
page 1

A Framework Based on Design Patterns for Providing
Persistence in Object-Oriented Programming Languages

Abstract. This paper describes an approach to providing object persis-
tence in object-oriented programming languages without modifying the
run-time system or the language itself. By successively applying design
patterns such as the Serializer, Factory Method, and Strategy patterns
we develop an object-oriented framework for providing object persis-
tence. The advantages of object-orientation are highlighted: structured
classification through class-hierarchies, extensibility and promotion of
reuse. The framework clearly separates persistence control from storage
control. A hierarchy of different storage types, useful in different appli-
cation domains, is introduced. The framework does not rely on any kind
of special programming language features. It only uses basic object-ori-
ented programming techniques, and is therefore implementable in any
object-oriented programming language. An experimental implementa-
tion in Ada 95 is presented.

Keywords. Persistence, Stable Storage, Object-Oriented Framework,
Design Patterns.

1 Introduction

Research into persistent programming languages and systems in recent years has
shown that this technology is useful for developing complex software in many prob-
lem domains. Persistence is used whenever data values from a program execution are
saved so that they can be used in a later execution. Software fault tolerance mecha-
nisms based on backward error recovery use persistence to provide state restoration in
case of computer crashes. Transaction durability is often achieved using persistence
techniques. How the data is saved and what kind of storage medium is used for that
purpose depends on the applications demands and can vary considerably from one
application to another. Unfortunately, widely used object-oriented programming lan-
guages still do not offer support for persistence.
This paper describes the design of a framework for providing object persistence in
object-oriented programming languages. The outline of the paper is as follows:
section 2 introduces persistency and gives a brief overview of some programming lan-
guages that address persistence; section 3 shows how parts of the problem can be
solved by applying design patterns; section 4 presents the full framework, obtained by
putting together the partial solutions obtained in section 3; section 5 shows an experi-
mental implementation of the framework in Ada 95; section 6 looks at other related
work in this area, and section 7 draws some conclusions.

Jörg Kienzle
Software Engineering Laboratory

Swiss Federal Institute of Technology
CH - 1015 Lausanne Ecublens

Switzerland
email: Joerg.Kienzle@epfl.ch

Alexander Romanovsky
Department of Computing Science

University of Newcastle
NE1 7RU, Newcastle upon Tyne

United Kingdom
email: Alexander.Romanovsky@newcastle.ac.uk

page 2

2 Persistence and Programming Languages

Persistence is a general term for mechanisms that allow application data from a pro-
gram’s execution space to somehow survive the execution of the program, so that in a
later execution it can be used again. There are many possible schemes for supporting
persistence. For a complete survey, the reader should refer to [1].
The most sophisticated and desired form of persistence is orthogonal persistence [2].
It is the provision of persistence for all data irrespective of their type. In a program-
ming language providing orthogonal persistence, persistent data is created and used in
the same way as non-persistent data. Loading and saving of values does not alter their
semantics, and the process is transparent to the application program. Whether or not
data should be made persistent is often determined using a technique called persistence
by reachability. The persistence support designates an object as a persistent root and
provides applications with a built-in function for locating it. Any object that is “reach-
able” from the persistent root, for instance by following pointers, is automatically
made persistent.
The first language providing orthogonal persistence, PS-Algol [3], was conceived in
order to add persistence to an existing language with minimal perturbation to its initial
semantics and implementation. There are persistent versions of functional program-
ming languages such as Persistent Poly and Poly ML [4]. There has also been work on
adding orthogonal persistence to widely used programming languages. Probably the
most interesting project nowadays is PJava [5], a project that aims at providing
orthogonal persistence to the Java [6] programming language.
Due to the demanding requirements of orthogonal persistence, all these implementa-
tions had to slightly modify the programming language and / or modify the run-time
system. The paper [7] for instance investigates adding orthogonal persistence to the
Ada 95 [8] language. The authors identified the following problems:
 • Orthogonal persistence requires that both data and types can have indefinite life-

times. If a persistent application is to evolve, structural equivalence and dynamic
type checking are necessary when a program binds to an object from the persistent
store. When introducing orthogonal persistence, type compatibility within an exe-
cution extends to type compatibility across different executions. This may conflict
with the typing rules of the programming language.

 • Often programming languages allow the use of static variables inside classes or
even as standalone global variables. It is possible that a programmer uses such
static variables to link objects together, such as for instance a static table that links
key values to some other data. Now if the key values are made persistent, the table
should also persist, or else the key values are useless. It might be tricky to provide
automatic persistence for such static variables without breaking orthogonal persis-
tence.

