
ODP Computational to Information Viewpoint

Mappings: A Translation of CORBA IDL to Z

Chris Taylor, Eerke Boiten and John Derrick
Computing Laboratory, University of Kent,

Canterbury, CT2 7NF, UK
C.N.Taylor-1,E.A.Boiten,J.Derrick@ukc.ac.uk

Abstract

The reference model of Open Distributed Processing (ODP) prescribes
the use of a number of viewpoints (i.e. partial specifications). Specifica-
tions written in these viewpoints are likely to use different notations, e.g.
the Computational Viewpoint is likely to include descriptions given in
CORBA IDL, whilst the Information Viewpoint might well use a schema-
based notation such as Z. To support such a specification scenario in this
paper we describe a translation from a subset of CORBA IDL to the Z
specification notation, which has been implemented in a prototype trans-
lator based on the IDL parsing tool HaskellDirect. Although our main
motivation is to integrate CORBA IDL into an existing multi-language
framework for viewpoint specification and consistency checking, the trans-
lation could also serve as the basis for a reverse translation from a subset
of Z into IDL. In addition, it will help support a translation into Z from
IDL specifications augmented with Z annotations that express behavioural
constraints not expressible in IDL itself.

Keywords. ODP, viewpoints, CORBA IDL, Z, translation, specification
languages, signatures, consistency.

1 Introduction

Formal specification methods should be used in areas that require extra preci-
sion, and where practitioners have accepted some degree of formalisation and
standardisation. One such area is distributed systems, for which the ISO’s
Open Distributed Processing (ODP) framework [9] is a developing international
standard. ODP is a example of an approach in which an overall system is de-
scribed from several viewpoints [8], each a partial specification of a different
aspect or perspective. In such approaches, the problem arises of ensuring that
different viewpoints — sometimes in different formalisms — are “consistent”,
in some sense. The work described in this paper relates to our earlier work
[1, 2, 13, 14, 15, 16] on viewpoint consistency (particularly in relation to ODP),
which assumes that partial specifications are mutually consistent if and only if
they have a common refinement . Finding such a refinement is sometimes re-
ferred to as unification. The problem then becomes one of defining appropriate

1

refinement rules which preserve certain properties, while allowing omission of
details concerned with implementation or irrelevant to the viewpoint concerned.

Our work on using the specification language Z [12] for partial specification
has led to new insights into refinement. A variety of refinement relations have
been defined [4, 6] to account for specifications being “partial” in a number of
different senses. For example, a specification can be partial in describing only a
certain aspect of the behaviour (e.g. a state-space specification without timing
constraints), only a subset of the possible operations, only a certain perspective
(e.g. an external user’s), only a certain level of implementation, or only a certain
subsystem of the whole.

In terms of current practice regarding distributed systems, the Common
Object Request Broker Architecture (CORBA) [10], supported by a large con-
sortium of computing companies, has become a de facto standard. It provides a
platform-neutral object-oriented framework for the specification and construc-
tion of such systems, which typically consist of heterogenous components, writ-
ten in various languages, and running on a variety of hardware and software
platforms. By using a neutral specification language called the Interface De-
scription Language (IDL), CORBA allows such diverse components to be inte-
grated smoothly into a single distributed system.

The ODP architecture [9] specifies five named viewpoints, as follows:

• Enterprise Viewpoint — focuses on the overall scope, purpose, and policies
of the system.

• Information Viewpoint — specifies at a high level the information involved
in the system, and how it is processed.

• Computational Viewpoint — a functional decomposition of the system into
objects that interact via specific interfaces.

• Engineering Viewpoint — a specification of the mechanisms and functions
needed to support interaction between the distributed objects of the sys-
tem.

• Technology Viewpoint — concerns the concrete technological infrastruc-
ture of a system, i.e. the particular hardware and software components
involved, and how they are interrelated.

