

Renaud, K. (2002) Experience with statically-generated proxies for
facilitating Java runtime specialisation. IEE Proceedings, Software
149(6):pp. 169-176.

http://eprints.gla.ac.uk/3652/

Experience with statically-generated proxies for
facilitating Java runtime specialisation

K. Renaud

Abstract: Issucs pertaining to mechanisms which-can be used to change the behaviour of Java
classes at runtime are discussed. The proxy mechanism is compared to, and contrasted with other
standard approaches to this problem. Some of the problems the proxy mechanism is subject to are
expanded upon. The question of whether statically-developed proxics are a viable alternative to
bytecode rewriting was investigated by means of the JavaCloak system, which uses statically-
generated proxies to alter the runtime behaviour of externally-developed code. The issues
addressed include ensuring type safety, dealing with the self problem, object encapsulation, and
issues of object identity and equality. Some performance figures are provided which demonstrate
the load the JavaCloak proxy inechanism places on the system.

1 Introduction

There is often a need to specialise the runtime behaviour of
classes long after implementation of the classes. There are
a number of non-functional requirements which could
require such specialisation such as, for example, security,
system instrumentation and distribution. Post-implementation
specialisation can be achieved by:

1. Tailoring source code 111.
2. Providing a customised Javaviltual machine (JVM) [24].
3. Using wrapper/proxy objects. The wrapper/proxy
pattcrn was identified by Gamma ef al. in their seminal
book on design patterns [5] . Dynamically-generated proxies
were used by Welch and Stroud in their Dalang system [6].
4. Bytecode engineering:

(a) Pre-load-time: Providing bytecode rewriting tools to
allow programmers to make changes to class bytecode
[7,81.
(b) Load-time: Providing a custom ‘classloader’ which
integrates a meta-object protocol (MOP) with the origi-
nal hytecode. (The ‘classloader’ loads classes as
required by an application. The JVM allows a program-
mer to extend this class to specialise its behaviour.)
These approaches are illustrated in the Javassist and
Kava systems [9, IO].

Each of the above approaches has both advantages and
disadvantages and we intend to discuss the pros and cons
of these mechanisms. Many of the approaches have been
tried and tested hut the effects of one, namely that of
statically-generated proxies, has not yet been quantified.
This research was done to investigate both the viability of
using statically-generated proxies for runtime specialisation,
and the suitability of Java for expediting such specialisation.
To this end .the JavaCloak system was developed using

0 IEE, 2002
IEE Pmceedings online no. 20020Y09
Dol: IO. 1049Iip-sen:20020909
Paper received 18th July 2002
The author i s with the Depanmcnt of Computing Science. University of
Glasgow, Glasgow. Scotland, U K

IEE Pm.-Sq/iu:, W11. 149, hh 6, Dewrnher 2OUZ

Java. JavaCloak uses statically-developed proxies to alter
system runtime behaviour.

2 Runtime specialisation

Source-code tailoring cannot really he considered to he a
runtime specialisation technique although it is often
used as a mechanism for post-implementation adjustment
of behaviour. Source-code tailoring will always be an
inelegant and untenable solution to the problem because
programmers may introduce new errors into the program,
change the behaviour of the program, or insert code
inconsistently throughout the program.

Customised JVMs provide a better solution than source-
code tailoring hut are often not a viable option.due to their
being non-standard and often tightly linked to one specific
platform.

The latter runtime specialisation mechanisms, bytecode
engineering and proxies, will be discussed in the following
two Sections.

2.1 Bytecode engineering
Some researchers have investigated tools and techniques
that allow Java bytecode to be changed without needing
access to the source code. These tools can be divided
into three categories: (i) those that support bytecode
rewriting [7, 81; (ii) those that provide a MOP [I 11; and
(iii) component evolution toolkits such as BCA that dyna-
mically adapt code at runtime [12].

The hytecode rewriting tools in the first category are
very useful as they allow programmers to change a class
definition to meet a local need. For example, the hytecode
of a class can be changed to ensure that it is compatible
with the Java’s object Serialisation mechanism so that
instances of the modified class can be passed across a
network or written to disk.

However, hytecode rewriting has a number of disadvan-
tages. The changes must be applied every time a class
requiring it is recompiled (to ensure the rewriting has been
correctly applied to the newly generated bytecode) and
there is the extra effort of determining whether or not a
new version requires amending.

