
 

  
  
  
  
  
Renaud, K. (2002) Experience with statically-generated proxies for 
facilitating Java runtime specialisation. IEE Proceedings, Software 
149(6):pp. 169-176.

 
http://eprints.gla.ac.uk/3652/  
  
  
  
 



Experience with statically-generated proxies for 
facilitating Java runtime specialisation 

K. Renaud 

Abstract: Issucs pertaining to mechanisms which-can be used to change the behaviour of Java 
classes at runtime are discussed. The proxy mechanism is compared to, and contrasted with other 
standard approaches to this problem. Some of the problems the proxy mechanism is subject to are 
expanded upon. The question of whether statically-developed proxics are a viable alternative to 
bytecode rewriting was investigated by means of the JavaCloak system, which uses statically- 
generated proxies to alter the runtime behaviour of externally-developed code. The issues 
addressed include ensuring type safety, dealing with the self problem, object encapsulation, and 
issues of object identity and equality. Some performance figures are provided which demonstrate 
the load the JavaCloak proxy inechanism places on the system. 

1 Introduction 

There is often a need to specialise the runtime behaviour of 
classes long after implementation of the classes. There are 
a number of non-functional requirements which could 
require such specialisation such as, for example, security, 
system instrumentation and distribution. Post-implementation 
specialisation can be achieved by: 

1. Tailoring source code 111. 
2. Providing a customised Javaviltual machine (JVM) [24]. 
3. Using wrapper/proxy objects. The wrapper/proxy 
pattcrn was identified by Gamma ef al. in their seminal 
book on design patterns [ 5 ] .  Dynamically-generated proxies 
were used by Welch and Stroud in their Dalang system [6]. 
4. Bytecode engineering: 

(a) Pre-load-time: Providing bytecode rewriting tools to 
allow programmers to make changes to class bytecode 
[7,81. 
(b) Load-time: Providing a custom ‘classloader’ which 
integrates a meta-object protocol (MOP) with the origi- 
nal hytecode. (The ‘classloader’ loads classes as 
required by an application. The JVM allows a program- 
mer to extend this class to specialise its behaviour.) 
These approaches are illustrated in the Javassist and 
Kava systems [9, IO]. 

Each of the above approaches has both advantages and 
disadvantages and we intend to discuss the pros and cons 
of these mechanisms. Many of the approaches have been 
tried and tested hut the effects of one, namely that of 
statically-generated proxies, has not yet been quantified. 
This research was done to investigate both the viability of 
using statically-generated proxies for runtime specialisation, 
and the suitability of Java for expediting such specialisation. 
To this end .the JavaCloak system was developed using 
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Java. JavaCloak uses statically-developed proxies to alter 
system runtime behaviour. 

2 Runtime specialisation 

Source-code tailoring cannot really he considered to he a 
runtime specialisation technique although it is often 
used as a mechanism for post-implementation adjustment 
of behaviour. Source-code tailoring will always be an 
inelegant and untenable solution to the problem because 
programmers may introduce new errors into the program, 
change the behaviour of the program, or insert code 
inconsistently throughout the program. 

Customised JVMs provide a better solution than source- 
code tailoring hut are often not a viable option.due to their 
being non-standard and often tightly linked to one specific 
platform. 

The latter runtime specialisation mechanisms, bytecode 
engineering and proxies, will be discussed in the following 
two Sections. 

2.1 Bytecode engineering 
Some researchers have investigated tools and techniques 
that allow Java bytecode to be changed without needing 
access to the source code. These tools can be divided 
into three categories: (i) those that support bytecode 
rewriting [7, 81; (ii) those that provide a MOP [ I  11; and 
(iii) component evolution toolkits such as BCA that dyna- 
mically adapt code at runtime [12]. 

The hytecode rewriting tools in the first category are 
very useful as they allow programmers to change a class 
definition to meet a local need. For example, the hytecode 
of a class can be changed to ensure that it is compatible 
with the Java’s object Serialisation mechanism so that 
instances of the modified class can be passed across a 
network or written to disk. 