These viewpoints are informally defined in natural language — albeit at greater
length than given here — and so are inevitably somewhat vague. For the sake of
generality and flexibility, the prescription of particular specification formalisms,
software, or hardware is deliberately avoided in ODP. In particular, ODP and
CORBA were formulated entirely independently of one another. However, since
it is an objected-oriented formalism for describing external interfaces, CORBA
IDL is a natural choice for the Computational Viewpoint. Likewise the formal
specification language Z [12], a powerful and general formal specification lan-
guage — although by no means the only possible choice — seems suitable for
the Information Viewpoint. Thus in relation to ODP, an IDL to Z translation
would allow a Computational Viewpoint specification in IDL to be converted
into a form suitable for common refinement with an Information Viewpoint
specification in Z.

2

This work fits into a larger programme of work1 that considers cross-viewpoint
mappings alongside specific enhancements to the ODP Enterprise and Compu-
tational Viewpoints. For example, we have considered how to specify (semi-
formally) the Enterprise Viewpoint with an eye towards relating it to an Infor-
mation Viewpoint specification written in Object-Z [11]. To this end, [13, 14, 15]
discuss a case study where an Information Viewpoint specification written in
Object-Z was compared with another Object-Z specification representing the
Enterprise Viewpoint, generated via a translation from a formalism for express-
ing enterprise policies. The use of Z and Object-Z for the Information Viewpoint
is also discussed in [3]. Not much work has been done on relating IDL to formal
specification languages, but there is an example involving RAISE [19], and the
RoZ tool [7] relates UML to Z.

The rest of the paper is organized as follows. Section 2 explains the main
syntactic constructs of IDL, and how they are translated into Z. Section 3 de-
scribes a prototype implementation of the translation, based on an adaptation
of the HaskellDirect IDL parsing tool. Section 4 discusses the nature and utility
of the “skeletal Z” specifications produced by the IDL to Z translation, and
section 5 is a summary and conclusion.

2 IDL Syntax and Its Translation to Z

An IDL specification is a sequence of one or more IDL definitions, each of which
is one of the following constructs:

• Type definition — a datatype definition (structured , enumeration, or
abbreviation type).

• Variable declaration — declares a variable of a specific type.

• Constant declaration — declaration of an expression of fixed value.

• Module definition — a named group of related definitions.

• Interface definition — like the external view of an OO-class, i.e. its public
attributes and methods.

• Exception definition — user-defined if declared explicitly in a specification
(CORBA also has standard exceptions, which are not declared explicitly).

The current translation is of a subset of IDL, for example omitting exception
definitions (the treatment of which is the subject of further work). The re-
maining constructs are now described in the following subsections, following a
subsection on the handling of identifiers and comments. The Z translations of
various IDL constructs are shown as they would appear in the final Postscript
file produced by the tool, rather than in the LaTeX mark-up form produced by
the translation from IDL. In other words, the target language representation is
the standard LaTeX markup for Z, as used to produce the examples of IDL to
Z translation shown in this paper.

Z is a state-based formal specification language [12] based on set theory and
predicate logic, which ties in naturally with the ODP Information Viewpoint.

1http://www.cs.ukc.ac.uk/research/tcs/openviews/index.html

3

A typical Z specification consists of a general state schema (a labelled box
containing typed state attributes, with an invariant constraining their values),
an initialisation schema (defining the permissible initial states), and operation
schemas (possibly with input and output variables), which define the ways in
which the system state can change.

Because IDL concentrates on signature information rather than behavioural
constraints, most of the translation from IDL produces declarative state signa-
ture information in Z. However, some Z operation schemas are produced as well,
from the translation of explicit IDL interface methods, and of the implicit “get”
and “set” methods associated with IDL interface attributes.

2.1 Identifiers and Comments

Neither IDL nor Z impose very strong formal syntactic restrictions on identifiers,
i.e. the strings of characters used as the names of types, variables, and so on.
However, certain identifiers are reserved for common types — e.g. char, int,
etc. in IDL, and Z, N, etc. in Z. Also, it is common in Z to follow certain
conventions for distinguishing different kinds of identifier, so that for example,
given type names are upper-case, state attribute names are lower-case, operation
and schema names are upper-case initial, and so on.

Two possible options for the translation of IDL identifiers to Z are:

1. Translate mostly “as found” — i.e. make no case modifications or changes
to the names of standard types. Just add prefixes corresponding to module
names, where necessary; add ? and ! to input and output variable names;
and include abbreviations for standard types (e.g. int == Z) in a general
“boilerplate” (see section 2.2).