 • Orthogonal persistence also requires that elaborate types such as task types /
threads and subprogram pointers values persist. This can raise severe implementa-
tion problems.

 • A program might evolve and change the definition of types and classes, but still try
and work with values saved in previous executions. To make this work, some form
of version control must be provided, and additional dynamic checking is required.
The problem can be even more complicated when considering inheritance.

 • Another important problem when providing orthogonal persistence is storage man-
agement. Persistent data that will not be used anymore must be deleted, for storage
leaks will result in permanent loss of storage capacity. This basically requires some
form of automatic garbage collection, at least for all persistent data.

page 3

Finally the authors conclude that adding orthogonal persistence to the Ada 95 language
would require major changes, making the new language backwards incompatible. It is
interesting to note here that even in the case of the Java language, a modern object-ori-
ented language that already provides automatic garbage collection and a powerful
reflection mechanism, the virtual machine executing the Java byte code had to be mod-
ified in order to support orthogonal persistence [5].
As soon as we do not require orthogonal persistence, persistence support for conven-
tional programming languages can be provided in multiple ways. Many languages
have been extended or provide standard libraries that allow data to be made persistent
for instance by saving it to disk. Avalon [9] for instance is an extension to C++ that
provides persistence and transactions. The authors have extended the C++ language,
providing additional keywords such as stable used to designate class attributes that are
to be made persistent.
Persistence support in object-oriented programming languages must provide a mecha-
nism that allows the state of an object to persist between different executions of an
application. It can be quite challenging to find means for taking the in-memory repre-
sentation of the objects state and writing it to some storage device. Fortunately, object-
oriented programming languages often provide some kind of streaming functionality
that allows transforming the state of an object into a flat stream of bytes. Some lan-
guages go even further and provide streams that allow a user to write objects into files
or other storage devices (Ada Stream_IO [8 A.12.1], Java [6] FileOutput-
Streams). Unfortunately, the facilities provided by the programming language are
not always sufficient, or they lack modularity and extensibility, making the definition
of new persistent objects or the addition of new storage devices difficult or even
impossible.
We believe that when designing persistence support for object-oriented programming
languages one should strive to achieve the following:
 • Clear separation of concerns: The persistent object should not know about storage

devices or about the data format that is used when writing the state of the object
onto the storage device and vice versa.

 • Modularity and extensibility: It should be straightforward to define new persistent
objects or add new storage devices.

 • Safe storage management: Storage leaks leading to wasted space on the storage
device must be prevented.

In order to help the programmer we propose a general framework for providing object
persistence that maximizes these goals. It can be used by two different types of pro-
grammers: persistence support programmers and application programmers.
Persistence support programmers will add support for new storage devices to the
framework using object-oriented programming techniques. Application programmers
will use the framework to declare persistent objects. When instantiating a new persis-
tent object, the application programmer specifies where the state of the object will be
saved by choosing among the existing implementation of storage devices. The opera-
tions defined for persistent objects allow the application programmer to save or restore
the state of the object at any time.
The framework does not rely on any kind of special programming language features. It
only uses basic object-oriented programming techniques and is therefore implement-
able in any object-oriented programming language. Most of its structure is based on
well-known design patterns. The remainder of this paper documents the construction
of the framework.

page 4

3 Applying Design Patterns Successively

3.1 Classification of Storage Types

At some point, persistent objects must save their state to some kind of storage, so that
it can be retrieved again in a later execution. The term storage is used in a wider sense
here. Sending the state of the object over a network and storing it in the memory of
some other computer would for instance also make sense, as long as the data survives
program termination. Nevertheless, all storage types do not have the same properties,
and therefore must not all provide the same set of operations. An abstract class hierar-
chy is the most natural way to represent the structure of such storage types. A concrete
implementation of a storage type must derive from one of the storage classes and
implement the required operations. We propose to classify the different storage types
in the way presented in figure 1.