However, hytecode rewriting has a number of disadvan- 
tages. The changes must be applied every time a class 
requiring it is recompiled (to ensure the rewriting has been 
correctly applied to the newly generated bytecode) and 
there is the extra effort of determining whether or not a 
new version requires amending. 
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In addition, systems that require bytecode to be rewrit- 
ten, such as ObjectStore’s PSE Pro 1131, may burden the 
programmer with the management of two sets of classes. 
For example, one class B may depend on another class A 
that bas to be post-processed. Class A should therefore be 
compiled first and post-processed before class B is 
compiled. Tracking these kinds of relationships for signi- 
ficant bodies of code is a non-trivial problem. This kind of 
bytecode rewriting is simply performed at too low a level 
of abstraction. A higher level of abstraction is required and 
thus the MOP approach has been developed [IO].  

MOPs [14] are a powerful programming paradigm for 
associating new behaviour with a program. MOPs can be 
used to apply either behavioural or structural reflection. Beha- 
vioural reflection changes only the behaviour of the system at 
runtime. Structural reflection allows a program to change, at 
runtime, the definition of a class, a function or a record. The 
authors of [ I  I] have defined a MOP for Java that rewrites 
bytecode at load time to achieve behavioural reflection. The 
Kava approach allows either the addition of new behaviour to 
the class or the ability to selectively override invocations on a 
method-by-method basis [ I  I] .  Kava also supports overriding 
of field access and allows exception handling to be intercepted 
so that exceptions can be ovemdden. 

Javassist 191 is a bytecode rewriting tool based on 
structural reflection. I t  also makes use of a MOP. However, 
as pointed out by Welch and Stroud, it does not support 
reflection on methods inherited from superclasses [ I  01. 
This problem has been solved by Kava. 

The last category, component evolution toolkits, is illus- 
trated by the system described by Keller and Holzle in [12]. 
It is targeted at integrating Java classes with other, non- 
compatible, classes. This system is based on the dynamic 
adaptation of bytecode a s  the class is loaded into the JVM. 
The programmer identifies the class which should have its 
bytecode modified to ensure that the classes can interope- 
rate. Their system ensures that incompatible classes can be 
used together by adding, renaming or removing methods, 
or by changing the class hierarchy. 

Dynamic bytecode rewriting potentially imposes a 
runtime overhead when loading classes. This overhead 
could be reduced by pcrforming the post-processing 
once, statically, before the program is run. However, all 
the classes that the program could possibly use would have 
to be identified and it would have to be re-applied every 
time the related meta-object is changed. 

2.2 Proxies 
Our definition of proxy (note that in this work the terms 
‘proxy’ and ‘wrapper’ are synonyms) used in this paper 
accords with that of Gamma er al. 151. Proxies may augment, 
or report on, the behaviour of the original classcs, applying 
purely behavioural reflection. Most runtimc specialisation is 
done in order to add non-functional properties to the system, 
so that the functionality o f  the original class will often still 
be required. Thus proxies will probably be required to 
invoke methods on instances of the original, matching 
classes. Proxies can be set up at different times: 

I .  Compile-time: Such proxies are generated statically, 
compiled and then loaded by the JVM instcad of the 
original classes. To use compile-time proxies the following 
two problems have to be overcome: 

Dual existence: It is simple enough to instruct the 
JVM to load the proxy class instead of the base-class by 
changing the location in the ‘classpath’, but this will 
only work if the proxy class has the same fully qualified 
class name as the base-class. However, i f  the two classes 
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have the same name, the tricky part is thc loading of the 
base-class once the proxy class has been loaded since 
the JVM will not see the need to reload a class definition 
once it already has one for a particular class. 
e Bridging: If the previous problem is overcome and the 
JVM is somehow tricked into loading two diffcrcnt 
definitions for the same class name, the following 
problem is that of allowing the proxy to access the 
base classes. The JVM generally expects a class defi- 
nition to be unchanging. Any use of the two different 
class definitions in the same context will routinely 
generate a ‘Classcast’ exception. 

2. Load-time: Such proxies are generated on-the-fly by 
providing the JVM with a customised ‘classloader’. This 
‘classloader’ gcneretes the wrapper and provides it in place 
of the original class 161. The substitution is thus done when 
the application requests an instance of a class that is being 
wrapped, causing a different definition of the class to be 
loaded. Welch and Stroud have discussed the limitations of 
load-time generated proxies in [6]. 