2. Respect all Z conventions — modify case if necessary, and change standard
names in specification, e.g. change int to Z.

Of these two, option 1 is used, because it is far simpler, prevents potential name
clashes arising from case changes, and makes it much easier to compare the Z
output produced with the IDL source, and to reverse translate it back into IDL.

In IDL, // indicates the start of a single-line comment, i.e. any text to the
right of it is treated as a comment; and the strings /* and */ can be used to
enclose a single- or multiple-line comment, as shown below.

/* IDL comment over one

or more lines. */

// IDL comment on one line.

The HaskellDirect parsing tool ignores IDL comments, so in this prototype, they
cannot be passed to the Z output file. However, “text wrappers’, marking the
start and end of the translations of various IDL constructs, will be included in
the output, helping to compensate for the lack of comments. Such wrappers
will also greatly assist reverse translation back into IDL, since they will identify
explicitly the IDL syntactic constructs from which each “chunk” of the Z output
has been derived. This is important because several different IDL constructs
will be translated into the same Z construct, i.e. the Z schema.

4

2.2 IDL Types, Variables, and Constants

IDL has a few standard types, e.g. int, char, string, long, and float. The
identifiers for these types are left unchanged in the translation to Z, and a
“boilerplate” is assumed that defines them in terms of standard or given Z
types (e.g. int is defined as an abbreviation for the standard Z type Z).

An IDL specification can include definitions of variables and constants of
various types, e.g. the definition:

char c;

declares a variable c of type char. This translates into Z syntax as:

c : char

(In addition, a module name may need to be prefixed to the variable name, if
the variable is declared inside a module. This issue is discussed further in the
section on IDL modules.)

Apart from the built-in types, types can be declared in various other ways,
which are now described.

Structured types, which are like the record types used in many programming
languages. The fields of such a type may be of another structured type. An
example of a structured type is:

struct Date {

int year

string month;

int day;

}

This is translated into Z as a schema, with an appropriate text wrapper, i.e. as

** BEGIN struct: Date

Date
year : int
month : string
day : int

** END struct: Date

Types can also be enumerated types, as in for example

enum Season { SPRING, SUMMER, AUTUMN, WINTER };

which is translated into Z as

Season == SPRING | SUMMER | AUTUMN |WINTER

The following is an example of an abbreviated type definition, which declares
ch as an alias or abbreviation for the standard type char.

typedef char ch;

This is translated into Z (assuming that the “boilerplate” completely covers the
translation of IDL’s predefined types) simply as:

ch == char

5

2.3 IDL Modules

An IDL module is a named collection of definitions. Unlike an IDL interface,
a module does not represent a class of objects, in the object-oriented sense —
it is simply a name-space for a group of related definitions. A module must be
contained in one IDL source file. A file may contain several top-level modules,
but a common convention is for each file to contain only one top-level module.
The general form of a module is:

/*<comment>....... */

module <module-name>

{...

<definitions>

...

}; // end of module <module-name>

Since a module is itself a kind of definition, modules can be nested. Modules
can refer to definitions from other modules, in which case the names of those
other modules are prefixed to the identifiers being imported, using “::”as a
separator. There is no IDL syntax for specifying explicitly at the top of a
module which identifiers it exports or imports. Thus it is not possible to tell
by looking at an individual module alone, which of its definitions are used in
other modules, and which are not. It is, however, possible to see which imported
identifiers are used, simply by looking for identifiers which have a prefix of the
form “<moduleName>::”.

IDL modules can import identifiers from each other, as in for example:

module A {

enum XType {X1, X2};

typedef YType B::XType; }

module B {

enum XType {X1, X2};

typedef YType A::XType; }

Such mutual importing means that a translation of IDL modules using the Z
section construct is impossible, because the sections of a Z specification must be
ordered into a DAG-hierarchy by specifying the parents (if any) of each section,
in such a way that the identifiers of sibling sections are not visible to each
other. (An implicit “root” section is assumed, from which all other sections are
ultimately descended. The identifiers visible in a given section are its own, plus
those of any of its ancestors, which must be distinct from its own, e.g. a variable
x can’t be defined locally in one section, and in one of its ancestor sections.)