The Storage class represents the interface common to
all storage types. The operations Read and Write rep-
resent the operations that allow the user to read and write
data from and to the storage device. What kind of value
types they must support will be discussed in more detail
in the next subsection.
The storage hierarchy is split into volatile storage and
non-volatile storage. Data stored in volatile storage will
not survive program termination. An example of a vola-
tile storage is conventional computer memory. Once an
application terminates, its memory is usually freed by the
operating system, and therefore any data still remaining
in it is lost. Data stored in non-volatile storage on the
other hand remains on the storage device even when a program terminates. Databases,
disk storage, or even remote memory are common examples of non-volatile storage.
Since the data will not be lost when the program terminates, additional housekeeping
operations are needed to establish connections between the object and the actual stor-
age device, to cut off existing connections, and to delete data that will not be used any-
more. These operations are Open, Close and Delete.
The kind of storage to be used for saving application data depends heavily on the
application requirements. Properties such as performance, capacity of the storage
media and particularities of usage (for instance write-once devices like CD writers)
may affect the choice. Persistence can be implemented in a stronger form to support
fault tolerance of different sorts, including tolerating software design faults (bugs) for
instance by using the recovery block scheme [10], or tolerating faults of the underlying
hardware for instance by using checkpoints [11]. To apply persistence properly and to
choose the suitable storage type, the application programmer has to identify the fault
assumptions and to know the reliability of the storage devices which can be used.
This is why among the different non-volatile storage devices, we distinguish stable
and non-stable devices. Data written to non-stable storage may get corrupted, if the
system fails in some way, for instance by crashing during the write operation. Stable
storage ensures that stored data will never be corrupted, even in the presence of appli-
cation crashes and other failures.
Stable storage has been first introduced in [12]. The paper describes how conventional
disk storage that shows imperfections such as bad writes and decay can be transformed
into stable storage, an ideal disk storage with no failures, using a technique called mir-
roring. When using this technique, data is stored twice on the disk (often two different
physical disks are used to store the two copies of the data to increase reliability even

Volatile_Storage

Non_Stable_Storage

Non_Volatile_Storage
Delete()
Close()
Open()

Stable_Storage

Storage

Read()
Write()

Figure 1: Storage Class
Diagram

page 5

more). If a crash occurs during the write operation of the first copy, the previously
valid state can still be retrieved using the second copy. If the crash happens during the
write operation of the second copy, the new state has already been saved in the first
copy. When the system restarts later on, the state stored in the first copy must be dupli-
cated and saved over the second copy.
Using this mirroring technique, any non-volatile, non-stable storage can be trans-
formed into stable storage. It is therefore possible to write an implementation of the
mirroring algorithm that is independent of the actual non-volatile storage that will
effectively be used to store the data. To achieve this decoupling, the Strategy design
pattern described in [13] has been used. The Strategy design pattern has three types of
participants: the Strategy, the Concrete Strategy and the Context.

The Strategy, in our case the non-volatile, non-sta-
ble storage class, declares the common interface to
all concrete strategies. The Context, in our case the
mirroring class, uses this interface to make calls to
a storage implementation defined by a Concrete
Strategy. This could be for instance a file storage
class that implements storage based on the local file
system. The structure of the collaboration is shown
in figure 2.
At instantiation time, two non-volatile storage
objects must be passed as a parameter to the con-
structor of the mirroring class. That way, a variety
of stable storages can be created reusing concrete

implementations of non-volatile storage. What kind of non-volatile storage will be
chosen depends on the needs of the application. To help the user make his choice, a
concrete non-volatile storage must document the assumptions under which the storage
is considered non-volatile and other information that might be useful for the applica-
tion programmer such as for instance performance.
The mirroring technique is not the only one that can be used to create stable storage.
Database systems for instance have their own mechanism to guarantee atomic updates
of data. Typically this is done by structuring updates of data as transactions. A transac-
tion can be committed, in which case the updates will be made permanent, or aborted,
in which case the system remains unchanged. If any kind of failure occurs during the
transaction, the data also remains unchanged. It is possible to write a concrete stable
storage class that provides a bridge between an object-oriented programming language
and a database.
Yet another form of providing stable storage is
replication. The state of a persistent object can be
broadcasted over the network and stored for
instance in remote memory. Although memory is
usually not seen as non-volatile, from the applica-
tion point of view it is, since it survives program
termination. The group of replicas as a whole can
be considered stable, for as long as at least one of
the remote machines remains accessible, the data
can always be retrieved on a later execution.
Just as in the mirroring example, the replicated
solution can be implemented in a generic way
using the Strategy pattern. This time, the relation-
ship between the context and the strategy is one to
many as depicted in figure 3.