One area where proxies do work well i s  in the ‘wrap- 
ping’ of interfaces. The Java 2 platform (version 1.3) 
defines dynainic ‘Proxy’ classes [I61 to do this. These 
classes implement a list of interfaces invoked at runtime 
when the class is created. However, a ‘Proxy’ class has 
some limitations which the user will have to bear in mind: 

e Dynamic proxy code inherits from ‘Proxy’ when it is 
generated within the ‘classloader’, which means that 
such proxies cannot form part of another inheritance 
structure in a single-inheritance language such as Java. 
o A programmer-defined invocation handler must be used 
to dispatch the method invocation to the wrapped instance at 
runtime, requiring the skills of an expert programmer. . The delegation to proxies is restricted to interface 
methods. Field and exception access is thus not possible 
using these proxies. This is a distinct limitation. 

3 .  Runtime: This can only be done by means of a reflective 
JVM [16], which allows the already-loaded bytecode to be 
altered so that a proxy can be substituted for the original class. 

In cases where very simple behavioural changes are 
required it may be that proxies are less intimidating to 
the average programmcr than MOPs. The JavaCloak 
system 1171 was an experiment to investigate the possibi- 
lities of statically-generated proxy classes. JavaCloak has 
worked well for simple cases. However, some implementa- 
tion challenges were encountered and these will be 
discussed in Section 4. The following Section will intro- 
duce the JavaCloak system. 

3 The JavaCloak system 

JavaCloak does not require acccss to base-class source 
code and generates proxies using the ‘java.lang.reflect’ 
package. The proxies intercept all method invocations to 
the base-class and delegate calls to the base-class. The 
programmer can custornise the proxy source code so as to 
change the runtime behaviour of the class that the proxy 
class wraps up. The preceding Section mentioned two 
problems related to the use of statically-generated proxies. 
These have been overcome in JavaCloak as follows: 

1. Dual existence: One runtime problem that JavaCloak has 
to overcome is that the JVM needs to have instances of both 
classes within the system at the same time. One cannot load 
two different definitions of the same class name into the 
JVM without some special mechanism. The only way to 
achieve this apparent conflict is by means of the use of a 
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different ‘classloader’ for each class. This is because the 
JVM tests type equivalence by testing both the class name, 
and the ‘classloader’ that loaded the class definition. If the 
two classes are loaded by two different ‘classloaders’ the 
JVM considers them to be different classes, even though 
the fully-qualified class names are the same. 
2. Bridging: Once the two classes are in the JVM it is 
essential that instances of the two classes be kept strictly 
separate, so that they function within their own context, as it 
were. If instances of  these two classes are used in the same 
piece of code, e.g. one instance is passed to one of the 
methods of the other instance, a ‘ClassCast’ exception will 
he raised. JavaCloak uses a runtime manager to maintain a 
strict separation between the two types of objects. This is 
achieved by storing the type of the original class, by name 
only, in a character string and manipulating it via the 
reflection mechanism defined in ‘java.lang.reflect’. 

The key enabling features of JavaCloak, shown in Fig. I ,  
will be described below: 

I. Proxies: Proxies ;re geikated for the base-class by 
means of the ‘java.lang.reflect’ package. The programmer 
can then specialise the.runtime behaviour of thc class in a 
finely-grained and flexible manner. (Shown as PC in Fig. 2) 
2. Manipulation of the ‘classpath’ at runtime: the location 
of the proxy classes is inserted into the ‘classpath’ instead 
of the location of the original classes. The location of 
the original classes is .then provided for use by the 
.lavaCloak ‘classloader’ by means of a runtime system 
property setting. So, for example, when the system is 
being run without the proxy, the programmer would start 
it from the command line as follows: 

‘java Application’ 

and when the system should run with the proxies, the 
programmer starts it as: 

2ava -Dconfig= run.cfg Application’ 

The ‘rumfg’  file will tell the JavaCloak runtime manager 
where to find the base-class class files. 
3. A customised classloader: JavaCloak makes use of a 
specially defined ‘classloader’, embedded within the 
runtime manager, to load the original classes at runtime 
(Shown as wcl in Fig. 2). This ‘classloader’ loads 
the original definition of the class from a location supplied 
to the ‘classloader’ by a runtime variable when the applica- 
tion is executed as shown above. 