IDL modules can be represented instead by adding module name prefixes
(terminating with a special reserved character, e.g. #) to all identifiers within a
module (except those already prefixed with the name of another module) during
the translation of that module into Z. When modules are nested inside modules,
this will require two or more prefixes to be added, with the outermost module
name being prefixed last. Applied to the IDL example just shown, this approach
produces the following Z output:

** BEGIN module: A

6

A#XType == A#X 1 | A#X 2
A#Ytype == B#XType

** END module: A

** BEGIN module: B

B#XType == B#X 1 | B#X 2
B#Ytype == A#XType

** END module: B

2.4 IDL Interface Attributes

An IDL interface, which can have both attributes and methods, corresponds
roughly to a class in object-oriented terms, but it is the external or public view
of a class, i.e. it defines only those attributes and methods visible to an external
user of objects of that class. (One possible approach might be to translate
IDL interfaces to “grey box data types” [5], which extend the normal states-
and-operations style in Z with explicit lists of observable and modifiable state
components.) An interface may inherit the attributes and operations of another.
In the version of IDL used in the prototype implemented, multiple inheritance
is not allowed.

IDL interface attributes can be both readable and writable (with implicit
“get” and “set” operations), or read-only (with an implicit “get” operation
only). Attributes are readable and writable unless explicitly declared as read-
only.

An example of an IDL interface is:

interface Property {

attribute int price

attribute char taxCategory

readonly attribute int floorArea }

This is translated to a Z schema interpreted as a state schema, plus asso-
ciated “get” and/or “set” operation schemas for each attribute (prefixed with
the state schema name, to distinguish them from the get and set operations of
other interfaces). Thus the corresponding Z output (including a text wrapper)
in this case is:

** BEGIN interface: Property

Property
price : int
taxCategory : char
floorArea : int

Property%Get%price
∆Property
Result !! : int

Result !! = price = price ′

7

Property%Set%price
∆Property
newval?? : int
Result !! : void

price ′ = newval??

(... + Get and Set schemas for other attributes)

** END interface: Property

Points to note:

• The names of “get” and “set” operation schemas are constructed in a
standard way, by inserting the strings “%Get%” and “%Set%” between
the interface name and the attribute name.

• Special reserved variable names newval?? and Result !! are used for the in-
put and output variables of “get” and “set” operations. The double ques-
tion mark and double exclamation mark suffixes distinguish such variables
clearly from other variables. Result !! has the trivial type void for “set”
operations.

• When a “get” operation takes place, the value of the attribute concerned
is the same before and after the operation, but other attributes are un-
constrained.

• When a “set” operation takes place, the attribute concerned has the new
value (possibly the same as its previous value) after the operation, but
other attributes are unconstrained.

Given the assumptions above, “get” and “set” operations impose only very
weak constraints on the prestate and poststate. This is a reasonable approach,
because in an implementation of an interface, public attributes may be mutually
constrained by invariants, so that for example, setting one attribute may involve
changing another. (For example, an interface for stacks might have a public
but read-only attribute representing the number of items on the stack, which
increases every time an item is pushed onto the stack.)

2.5 IDL Interface Methods

In addition to the “get” and “set” methods implied by attribute declarations,
interfaces can have explicitly declared methods. Every method has a result type
value, which in some cases is void . Methods can have parameters, which may
have any of the modes in, out , or inout — indicating respectively, locations
from which input data to the method are read, locations to which output data
are written, and locations used in both the foregoing ways, i.e. from which data
are read initially, and to which data (of the same type) are written.

For translation into Z, the result value and any out parameters are converted
into operation schema output variables (with a “!” suffix added to each IDL
parameter name). Any in parameters are translated into operation input vari-
ables (with a “?” suffix added to each IDL parameter name). Both an input and

8

output variable (of the same name, but with “?” and “!” suffixes respectively)
are produced for each inout parameter. The output variable representing the
method’s result value is clearly distinguished from those associated with out or
inout parameters, by using the reserved name Result !!.