Non_V olatile_Storage

Delete()
C lose()
O pen()

Stable_Storage

F ile_Storage

F ile_Storage()

M irroring

M irroring(NST_1, NST_2)

Non_Stable_Storage

1

2

1

2

Context

Strategy

Concrete Strategy

Figure 2: Stable Storage Using
Mirroring

Non_Volatile_Storage

Delete()
Close()
Open()

Stable_Storage

Remote_Memory

Remote_Memory()

Replication

Replication(NST)

Non_Stable_Storage

1

1..*

1

1..*

Context

Strategy

Concrete Strategy

Figure 3: Stable Storage Using
Replication

page 6

The replication class implements broadcasting and other replica management algo-
rithms that handle failures of replicas during program execution.

3.2 Object Serialization

When storing the state of a persistent object on some kind of storage device, the data
must first be transformed from its representation in memory into some form that can be
stored by the device. Most of the time the most convenient form will be a flat stream of
bytes e.g. for storing data in flat files or sending data though network transport buffers.
Interfaces to ODBMs can be more elaborate.
The Serializer design pattern described in [14] is an ideal solution for this kind of
problem. It provides a mechanism to efficiently stream objects into data structures of
any form as well as create objects from such data structures. The participants of the
Serializer pattern are the Reader / Writer, the Concrete Reader / Concrete Writer, the
Serializable interface, Concrete Elements that implement the Serializable interface
and different Backends. The structure of the Serializer pattern is shown in figure 4.

The Reader and Writer parts declare protocols for reading and writing objects. These
protocols consist of read respectively write operations for every value type, including
composite types, array types and object references. The Reader and Writer hide the
Backend and the external representation format from the serializable objects. Concrete
Reader and Concrete Writer implement the Reader and Writer protocols for a particu-
lar backend and external representation format.
The Serializable interface defines operations that accept a Reader for reading and a
Writer for writing. It also should provide a Create operation that takes a class identi-
fier as an argument and creates an instance of the denoted class. Concrete Element is
an object implementing the Serializable interface, which allows it to read and write its
attributes to a Concrete Reader / Concrete Writer.
The Backend is a particular backend, and corresponds to our storage class shown in the
previous subsection. A ConcreteReader/ConcreteWriter reads from/writes to its back-
end using a backend specific interface. Relational database front-ends, flat files or a
network buffers are examples of concrete backends.
When invoked by a client, the Reader / Writer hands itself over to the serializable
object. The serializable object makes use of its protocol to read / write its attributes by
calling the read / write operations provided by the Reader / Writer. For certain value
types such as composite types, the Reader / Writer might call back to the serializable
object or forward the call to other objects that implement the Serializable interface.
This results in a recursive back-and-forth interplay between the two parties.

Reader
read operations for every value type()

Writer
write operations for every value type()

ConcreteReader1 ConcreteReader2

ConcreteWriter1 ConcreteWriter2

Backend1 Backend2

<<call>> <<call>> <<call>> <<call>>

Serializable
readFrom(Reader)
writeTo(Writer)

<<Interface>>

ConcreteElement1 ConcreteElement2

<<call>>

<<call>>

<<call>>

<<call>>

Figure 4: The Serializer Pattern

page 7

The bigger the set of supported value types of the Reader / Writer interface is, the
more type information can be used by the Concrete Reader / Concrete Writer to effi-
ciently store the data on the backend. On the other hand, there are backends that sup-
port only a small set of value types. Flat files for instance only support byte transfer.
For these kinds of backends the Concrete Reader / Concrete Writer must contain
implementation code that maps the read / write operations of unsupported value
types to the ones that are supported.
The big advantage of the Serializer pattern is that the application class itself has no
knowledge about the external representation format which is used to represent their
instances. If this were not the case, introducing a new representation format or chang-
ing an old one would require to change almost every class in the system.
In some object-oriented programming languages, such a serialization mechanism is
already provided, which means that the readFrom / writeTo operations defined in
the Serializable interface have predefined implementations for all value types of the
programming language that are not covered by the Reader / Writer interface. The Java
Serialization package [15] or Ada streams [8, 13.13] are examples of such predefined
language support. If no language support is available, the readFrom / writeTo
operations of the Serializable interface must be implemented for every Concrete Ele-
ment.