The JVM tests type-equivalence by comparing both the 
class name and the instance of the ‘classloader’ that loaded 
the class. Thus if two different ‘classloaders’ are used to 
load classes with the same name the JVM does not 
consider the classes to be identical. 
4. The JavaCloak runtime manager: this manager is the key to 
JavaCloak’s extra level of abstraction. The runtime manager 

encapsulates the ‘classloader’ and loads the original classes 
when requested by the proxy objects. It also maintains a 
mapping between proxies and their matching original objects 
so that any parameters passed between the two can be 
translated as required. 

For instance, consider the method call depicted in Fig. 3. 
Say the proxy PC, invokes a method, M, and passes an instance 
of a proxy class, PC,, as a parameter. The proxy class, PC,, has 
no meaning to the original class, C j ,  and, if passed to it, would 
cause the system to generate an exception. The JavaCloak 
runtime manager offers a facility for substituting original 
objects of type C, so that such parameters are ‘unwrapped’ 
before they are passed to the method in the original class C,. 

In the same way the original object may pass a reference 
to a wrapped object, of type Ck, hack to the proxies as a 
return value from M. The runtime manager offers a facility 
to substitute the proxy, of type PCk, for such objects so that 
they do not cause ‘ClassCast’ exceptions in the application 
(which has no concept of the original class Ck). 

An example will now be introduced to illustrate the concepts 
in the rest of this Section. Consider a bank that has a system 
for handling all accounts. Assume the ‘SavingsAccount’ 
class offers the interface given in code fragment I .  

public class SavingsAccount extends Account( 
public SavingsAccount(float interestRate) { } 
public SavingsAccount linkAccounts(SavingsAccount sa) { }  
public float getBalance() { }  
public void addlnterest() { }  
public float getTaxablelnterest() { } 

Code,fragment I :  SavingsAccount class 

Consider now that new legislation comes into being 
which only charges tax on savings account interest where 
the account balance is more than f1000. Since this 
change only affects one method, ‘getTaxablelnterest()’, o f  
one class, ‘SavingsAccount’, in the system, the JavaCloak 
approach may be more suitable than more intricate and 
powerful mechanisms such as Kava. A proxy class is 
generated for the ‘SavingsAccount’ class. The ‘getTaxable- 
Interest()’ method is shown in code fragment 2. 

public float getTaxablelnterest()( 
I :  Object[] params=new Object[] (}; 
2: float result = O ;  
3 :  try { 
4: Object real-c = WM.wm.unwrap(this); 
5 :  result = ((Float)methods[ I].invoke(real c,params)). 

6: catch(Exception ee) {deal with exceptions} 
7 :  return result;} 

floatValue(); } 

Codefrugment 2:  Proxy SavingsAccount class 

,...........~~~~. 

manager 

customised 
classloader 
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application objects 

JavaCloak 

manager 

cuStomised original object 
classloader 

Fig. 2 Inreractiun ar runtime 

The required behavioural changes can be incorporated 
into this code by the programmer, a process that requires 
no additional programmer skills. In general terms the 
programmer is free either to augment the classes with 
reporting facilities in the very simplest case, or to change 
the behaviour of the methods completely by invoking a 
method on an instance of another class altogether, or on a 
remote object. Specifically, to implement the new tax law 
the programmer adds one line to the ‘getTaxableInterest()’ 
method, line 1 in code fragment 3. 

After the customisation of the proxy source code has 
been performed and it has been compiled, instances of the 
proxy objects are created at runtime when the application 
instantiates an instance o f  the original class. The proxy 
code then delegates all calls made on its instance’s ‘public’ 
methods to equivalent methods defined on the instance of 
the original class. The process becomes more complex 
when parameters and retum values are involved, hence the 
inclusion of the JavaCloak runtime manager. 

public float getTaxablelnterest() { 
I: if (getBalancc0 < 1000) rclurn 0; 
2: Object[] params=new Object[] {} ;  
3: float result=(); 
4: try { 
5: Object realLc = WM.wm.unwrap(this); 
6: result = ((Float)methods[ I].invoke(realLc,params)).float 
Value();} 
7: catch(Exception ee) {deal with exceptions} 
8: return result;] 

Code fragment 3: Adapted proxy SavingsAccount class 

The structure of interaction between the application, 
proxy and JavaCloak runtime manager is shown in 