An example is shown below. Note that in this case, in which the IDL inter-
face has no public attributes, an empty state schema is produced in Z.

interface Thing {

void op1 ([in] char c, [out] char d);

string op2 ([inout] int i); }

Z translation:

*** BEGIN interface: Thing

Thing

Thing%op1
∆Thing
c? : char
d ! : char
Result !! : void

Thing%op2
∆Thing
i? : int
i ! : int
Result !! : string

** END interface: Thing

2.6 IDL Interface Inheritance

One IDL interface can inherit from another. In the following example, the
interface Manager inherits from Employee.

interface Manager : Employee

{

<+ any new attrs. and ops.>

}

Such inheritance can be represented in Z by schema inclusion of the state schema
for the class concerned, e.g. in this case by

Manager
Employee
..+ any new attrs.

9

The Z translation of the subclass will also include operation schemas that
use schema inclusion to represent inheritance — e.g. if the Z translation of
the Employee interface has an operation schema Employee%promote, the Z
translation of the Manager interface will include the operation schema

Manager%promote
∆Manager
Employee%promote

Manager may also have additional, non-inherited operation schemas.
IDL interface inheritance can cross module boundaries, in which case inher-

ited names are prefixed by module names. Some versions of IDL allow multiple
inheritance, others do not. An example involving both multiple and cross-
module inheritance is shown below. (N.B. A inherits from B, and from C in
module Y. Interfaces A and B are assumed here to be declared inside a module
X.)

interface A : B, Y::C {

readonly attribute int ANewAttr;

}

This is translated into Z as:

** BEGIN interface: X#A

X #A
X #B
Y #C
ANewAttr : int

A%Get%ANewAttr
∆A
Result !! : int

Result !! = ANewAttr = ANewAttr ′

(Plus also, Get and Set op. schemas for inherited attrs., and schemas for
any inherited ops. other than Get and Set ops.)

** END interface X#A

3 Implementation

A prototype tool has been implemented to perform the translation from IDL
to Z for a subset of the syntax of IDL. The tool incorporates the freely avail-
able HaskellDirect IDL parsing tool, originally developed at Glasgow Univer-
sity, supplemented with some additional code, also written in the functional
programming language Haskell [17].

10

Work is in progress to develop another tool to perform translations from Z
to IDL, at least for a restricted subset of Z, augmented with some information
from the user to indicate the intended interpretation of each Z schema (in the
opposite IDL to Z translation, several different IDL constructs are translated
into Z schemas). The aim is to incorporate such translation tools into a toolset
for viewpoint specification.

In outline, the actual IDL to Z translation process is as follows:

• The input is an IDL specification, in one or more plain-text files.

• The IDL input is parsed into data structures in the functional program-
ming language Haskell [17], using Glasgow University’s HaskellDirect IDL
parsing tool.

• The Haskell data structures are translated into strings, which are out-
putted to a single plain-text file containing LaTeX mark-up code.

• The LaTeX tool is run on the LaTeX mark-up code to produce a Postscript
file for printing or viewing in a screen window, which can be shown along-
side another window displaying the IDL input.

The aim is a fairly simple translation that preserves the linear order of syntactic
units in the input file, making it easy to correlate the output with the input,
and facilitating reverse translation back into IDL.

The translation prototype takes only a few seconds to translate and display
several pages of IDL input and the corresponding Z output, most of this time
being accounted for by the running of LaTeX to produce the Postscript output,
and the generation of the windows to display the output — the parsing and
translation itself takes very little time.

The initial work on the tool has provided a “proof of concept” for the IDL
to Z translation. Future work is envisaged which would extend the translation
to the full syntax of IDL, add a convenient user-interface, and ultimately incor-
porate the tool into a wider toolset for viewpoint specification and refinement,
with particular application to the ODP framework.

4 Refinement and “Skeletal Z” specifications

Because of the limited expressiveness of IDL, the Z specifications produced by
the translation described in this paper are “skeletal”, with almost no behavioural
constraints on operations, apart from minimal assumptions about the effect of
implicit “get” and “set” operations on the state attributes to which they apply.
All other operations are just defined by their signatures, in terms of inputs and
outputs of certain types. However, translation into such a sparse form of Z is
still useful, because:

• The specifications that it produces can be developed into more detailed
and more behaviourally constrained specifications using Z refinement tech-
niques [4, 18].

