the interface
and all code using it in one go, or else the code which uses the interface
is not under the control of the interface writer.

It may not be possible to be completely confident that a particular modi-
fication to the interface is an improvement, until it has been tried out by
a large group of users of the API.

Problem: The obvious solution is to modify the interface, release a new version,
and force all clients of the interface to be modified accordingly. However,
this may impose an unacceptable burden on the maintainers of those cli-
ents (whether or not they are the same people/organisation who own the
interface). Worse, if a modification turns out to be a mistake — which may
be hard to tell without full knowledge of how an interface is being used
— it might be necessary to undo a modification, whereupon the double
modification of the client code would be extremely wasteful of effort.

Solution: Using all available information, design a modification to the inter-
face which is believed to be an improvement. Add any new elements to
the interface. Any elements which are not present in the modified inter-
face are not immediately removed, but are documented as “Deprecated”
with pointers to alternative features which should be used instead. Users
of the interface are encouraged to provide feedback on any problems they
encountered using the new interface without deprecated features, partic-
ularly if this led client developers to continue using a deprecated interface
element. The default procedure is that in each new release of the inter-
face the features which were already deprecated in the previous release are
removed; but feedback from users may provoke a rethink; for example, a
feature which the interface designers had thought was not useful and had
marked “deprecated” might turn out not to be redundant, in which its
“deprecated” tag could be removed in a subsequent release.

Consequences: If cases emerge where it is difficult to avoid using a deprecated
interface element, the element can be used and the reason for the difficulty
examined. It may be that adequate replacement features are not in place.
By deprecating the element rather than removing it we avoid presenting
the API user with the frustrating situation in which a problem which
was soluble using one version of the API becomes insoluble using a later
version.

15

This technique is useful where the existing structure is reasonably sensible,
but interfaces are poorly designed or too broad. It is harder to use it in
cases where the structure needs to be redefined in a way which is visible to
the user. In such a case facilities may have to be temporarily duplicated
using the old and the new structure, which depending on the length of the
deprecation period may be unacceptable.

Depending on the nature of the user community the deprecation may be
ignored. One way to tackle this would be to specify that a deprecated
interface element will be removed in a specific version.

Known uses: Emacs, Java JDK, internal Edinburgh Concurrency Workbench

development.

4.3 Other examples

We briefly mention the examples which we have not described in detail here for
reasons of space.

5

e Portability through back-end abstraction describes the use of an

abstract intermediate language in the process of extending a family of
compilers from a single platform to multiple platforms, whilst continuing
to maintain the existing products.

Divide and Modernise. This strategic, high-level example illustrates
the conceptual difference between a design pattern and a reengineering
pattern. It is drawn from discussion of several very large reengineering
projects at the same commercial organisation, including verbal reports of
the lively discussion which led one project team to the decision to follow
the strategy described here, rather than developing a new system from
scratch. We were fortunate to be able to talk both with someone involved
with very high level strategic decisions about reengineering systems, and
with people involved “on the ground” in one of the projects concerned. It
describes an approach to the problem of reducing dependence on obsolete
technology by replacing part of a legacy system with a new system, whilst
managing expectations so as to mitigate the risk of dependency on obsolete
technology before addressing the long term requirements of an enhanced
system.

Conclusions and future work

This paper has proposed systems reengineering patterns as a way of codifying
and disseminating good practice in systems reengineering. These patterns ad-
dress the reengineering process, taking into account all the factors that affect
the success or failure of a reengineering project, such as the urgency with which
enhancements are needed and the priorities of the organisation.

16

The intention is to address the problem in a way which takes into account
the needs of a software engineer who must make decisions about reengineering
in a reasoned way, taking advantage of the experience of others. Understanding
and evaluating the approach requires an appreciation of how such profession-
als learn to solve problems; a referee has rightly pointed out that there is a
wider debate to be entered here. Schon [23, 24] has studied the professional as
“reflective practitioner” and there are several interesting points of contact. A
patterns approach fits into his observed viewpoint: he writes “When a prac-
titioner makes sense of a situation he perceives to be unique, he sees it as
something already present in his repertoire”. Patterns may help to extend a
practitioner’s repertoire beyond what has been acquired by direct experience;
but of course something is lost too. By discussing (in the Consequences section,
in our presentation) the pros and cons of a pattern, the pattern writer attempts
to encourage the pattern user to reflect on the problem and its solution.

We can at least begin to compare patterns as an approach to learning
reengineering to the only common alternative to learning by one’s own experi-
ence, namely following a written reengineering methodology. The manageable
size of patterns complements reengineering methodologies, in that an engineer
can learn patterns individually as they become relevant, rather than having
to learn a large methodology all at once. Systems reengineering patterns do
not, however, remove the need for methodologies to embody other aspects of
expertise, and we expect systems reengineering methodologies and systems reen-
gineering patterns to influence one another.

We would like in future work to facilitate the writing of patterns by prac-
titioners, perhaps as part of the project review process. This can be seen as
an element of a strategy for knowledge management within an organisation; it
would also be interesting to explore the effectiveness (or otherwise) of writing
patterns as a means of learning,.