3.3 Creation of Persistent Objects

When creating an instance of a persistent object, the user must be able to specify on
what kind of storage he wants the state of the object to be saved. The object can then
create an instance of the corresponding storage class and thus establish a connection to
the storage device.
The information needed to create an instance of a concrete storage class is device
dependent. To create a new file, a user must typically provide a file name that follows
certain conventions, and maybe also a path that specifies in which directory the file
should be created. To access remote memory, an IP number or machine name must be
provided. To solve this problem, a parallel hierarchy of storage parameters has been
introduced. It has the same structure as the storage hierarchy (see figure 5). This allows
each storage class to define it’s own storage parameter type containing all the informa-
tion it needs to uniquely identify data stored on the device.

At the same time, the storage parameter class
allows a user to create instances of storage
classes. This is done using the well-known Fac-
tory Method pattern described in [13]. The partic-
ipants of this design pattern are the Product, the
Concrete Product, the Creator and the Concrete
Creator.
The Product and Concrete Product are in our
case the storage class and it’s descendants, as
they define and implement the interface of the
objects the factory will create.
The Creator is the storage parameter class, for it
declares the abstract factory method

Create_Storage. A Concrete Creator, in our case a concrete storage parameter
class, must provide an implementation for this method: the corresponding creator
function of the storage class must be called, passing as a parameter the information
stored inside the concrete storage parameter instance. Non-volatile storage needs a
second creator function, Open_Storage, that will instantiate the non-volatile class

Storage_Params
Create_Storage()
String_To_Storage_Params()
Storage_Params_To_String()

Volatile_Params_Type

Non_Stable_Params

Non_Volatile_Params
Open_Storage()

Stable_Params

Figure 5: The Storage Parameter
Class Hierarchy

page 8

without creating a new storage on the device. Instead a connection between already
existing data and the storage object will be established.
The Create_Storage and the Open_Storage operations define the connection
between the two parallel class hierarchies.

3.4 Identification of Persistent Objects

Since the state of a persistent object survives program termination, there must be a
unique way to identify a persistent object that remains valid during several executions
of the same program. The storage parameter that has been introduced in the previous
subsection uniquely identifies a location on the storage device, and can therefore also
be used as a means for object identification.
Sometimes it can be convenient for a user to treat persistent objects in a uniform way.
An object name in the form of a string has proven to be an elegant solution for uniform
object identification [6]. The two functions Storage_Params_To_String and
String_To_Storage_Params provide a mapping between the two identification
means.

3.5 Storage Management

Once a persistent object has been created and its state saved to a non-volatile storage,
the data will theoretically remain on the storage forever. The only way to remove the
data and free the associated storage space is to explicitly delete the object. This situa-
tion can lead to permanent storage leaks, if the user forgets to store the parameters that
allow him to identify the object on subsequent application runs.
A simple solution to this problem is to provide some sort of reliable persistent direc-
tory. The parameters of every persistent object created so far are automatically stored
in it. At any time, the user can consult the list of existing persistent objects to deter-
mine which of them he still needs and which of them he wants to delete.
Since the objects persist, the state of the directory should also survive program termi-
nation. The directory itself therefore is just another persistent object. When writing the
state of the directory to the storage, the storage parameters of all persistent objects that
have been created in the system must be written to the storage. It is therefore important
that the storage parameter class also implements the Serializable interface.
The directory must be reliable. Even a crash during the update of the directory should
not corrupt the data. This can be achieved by storing the directory on a stable storage.
But this is not enough. Storage leaks can occur if a crash occurs after a new persistent
object has been created, but before the creation has been registered in the directory. To
prevent this problem, the creation and deletion of objects and the updating of the direc-
tory to reflect the change must be executed atomically.

4 Putting Everything Together

With the previous solutions in mind, we can now put together the overall system. Its
structure is shown in figure 6. For simplicity, the Reader and Writer parts of the Serial-
izer pattern are shown as one class.
Before using any part of the framework, the user must initialize the persistence sup-
port. He has to choose where to store the persistent directory by instantiating the
appropriate storage parameters and passing them to the Initialize operation of the
persistence support class. In order to make the directory reliable a stable storage must
be used. A good idea is to hard-code the storage parameters of the persistent directory
in the application code, for on subsequent runs the same parameters must be used
again. During the Initialize operation, the persistent support class will try and

page 9

restore a previously valid directory, or if this fails, create a new, empty directory
instead. Once the initialization has been performed, the user can create, restore, save
and delete persistent objects.