• It can be applied to viewpoint unification by finding a common refine-
ment of the translated specification and Z specifications expressing other
viewpoints.

11

• It could serve as the basis for an enhanced translation process in which
Z constraints are expressed as comments in an IDL specification, and are
converted into actual behavioural constraints in the Z output file, so that
the Z annotations become part of the formal content of the specification,
in addition to the “skeletal” translation resulting from the IDL syntax
alone. (Analogously to what the RoZ tool [7] does for UML.)

In addition, since the translation is injective, a reverse translation is possible.
This could be used to generate IDL implementation templates from a restricted
subclass of Z specifications, supplemented with information about the intended
interpretation in IDL of Z schemas (which are used variously in the IDL to
Z translation to represent states, operations, and structured datatypes). A
general Z to IDL translation would lose most of the information contained in
the Z predicate.

In conventional data refinement in Z [4, 18], an abstract ADT is refined to
a concrete one by changing the state space and operations. Let the abstract and
concrete ADT’s be (AStates,AInit , {AOpi | i ∈ I }) and (CStates,CInit , {COpi |
i ∈ I }), respectively (where AInit and CInit are initialisation predicates). The
concrete ADT refines the abstract one, with respect to a retrieval relation Retr
between their state spaces, if and only if the following conditions hold:

• Initialisation. Every concrete initial state in CInit is related by Retr to
some abstract initial state in AInit .

• Inputs and outputs. The operations AOpi and COpi have the same input
and output variables (if any).

• Applicability . If a given abstract pre-state AState and set of inputs satisfies
the pre-condition of AOpi , then any concrete pre-state CState related to
AState by Retr satisfies the pre-condition of COpi , given the same inputs.

• Correctness. For any pre-states AState and CState related by Retr , if
AState satisfies the pre-condition of AOpi , and CState ′ is a concrete post-
state reachable from CState via COpi , then there is some abstract post-
state AState ′ related by Retr to CState ′.

If the conditions above are satisfied, the concrete ADT “simulates” the ab-
stract ADT, insofar as every one of its possible behaviours corresponds, via the
retrieval relation, to a behaviour of the abstract ADT.

In the context of partial or viewpoint specification, conventional data refine-
ment seems too restrictive. Some of our previous work [15] suggests other forms
of refinement that should be allowed — for example adding new operations, or
replacing several operations by one, which has more inputs.

5 Conclusion

This paper has described a translation from CORBA IDL to Z, as performed
by a prototype translation tool, which uses Glasgow University’s IDL parser,
HaskellDirect . The translation takes one or more IDL text files as input, and
produces a single text file containing LaTeX mark-up code for Z.

12

The IDL to Z translation is intended for use in the context of viewpoint
specification, an approach in which systems are specified from several different
perspectives or “viewpoints”. The ISO’s ODP architecture for open distributed
systems is a particular example of a viewpoint approach, based on five named
and informally described viewpoints. These include the Computational View-
point (a specification of the interfaces of the distributed objects of a system)
and the Information Viewpoint (a high-level specification of the information
processed by a system). Although ODP prescribes no particular formalisms for
its viewpoints, IDL and Z are well suited to the Computational and Information
Viewpoints respectively. Thus an IDL to Z translation facilitates viewpoint uni-
fication in a multiple-viewpoint, multiple-formalism context, because it allows
an IDL specification to be converted into a form in which it can be unified with
Z specifications via mutual refinement.

Since the IDL to Z translation is injective, it can provide the basis for a
reverse translation into IDL, from a subset of Z that follows certain naming
conventions, and is supplemented with certain textual markers indicating struc-
ture. The existing translation could also be adapted into one that maps IDL
specifications containing Z expressions as comments into full Z specifications.
Such a hybrid notation would allow the “skeletal” interface information encoded
in IDL to be augmented with behavioural constraints.