S 

runtime L reference 
manager + method call 

Fig. 3 
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(inwrapping and wrappifig p “ ~  insrnncer 

Fig. 2. When the proxy i s  instantiated it asks the runtime 
manager to instantiate an initance of the original object. 
The runtime manager then (Steps labelled in Fig. 2): 

1. Uses the customised ‘classloader’ to load the original 
class definition from the location specified in the runtime 
variable. (lines 2 and 3 in code fragment 4). 

public SavingsAccount(float PO)( 

2: Wrappingclassloader wcl = WM.wm.getclassloader(); 
3: Class real = wcl.findClass(“bank.SavingsAccount”); 
4: if(!this.getClass().getName().equals(real.getName())) 

5:  assignMethods(rea1); 
6: Object[] params = ncw Object[] {new Float(pO)}; 
7: o = constructors[O].newInstance(params); 
8: ref i d=  WM.wm.register(this, o);] 
9: catch(Exception ee) {deal with exceptions}} 

I :  try [ 

return; 

Code fragment 4 :  Proxy SavingsAccount constructor 

2.  Creates an instance of the original class. (line 7 in code 
fragment 4). 
3. Inserts an entry into the mapping table linking the proxy 
to the original object. (line 8 in code fragment 4). 
4. Returns a reference to the original object to the proxy. 
(line 8 in code fragment 4). 

When a method is invoked on the proxy the following 

I .  If the method has parameters and the parameter objects 
are references to proxies then the proxy asks the runtime 
manager for references to the original objects (line I in 
code fragment 5 ) .  
2. The proxy invokes the method on the original object. 
(line 5 in code fragment 5 ) .  
3. If the method returns a value the proxy receives the 
return value and stores it in a variable of type ‘Ob,ject’: 

(a) If the retum value is an instance of a wrapped class 
then the proxy asks the runtime manager for a reference 
to the matching proxy object and the proxy returns the 
reference to the proxy object to the object that invoked 
the method. (line 6 in code fragment 5) .  
(b) Otherwise the retum value is ‘cast’ to the correct 
type and returned to the application. (line 5 in code 
fragment 2). 

. 

occurs: 
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public SavingsAccount linkAccount(SavingsAccount PO) ( 
I :  Object[] params = new Ohjectn (W.wm.unwt~p(p0)) ;  
2: SavingsAccount result = null; 

4: Object real-c = WM.wm.unwrap(this); 
5:  Object out = (SavingsAccount)methods[0].invoke 

6: result = (SavingsAccount)WM.wm.getWrapper(out); 
7: catch(Exception ee) {deal with exceptions} 
8: return result;} 

3: try { 

(realbqarams); } 

~ ~~~ 

Code Frugment 5:  The IinkAccounts method 

JavaCloak has been used successfully to wrap classes and 
to report on access to instances of these classes. The 
following Section will discuss some problems encountered 
with the use of JavaCloak proxies for specialisation. The 
term ‘reflection’ is generally used to denote the ability of a 
system to change its behaviour by examining certain 
properties at runtime and adspting the system depending 
on these properties. Some authors would refer to Java- 
Cloak’s activities as reflection, and others would refer to it 
as runtime specialisation. The authors of [6] use the term 
reflection to refer to their proxy-based approach, and their 
example will he followed from here onwards. 

4 Proxy-related problems 

During the development of JavaCloak some technical 
problems were encountered. One JavaCloak-specific 
problem is that JavaCloak makes use of manipulation of 
the ‘classpath’ in order to divert the JVM to the proxy 
classes rather than the original classes. This limits the use 
o f  the JavaCloak mechanism to non-system classes since 
these classes are loaded by the JVM automatically and not 
by means of a search of the ‘classpath’. Changing the 
hehaviour of system classes seems to violate the spirit of 
these classes and this is therefore not a serious difficulty. 
Other generic proxy-enahled reflection-related problems 
will he discussed in the following Sections. 

4.1 Type safety 
It is important for the smooth functioning of a system 
incorporating JavaCloak proxies that the proxies he type- 
equivalent to the original classes. Therefore the generated 
proxy must have the same fully-qualified class name as 
the original class and it must be loaded at runtime by the 
correct instance of the ‘classloader’. This ensures that the 
application can use the proxy as if it were the original 
class, and the inheritance structure is not broken. The way 
JavaCloak maintains two identical classes is explained in 
Section 3. There are some other tricky problems related to 
this apparently transparent substitution, some of which 
have been solved, and others of which remain. 