The root class of the framework is the persistent object class. It implements the Serial-
izable interface described in the previous section and the operations Create,
Restore, Save and Delete.
The registered object class derives from the persistent object class. It is responsible for
registering any new persistent object instances with the persistent directory. In order to
define a new persistent object, the user must derive from the registered object class and
add any application dependent state using new class attributes. He must also imple-
ment the readFrom and writeTo operations of the Serializable interface, if the
underlying programming language does not provided them automatically.
The user-defined class must also provide two constructors, Create, to create a new
instance of a persistent object, and Restore, to restore the state of an already existing
persistent object. They must perform initialization of the application dependent object
state if needed and then up-call the corresponding constructor of the registered object
class, which will perform the necessary operation for registering the object with the
persistent directory.
The Create operation of the registered object class will call the Create_Object
operation of the persistent directory. Inside Create_Object, the operation Cre-

Volatile_Storage

Empty_Storage()

Non_Stable_Storage

Non_Volatile_Storage

Delete()
Close()
Open()

Stable_Storage

Storage
Read()
Write()

Volatile_Params_Type

Non_Stable_Params

Non_Volatile_Params
Open_Storage()

Stable_Params

UserDefinedClass1 UserDefinedClass2

Storage_Params

Create_Storage()
String_To_Storage_Params()
Storage_Params_To_String()<<instantiate>>

Persistent_Object

Create(Non_Volatile_Params)
Restore(Non_Volatile_Params)
Delete()
Save()
writeTo(Storage)
readFrom(Storage)

Serializable
readFrom(Reader)
writeTo(Writer)

<<Interface>>

<<call>>

Persistent_Directory

Create_Object(Non_Volatile_Params)
Delete_Object()

Registered_Object

<<call>>

Persistence_Support

Initialize(Stable_Storage_Params)

<<instantiate>>

Figure 6: Framework Overview

page 10

ate of the persistent class is called. This will actually create the object on the speci-
fied store as explained below. At the same time, the storage parameters of the newly
created class are stored inside the persistent directory. As mentioned before, this must
be done atomically. A simple way of implementing this is to use a simple form of log-
ging.
The implementation of the constructors Create and Restore in the persistent
object class will create an instance of the storage type identified by the storage param-
eter using the Create_Storage or Open_Storage factory methods. If
Restore has been called, the state of the object is read from the storage using the
operations of the Serializable interface.
This is again an application of the Strategy design pattern. The persistent object, the
Context, is configured with a storage, the Strategy, at instantiation time. The user
chooses the storage medium for his object by passing the corresponding storage pat-
terns to the Create or Restore constructors. Once this association has been set up,
the user can write the state of the persistent object to the associated storage using the
Save operation. The implementation will then write an object identifier and succes-
sively all object attributes to the associated storage.

5 Experimental Implementation

An experimental implementation of the framework [16] has been realized using the
object-oriented programming language Ada 95 [8]. The fact that Ada 95 supports
streaming of objects has simplified the implementation, but also narrowed down the
read / write operations of the storage type to support byte reads and writes only.
This fact is reflected in the specification of the abstract Storage_Type. There is
only one pair of read / write operations, and it operates on stream element arrays
(arrays of bytes):

with Ada.Streams; use Ada.Streams;
package Storage_Types is

type Storage_Type (<>) is abstract tagged limited private;

type Storage_Ref is access all Storage_Type’Class;

procedure Read (Storage : in out Storage_Type;
 Item : out Stream_Element_Array;
 Last : out Stream_Element_Offset) is abstract;

procedure Write (Storage : in out Storage_Type;
 Item : in Stream_Element_Array) is abstract;

private
...

end Storage_Types;

A persistence support programmer writing a new interface for a storage device must
derive from this class (or more precisely from a subclass such as
Non_Stable_Storage_Type whose properties correspond to the properties of
the device) and implement the Read and Write operations.
The following sample code shows how an application programmer uses the frame-
work. First, he must declare his own persistent type by deriving from the registered
object class, here called Registered_Object_Type, adding additional attributes
that will contain the application data. He must also provide a constructor that allocates
the new object, performs initialization and then up-calls the constructor of the regis-
tered object class. The following example shows how to declare a persistent integer
type:

with Persistent_Objects.Registered; use Persistent_Objects.Registered;
package Persistent_Integers is

type Persistent_Int_Type is new Registered_Object_Type with record
 Value : Integer;

end record;

page 11

type Persistent_Int_Ref is access all Persistent_Int_Type'Class;

function Create (Storage_Params : Non_Volatile_Params_Type'Class)
return Persistent_Int_Ref;

end Persistent_Integers;

With these declarations, instances of the persistent integer class can now be created
and used.