Acknowledgements

We would like to thank the providers of the HaskellDirect IDL to Haskell parsing
tool (see http://www.dcs.gla.ac.uk/fp/software/hdirect/) for permission
to use it.

References

[1] E. Boiten, J. Derrick, H. Bowman, and M. Steen, “Constructive Consis-
tency Checking for Partial Specification in Z”, Science of Computer Pro-
gramming, 35, 1999, pp. 29–75.

[2] H. Bowman, E. Boiten, J. Derrick, and M. Steen, “Viewpoint Consistency
in ODP, a General Interpretation”, Formal Methods for Open Object-Based
Distributed Systems, eds. E. Najm and J.-B. Stefani, Chapman & Hall,
March 1996, pp. 189–204.

[3] E. Boiten, H. Bowman, J. Derrick, P. Linington, and M. Steen, “Viewpoint
consistency in ODP”, Computer Networks, 34(3), August 2000, pp. 503–
537.

[4] E. Boiten and J. Derrick, Refinement in Z and Object-Z: Foundations and
Advanced Applications, Springer-Verlag FACIT series, Spring 2001 (forth-
coming).

[5] E. Boiten and J. Derrick, “Grey Box Data Refinement”, International Re-
finement Workshop & Formal Methods Pacific ’98, eds. J. Grundy, M.
Schwenke, and T. Vickers, Springer-Verlag, 1998, pp. 45–49.

13

[6] E. Boiten and J. Derrick, “Liberating Data Refinement”, Mathematics of
Program Construction, 5th International Conference, Ponte de Lima, vol-
ume 1837, Lecture Notes in Computer Science, eds. R.C. Backhouse and
J.N. Oliveira, Springer-Verlag, July 2000, pp. 144–166.

[7] S. Dupuy, Y. Ledru, and M. Chabre-Peccoud, “An Overview of RoZ: A
Tool for Integrating UML and Z Specifications”, 12th Conference on Ad-
vanced information Systems Engineering (CAISE’2000), Lecture Notes in
Computer Science, Springer-Verlag, vol. 1789, 2000.

[8] A. Finkelstein, J. Kramer, B. Nuseibeh, L. Finkelstein, and M. Goedicke,
“Viewpoints: A Framework for Integrating Multiple Perspectives in System
Development”, Int. Jour. on Software Engineering and Knowledge Engi-
neering, 1992, 2(1), pp. 31–58.

[9] P.F. Linington, “RM-ODP: The Architecture”, ICODP, eds. K. Raymond
and L. Armstrong, Chapman and Hall, February 1995, Brisbane, Australia,
pp. 15–33

[10] R. Otte, P. Patrick, and M. Roy, Understanding CORBA: The Common
Request Broker Architecture, Prentice Hall, 1996.

[11] G. Smith, The Object-Z Specification Language, Kluwer Academic Publish-
ers, 2000.

[12] J.M. Spivey, The Z Notation: A Reference Manual, 2nd edition, Prentice
Hall, 1992.

[13] M. Steen and J. Derrick, “Formalising ODP Enterprise Policies”, EDOC,
1999, University of Mannheim, Germany, IEEE Publishing.

[14] M. Steen and J. Derrick, “ODP Enterprise Viewpoint Specification”, Com-
puter Standards and Interfaces, 22:165-189, September 2000.

[15] C. Taylor, “Comparison of ODP Viewpoint Specifications in Object-Z: A
Case Study”, University of Kent, Tech. Rep. No. 7-00, March 2000.

[16] C. Taylor, J. Derrick, and E. Boiten, “A Case Study in Partial Specification:
Consistency and Refinement for Object-Z”, Proc. of ICFEM 2000, pp. 177–
185, IEEE, September 2000.

[17] S. Thompson, Haskell: The Craft of Functional Programming, 2nd edition,
Addison-Wesley, 1999.

[18] J. Woodcock and J. Davies, Using Z: Specification, Refinement, and Proof,
Prentice Hall, 1996.

[19] V. Zadorozhny, “Towards an integrated CORBA/RAISE Semantic Inter-
operable Environment”, Tech. Rep. 117, UNU/IIST, P.O.Box 3058, Macau,
July 1997.

14