4.7.1 Public fields: It is possible for the original 
definition of a class to contain non-static ‘public’ fields. 
If this is the case, to ensure correctness it must he possible 
for the field to he accessed directly from the application, 
and not only via programmer-provided ‘set’ and ‘get’ 
methods. Unfortunately Java does not model field access 
as method invocation, so there is no opportunity to redirect 
accesses to the ‘public’ fields via the proxy if the applica- 
tion accesses the fields of the original class directly. Given 
the current definition of Java, providing the application 
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with access to ‘public’ fields consistently and transparently 
in the presence of JavaCloak proxies is not possible. This 
argument also applies to fields marked ‘protected’ and 
those that are scoped at the package level in Java. 

In following the proxy approach, we need either to 
implement a system of ‘watchers’ for each ‘public’ field, 
or assume a clean object-oriented programming model 
where all field accesses are controlled by means of suitable 

-method calls that can then he used to forward the call to the 
original object. There is no support at sourcecode level in 
Java to he able to implement the ‘watchers’, thus the only 
approach is to assume (and limit the programmer) to a 
clean object-oriented programming model. 

4.7.2 Inheritance: This is a tricky problem for Java- 
Cloak. JavaCloak proxies request the runtime manager to 
create a matching instance of the base-class in the proxy 
constructor. This is the logical place to do it. Inheritance 
causes a problem here. Consider the situation where 
JavaCloak provides a proxy for class B, which inherits 
from class A, which also has a proxy. If each constructor 
creates a link to a matching base-class instance there will 
he multiple links between the proxy world and the wrapped 
world, so that the inheritance structure, while correct in the 
proxy world is amiss in the wrapped world. 

To illustrate this point, consider the situation as shown in 
Fig. 4. We have a class A, which is extended by a class B, 
in tum extended by class C. The application instantiates an 
instance of C. Since the system loads the JavaCloak proxy 
rather than the original class, C is loaded. Since B and A 
are also wrapped, C’s constructor will also create an 
instance of both B and A. If each constructor automatically 

proxy 
world . wraooed world 

runtime manager 

incorrect linking 

wrapped world 

9 
6 ..... 0 runtime manager 

correct linking 

Fig. 4 Inheritance across worlds 
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creates an instance of the matching original class, the links 
will be as shown on the top of the Figure. 

The multiple links will cause havoc when proxy objects 
invoke superclass methods, because any changes made by 
methods invoked on C, which make state changes, will not 
be reflected in the superclasses of the original objects, 
because the associated original objects are totally unrelated 
to one another. 

The position should be as shown on the bottom, where 
the inheritance structures in the two worlds are totally 
unconnected, except at the initial explicit level within the 
instantiated proxy instance. JavaCloak must ensure that 
superclass constructors do not request the runtime manager 
to create matching original objects if invoked from 
subclass constructors. 

A related problem concerns inheritance from proxy 
classes. If class C now has a subclass, D, which is not 
wrapped, the correct behaviour of this subclass’s methods 
is debatable. It is a simple enough matter to wrap the 
superclass and to invoke methods that D invokes on 
the (proxy) superclass on the matching original class. 
The difficulty occurs when one considers methods that D 
defines. Should D also be provided with a proxy? The 
SOM approach, which makes use of meta-objects, requires 
D to have a related metaclass which is a subclass of the 
metaclass related to C [ IB] .  They thus require any 
subclasses of ‘wrapped’ classes to also be ‘wrapped’. 
These types of issues are not trivial to solve and a 
satisfactory solution is yet to be found. 

4.2 Self and encapsulation 
The JavaCloak approach implements the proxy class 
and the wrapped class separately. This leads to two 
problems, the self [I91 and the encapsulation problem. 

The self problem arises because the meaning of self (or 
‘this’ in Java programs) is different in the proxy and in the 
wrapped instances. Thus the original object could instanti- 
ate a new instance of the same class. This object would not 
have a matching proxy object and therefore the hehavioural 
modification being applied by the proxy would not be 
applied to this newly instantiated object. Liebeman [I91 
argues that inheritance-based languages such a Java cannot 
be used to implement delegation, which is, in essence, 
what a proxy does. If the programmer needs to intercept 
accesses to all instances of the  original class this limitation 
is a problem, but if one wishes merely to intercept all 
accesses by the client program the proxy approach does not 
present a problem [6].  