-- include the necessary files
with File_Storage_Params;
with Persistent_Integers; use Persistent_Integers;

-- Create a new persistent integer and save it’s contents

declare
 I : Persistent_Integer_Ref :=
 Create (File_Storage_Params.String_To_Storage_Params (“foo”));
begin
 I.Value := 123;
 Save (I.all);
end;

-- Restore the contents of the previously created persistent integer
declare

I : Persistent_Integer_Ref := Persistent_Integer_Ref (
Restore (File_Storage_Params.String_To_Storage_Params (“foo”)));

begin
 -- work with I
end;

When creating the persistent integer, the user chooses on which storage the state shall
be stored by calling the String_To_Storage_Params function of the chosen
storage class. In the example above, the persistent integer is stored in a file, since
String_To_Storage_Params of the File_Storage_Params class is called.

6 Related Work

The PJava project [17] aims to provide orthogonal persistence for the Java language
without modifying the language. Roots of persistence have been defined, where indi-
vidual objects can be registered during run-time. All objects reachable from a persis-
tent root are made persistent (persistence by reachability). This is achieved by
modifying the Java Virtual Machine.
The CORBA Persistent Object Service [18] is a standardized CORBA service that
allows CORBA Objects to make all or part of their state persistent. Whether or not the
client of such a persistent object is aware of the persistent state is a choice the object
has. By supporting special interfaces, and describing the persistent data using an inter-
face definition language, a persistent object can delegate the management of its persis-
tent state to other objects. The persistent data finally get stored in so-called data-stores.
This is the CORBA way to abstract the real storage devices, such as file systems or
databases. Each persistent object can dynamically be connected to a data-store. From
then on it is possible to save and restore the persistent state.
The PerDiS project [19] takes a very different approach to persistence. They address
the issue of providing support for distributed collaborative engineering applications
such as CAD programs, where large volumes of fine-grain, complex objects must be
shared across wide-area networks. They present the user with some form of a persis-
tent, distributed memory. The application accesses this memory transactionally. The
memory is divided into clusters containing objects. Named roots provide the entry
points. Objects are connected by pointers. Reachable objects are stored persistently in
clusters on disk; unreachable objects are garbage-collected automatically.

Transactional systems often incorporate a persistence support for guaranteeing the
durability property. Several object-oriented transactional systems use class libraries to

page 12

declare transactional objects and to manipulate them. For example, Arjuna [20], one of
the best known object-oriented transactional systems, is delivered as a set of C++
classes. It provides two types of object stores: persistent (the stable storage is imple-
mented as a set of UNIX files) and volatile (implemented in the main memory).These
systems usually hide all details of the ways they implement persistence and do not
offer programmers any object-oriented extendable approaches to manipulate the stable
storage (e.g. to include a new storage class to support a new media, or, to change the
storage dynamically). They incorporate object storage control into the transactional
control.

7 Conclusions

We have shown the construction of an object-oriented framework providing persis-
tence support for object-oriented programming languages. It does only rely on basic
object-oriented programming techniques, and can therefore be implemented in any
object-oriented programming language.

The advantage of using object-oriented programming is obvious. Class hierarchies
have allowed us to clearly classify the different storage devices and show the depen-
dencies among them. Abstract classes provide the interface for the different types of
storage.
The structure of the framework is based on well-known design patterns. The advan-
tages of using design patterns in this context are substantial:
 • Design patterns enhance the modularity and flexibility of object-oriented program-

ming. They offer solutions that have been proven to be successful.
 • The Serializer pattern makes it easy to add new data representation formats for

objects that must be written to new storage devices by introducing a new Reader /
Writer pair. It also moves the knowledge about the external data representation for-
mat out of the persistent object itself.

 • Encapsulating the storage devices in separate Strategy classes lets the user change
and replace particular storage implementations or even extend the storage device
hierarchy without modifying the persistent object class. It also promotes reuse
when implementing stable storage on top of non-volatile storage.

 • Using the Factory Method pattern in combination with a parallel class hierarchy
representing storage parameters allowed us to provide a uniform way for persistent
objects to create storage devices. At the same time the storage parameter provides
unique identification of persistent objects.

 • People familiar with the used design patterns will be able to understand the struc-
ture of the framework faster.