We have proposed some candidate patterns to illustrate the technique and
its scope. To take the idea further requires continuing input from many sections
of the reengineering community, and this paper solicits more such input. You
are invited to consult our systems reengineering patterns Web page:
http://www.reengineering.ed.ac.uk/
and to send comments or suggestions to the authors.

6 Acknowledgements

We gratefully acknowledge help from: the participants in the ECOOP Workshop
in Object Oriented Reengineering, especially the members of the working group
on Reengineering Patterns, whose discussion is reported in [25]; members of the
systems-reengineering-patterns mailing list, especially Stéphane Ducasse and
Sander Tichelaar; the EPSRC (GR/MO02491); the anonymous referees.

17

References

[1] RUGABER, S. AND WILLS, L. M. ‘Creating a research infrastructure for
reengineering.” 8rd Working Conference on Reverse Engineering (IEEE
Computer Society Press, 1996) pp. 120-130

[2] JACOBSON, I. AND LINDSTROM, F. ‘Re-engineering of old systems to an
object-oriented architecture.” Proceedings OOPSLA ’91, ACM SIGPLAN
Notices. November 1991 pp. 340-350. Published as Proceedings OOPSLA
91, ACM SIGPLAN Notices, volume 26, number 11

[3] ‘Software reengineering assessment handbook v3.0.” available from
http://stsc.hill.af.mil/RENG/

[4] ALAN W. BrowN, E. J. M. AND TILLEY, S. R. ‘Assessing the evolvability
of a legacy system.” CMU SEI draft white paper, 1996

[5] JANE RaNsoM, I. S. AND WARREN, I. ‘A method for assessing legacy
systems for evolution.” Proceedings of Reengineering Forum. 1998

[6] F., H. D. Development of Information Systems (Ronald Press, New York,
1968)

[7] KEMPIS, R.-D. AND RINGBECK, J. ‘Manufacturing’s use and abuse of it.’
The McKinsey Quarterly, 1998. 1, pp. 138

[8] BRODIE, M. AND STONEBRAKER, M. Migrating Legacy Systems — Gate-
ways, Interfaces & The Incremental Approach (Morgan Kaufmann Pub-
lishers, Inc., 1995)

[9] STEVENS, P. AND POOLEY, R. ‘Systems reengineering patterns.” Proceed-
ings of ACM-SIGSOFT Foundations of Software Engineering 6. November
1998 pp. 17-23. ISBN 1-58113-108-9

[10] S. DUCASSE, R. NEBBE, T. R. ‘Type-check elimination: Two reengineer-
ing patterns.’ presented at EuroPLOP’98

[11] CuNNINGHAM, W. ‘Episodes: A pattern language of competitive develop-
ment.” available from http://www.c2.com/ppr/titles.html

[12] CopLIEN, J. O. ‘A development process generative pattern language.’
Proceedings of PLoP. 1995

[13] (ADMINISTRATOR), J. C. ‘Organizationalpatterns web page.’
http://www.bell-labs.com/cgi-user/OrgPatterns/0OrgPatterns

[14] AppPLETON, B. ‘Patterns for conducting process improvement.” Proceedings
of PLoP. 1997

[15] BEEDLE, M. ‘Pattern based reengineering.” Object Magazine, 1997

18

[16] CINNEIDE, M. O. AND NIxoN, P. ‘Program restructuring to introduce
design patterns.” Technical report, Dept Computer Science, University
College Dublin, 1998

[17] BuscHMANN, F., MEUNIER, R., ROHNERT, H., SOMMERLAD, P. AND
STAD, M. Pattern-Oriented Software Architecture — A System of Patterns
(John Wiley, 1996)

[18] GAMMA, E., HELM, R., JOHNSON, R. AND VLISSIDES, J. Design Patterns
(Addison Wesley, Reading, MA, 1995)

[19] MESzAROS, G. AND DOBLE, J. ‘A pattern language for pattern writing.’
available from http://hillside.net/patterns/Writing /pattern_index.html

[20] CUNNINGHAM, W. ‘Tips for writing pattern languages.” available from
http://c2.com/cgi/wiki?TipsForWritingPatternLanguages

[21] ALFRED V. AHO, R. S. AND UrLMAN, J. D. Compilers, Principles,
techniques and Tools (Addison-Wesley, 1986)

[22] PoOLEY, R. J. ‘The integrated modelling support environment.” Computer
Performance Evaluation - Proc. 5th Int. Conf. on Techniques and Tools for
Computer Performance Evaluation (North Holland, 1991) pp. 1-16

[23] ScHON, D. A. The Reflective Practitioner: How Professionals Think in
Action (Basic Books, 1983)

[24] ScHON, D. A. Educating the Reflective Practitioner (Jossey-Bass, 1990)

[25] STEVENS, P. ‘Report of working group on reengineering patterns.” ECOOP
Workshop Reader (Springer-Verlag, LNCS)

19

Captions:
Figure 1: Decision matrix
Figure 2: The stages in externalising an internal representation

20