If the original object returns a reference to itself(‘this’), 
or to another instance of the same class, to the proxy, this 
will be intercepted by the runtime manager. If a matching 
proxy already exists the proxy instance will be substituted, 
and if not, a proxy instance of the return value will be 
instantiated and returned to the proxy. This mechanism 
works when simple references to wrapped objects are 
passed back to the caller, but when a direct reference to an 
original object is embedded in another object that JavaCloak 

Table 1: Overhead of calling through a JavaCloak proxy 

has no control over, then the situation is not solvable: the 
reference may be ‘private’ which means JavaCloak cannot 
access it to perfomi the required conversion. 

Hence in JavaCloak it  is possible for a direct reference to 
an original instance to be passed across the boundary, thus 
breaking the proxy model. This occurs because a logical 
proxy model is being used and Java does not allow the 
redefinition of the meaning of ‘this’ in the original object. 

4.3 Identity and equality 
Any existing object-identity operation will work in Java- 
Cloak because the identity of the two proxies will be 
compared rather than the two original objects. However, 
if the reference to the proxy is passed to a service that 
follows the graph of objects reachable from the proxy, as 
Java’s object serialisation does, then the proxy and the real 
object will be serialised which the programmer may not 
intend. 

In JavaCloak, all invocations on the public methods of 
an object are intercepted at the proxy, including the 
‘hashcode’ and ‘equals’ methods defined on ‘java.lang. 
Object’. Thus, in JavaCloak, it is not possible to perform 
these operations on the proxies themselves as  the ‘hash- 
Code’ and ’equals’ methods are forwarded to the original 
instance. This means that, at the JavaCloak implementation 
level, we cannot make use of these methods to manage the 
proxy. However, the JavaCloak management makes use of 
a ‘java.util.Hashtable’ which needs to be able to call the 
‘hashcode’ and ‘equals’ methods on the proxy. This 
requires additional objects to be registered with the 
lookup mechanism which then operate as a place-holder 
for the proxy when performing a lookup on it, via the hash 
table. The objects themselves cannot be used, so these 
tokens represent the real objects in this case. 

When calling forward on the ‘equals’ method it is 
necessary to translate the call from an operation on two 
proxy objects (this and the argument to ‘equals’), into an 
operation on two original objects. This is made possible by 
performing a proxy to original lookup in the JavaCloak 
runtime manager. 

4.4 Transparency 
Welch and Stroud [6]  cite a number of difficulties inherent 
in the transparent addition of non-functional requirements 
by means of reflection, one of which is the handling of 
exceptions. There are two aspects to be considered: 

1. Certain exceptions are declared in the method headers 
and are therefore ‘expected’ by the application. One may 
wish to intercept these exceptions for the purposes of better 
reporting or more standardised exception handling. Welch 
and Stroud note that some researchers feel that this type of 
action allows adaptive runtime redefinition of exceptional 
beliaviour [20]. They argue that while exception handling 
should not be re-definable it might be desirable to add 
additional behaviour that takes place when an exception is 
raised at the base level. 

Constructor getsalance addlnterest getTaxablelnterest IinkAccounts 

82.05 311.9 1.459 2.255 1.578 2.0875 1.4655 2.494 1.0125 3.365 

Percentage increase: 
280% 54% 32% 70% 232% 
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Table 2 Comparing the proxy approaches 

Wraps Proxy inherits Programmer Overriding Static or Mediates 
classes from skills required mechanism dynamic field access 

Dalang Yes Meta-object class Average Meta-object Both Yes 
Java proxy Only interfaces Proxy Expert Invocation handler Dynamic nla 
JavaCloak Yes Base-class superclass Fair to average Changing proxy code Static ’ No 

Decisions about this are best left IO the individual pro- 
grammer and JavaCloak does not presume to dictate on this 
issue. 
2. A bigger problem for JavaCloak is that ‘unexpected’ 
exceptions may be thrown, caused by the reflection 
mechanism. These exceptions need to be handled in some 
consistent way, both in order to ‘minimise disruption of 
the application, and so that the reflection system developers 
are appraised of the problem in case the exception was 
caused by a bug in the reflection code. JavaCloak.has dealt 
with this problem by incorporating a ‘BugHandler’ into the 
runtime system. If a JavaCloak-specific exception is 
detected in the proxy, a hug report is generated and the 
user is requested to email it to a given address. 