8 References

[1] Atkinson, M. P.; Morrison, R.: “Orthogonally Persistent Object Systems”.
VLDB Journal 4(3), pp. 319 – 401, 1995.

[2] Atkinson, M. P.; Bailey, P. J.; Chisholm, K. J.; Cockshott, W. P.; Morrison, R.:
“An Approach to Persistent Programming”. Computer Journal 26(4), pp. 360 –
365, 1983.

[3] Atkinson, M. P.; Chisholm, K.; Cockshott, W.: “PS-Algol: An Algol with a Per-
sistent Heap”. ACM SIGPLAN Notices 17(7), pp. 24 – 31, July 1981.

[4] Matthews, D. C. J.: “A persistent storage system for Poly and ML”. Technical
Report TR-102, Computer Laboratory, University of Cambridge, January 1987.

page 13

[5] Atkinson, M. P.; Jordan, M. J.; Daynès, L.; Spence, S.: “Design Issues for Per-
sistent Java: a Type-Safe, Object-Oriented, Orthogonally Persistent System”. In
Proc. of the 6th Int. Workshop on Persistent Object Systems, Cape May NJ
(USA), May 1996.

[6] Gosling, J.; Joy, B.; Steele, G. L.: The Java Language Specification. The Java
Series, Ad-di-son-Wes-ley, Reading, MA, USA, 1996.

[7] Oudshoorn, M. J.; Crawley, S. C.: “Beyond Ada 95: The Addition of Persistence
and its Consequences”. In Reliable Software Technologies - Ada-Europe’96,
volume 1088 of Lecture Notes in Computer Science, pp. 342 – 356, Springer
Verlag, 1996.

[8] ISO: International Standard ISO/IEC 8652:1995(E): Ada Reference Manual,
Lecture Notes in Computer Science 1246, Springer Verlag, 1997; ISO, 1995.

[9] Eppinger, J. L.; Mummert, L. B.; Spector, A. Z.: Camelot and Avalon - A Dis-
tributed Transaction Facility. Morgan Kaufmann Publishers, San Mateo, CA,
1991.

[10] Randell, B.: “System structure for software fault tolerance”. IEEE Transactions
on Software Engineering 1(2), pp. 220 – 232, 1975.

[11] Lee, P. A.; Anderson, T.: “Fault Tolerance - Principles and Practice”. In De-
pendable Computing and Fault-Tolerant Systems, volume 3, Springer Verlag,
2nd ed., 1990.

[12] Lampson, B. W.; Sturgis, H. E.: “Crash Recovery in a Distributed Data Storage
System”. Technical report, XEROX Research, Palo Alto, June 1979.

[13] Gamma, E.; Helm, R.; Johnson, R.; Vlissides, J.: Design Patterns. Addison
Wesley, Reading, MA, 1995.

[14] Riehle, D.; Siberski, W.; Bäumer, D.; Megert, D.; Züllighoven, H.: “Serializer”.
In Pattern Languages of Program Design 3, pp. 293 – 312, Addison Wesley,
1998.

[15] Sun Microsystems: Java Object Serialization Specification, November 1998.
[16] Kienzle, J.; Romanovsky, A.: “A Flexible Approach for Streaming”. Technical

Report 99/323, Swiss Federal Institute of Technology, November 1999.
[17] Atkinson, M. P.; Daynes, L.; Jordan, M. J.; Printezis, T.; Spence, S.: “An or-

thogonally persistent Java”. ACM SIGMOD Record 25(4), pp. 68 – 75, Decem-
ber 1996.

[18] Object Management Group, Inc.: Externalization Service Specification, Decem-
ber 1998.

[19] Ferreira, P.; Shapiro, M.; Blondel, X.; Fambon, O.; Garcia, J.; Kloosterman, S.;
Richer, N.; Roberts, M.; Sandakly, F.; Coulouris, G.; Dollimore, J.; Guedes, P.;
Hagimont, D.; Krakowiak, S.: “PerDiS: design, implementation, and use of a
PERsistent Distributed Store”. Technical report, QMW TR 752, CSTB ILC/98-
1392, INRIA RR 3525, INESC RT/5/98, October 1998.

[20] Parrington, G. D.; Shrivastava, S. K.; Wheater, S. M.; Little, M. C.: “The De-
sign and Implementation of Arjuna”. In USENIX (Ed.), Computing Systems,
Summer, 1995., volume 8, pp. 255 – 308, Berkeley, CA, USA, Summer 1995,
USENIX.