4.5 cost 
This Section describes the typical runtime performance 
overhead of using a JavaCloak proxy. There is  a cost related 
to hehavioural reflection. Golm and Kleinoder identify the 
following costs which are affected by reflection [21]: 

Reflective method call: One extra level of abstraction is 
added here by JavaCloak. This also includes the cost of 
unwrapping of parameters before sending to the wrapped 
class and wrapping of returned objects. 

Installation: The costs related to making a method 
reflective. In JavaCloak the price is paid at compile-time. 
e Memory: Two versions of each reflective class are held 
in memory, the proxy and the wrapped class. The runtime 
manager also maintains tables mapping these two worlds to 
each other. The JavaCloak proxies are fairly lightweight 
though, since they do not contain any class-specific vari- 
ables or fields. 

In addition there is an initial setup time to he considered. 
In the constructors JavaCloak reflects over the methods, 
and registers the proxy and the actual object with the 
JavaCloak runtime mechanism. JavaCloak also initialises 
the wrapped and proxy classes and essential JavaCloak 
runtime classes and maintains the mapping table in the 
runtime manager. 

The major impact seems to convert mainly to time, at 
runtime, when it matters. JavaCloak’s impact on the system 
needed to he measured. The timing results were taken on a 
lightly loaded Pentium 11 with version 1.3 of Java 2 from 
Sun Microsystems. The original class that was wrapped is 
given in code fragment 1 and a proxy for it was generated 
by JavaCloak. A small test program was written that 
created an instance of ‘SavingsAccount’ and invoked 
methods ‘getBalance’, ‘addlnterest’, ‘GetTaxahleInterest’ 
and ‘IinkAccounts’ 100 times. An average of the time 
taken for each method was recorded. This program was 
run 20 times, both with and without the proxies, and an 
average of the elapsed time taken. AI1 the figures given are 
in milliseconds for one method invocation or one call to 
the constructor. The times for the proxy are on the right of 
the pair in Table 1. 

The overhead at the constructor is as expected. The 
overhead imposed on the invocations stems from needing 
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to track the relationship between the proxy object and the 
wrapped object. For example, when an instance of ‘Saving- 
sAccount’ is passed hack from itself by the ‘linkAccounts’ 
method, we need to map this value to its corresponding 
proxy. Since ‘SavingsAccount’ actually returns an instance 
of itself that does not have an equivalent proxy instance 
JavaCloak has to generate a proxy instance for this return 
object and enters it into the mapping table before returning 
it to the caller. 

It is obvious from the Tables that JavaCloak proxies 
introduce a substantial overhead. I t  may he that this over- 
head is unimportant as it would he if, for example, 
applications run at night when an extra few milliseconds 
are negligible. In real-time systems obviously this perfor- 
mance penalty could become an issue. 

5 Conclusions 

JavaCloak has demonstrated that it is possible to use 
statically-generated proxies to specialise runtime beha- 
viour. During the development of JavaCloak many techni- 
cal problems were encountered, some of which were 
solved. The other two proxy approaches, Dalang and the 
Java proxy approach, were compared to JavaCloak. Table 2 
compares and contrasts the three major proxy approaches. 

The Java proxy approach is not a serious competitor 
since it takes the easy route of only providing proxies for 
interfaces. Since Java is a single-inheritance language this 
limitation neatly prevents any inheritance problems. The 
Dalang approach has its strengths and weaknesses. It is 
more powerful than JavaCloak since it is  able to operate 
both statically and dynamically and can mediate access to 
fields, which JavaCloak cannot do. However, it does break 
the inheritance structure of the base-class by inheriting 
from the meta-object class, something JavaCloak does 
not do. JavaCloak’s impact on performance is high, as 
pointed out in Section 4.5, but this may not he an issue 
depending on the nature of the application. Its main 
strength is its ease of use to the inexperienced programmer. 
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