I69

In addition, systems that require bytecode to be rewrit-
ten, such as ObjectStore’s PSE Pro 1131, may burden the
programmer with the management of two sets of classes.
For example, one class B may depend on another class A
that bas to be post-processed. Class A should therefore be
compiled first and post-processed before class B is
compiled. Tracking these kinds of relationships for signi-
ficant bodies of code is a non-trivial problem. This kind of
bytecode rewriting is simply performed at too low a level
of abstraction. A higher level of abstraction is required and
thus the MOP approach has been developed [IO].

MOPs [14] are a powerful programming paradigm for
associating new behaviour with a program. MOPs can be
used to apply either behavioural or structural reflection. Beha-
vioural reflection changes only the behaviour of the system at
runtime. Structural reflection allows a program to change, at
runtime, the definition of a class, a function or a record. The
authors of [I I] have defined a MOP for Java that rewrites
bytecode at load time to achieve behavioural reflection. The
Kava approach allows either the addition of new behaviour to
the class or the ability to selectively override invocations on a
method-by-method basis [I I] . Kava also supports overriding
of field access and allows exception handling to be intercepted
so that exceptions can be ovemdden.

Javassist 191 is a bytecode rewriting tool based on
structural reflection. I t also makes use of a MOP. However,
as pointed out by Welch and Stroud, it does not support
reflection on methods inherited from superclasses [I 01.
This problem has been solved by Kava.

The last category, component evolution toolkits, is illus-
trated by the system described by Keller and Holzle in [12].
It is targeted at integrating Java classes with other, non-
compatible, classes. This system is based on the dynamic
adaptation of bytecode a s the class is loaded into the JVM.
The programmer identifies the class which should have its
bytecode modified to ensure that the classes can interope-
rate. Their system ensures that incompatible classes can be
used together by adding, renaming or removing methods,
or by changing the class hierarchy.

Dynamic bytecode rewriting potentially imposes a
runtime overhead when loading classes. This overhead
could be reduced by pcrforming the post-processing
once, statically, before the program is run. However, all
the classes that the program could possibly use would have
to be identified and it would have to be re-applied every
time the related meta-object is changed.

2.2 Proxies
Our definition of proxy (note that in this work the terms
‘proxy’ and ‘wrapper’ are synonyms) used in this paper
accords with that of Gamma er al. 151. Proxies may augment,
or report on, the behaviour of the original classcs, applying
purely behavioural reflection. Most runtimc specialisation is
done in order to add non-functional properties to the system,
so that the functionality o f the original class will often still
be required. Thus proxies will probably be required to
invoke methods on instances of the original, matching
classes. Proxies can be set up at different times:

I . Compile-time: Such proxies are generated statically,
compiled and then loaded by the JVM instcad of the
original classes. To use compile-time proxies the following
two problems have to be overcome:

Dual existence: It is simple enough to instruct the
JVM to load the proxy class instead of the base-class by
changing the location in the ‘classpath’, but this will
only work if the proxy class has the same fully qualified
class name as the base-class. However, i f the two classes

I70

have the same name, the tricky part is thc loading of the
base-class once the proxy class has been loaded since
the JVM will not see the need to reload a class definition
once it already has one for a particular class.
e Bridging: If the previous problem is overcome and the
JVM is somehow tricked into loading two diffcrcnt
definitions for the same class name, the following
problem is that of allowing the proxy to access the
base classes. The JVM generally expects a class defi-
nition to be unchanging. Any use of the two different
class definitions in the same context will routinely
generate a ‘Classcast’ exception.

2. Load-time: Such proxies are generated on-the-fly by
providing the JVM with a customised ‘classloader’. This
‘classloader’ gcneretes the wrapper and provides it in place
of the original class 161. The substitution is thus done when
the application requests an instance of a class that is being
wrapped, causing a different definition of the class to be
loaded. Welch and Stroud have discussed the limitations of
load-time generated proxies in [6].

One area where proxies do work well i s in the ‘wrap-
ping’ of interfaces. The Java 2 platform (version 1.3)
defines dynainic ‘Proxy’ classes [I61 to do this. These
classes implement a list of interfaces invoked at runtime
when the class is created. However, a ‘Proxy’ class has
some limitations which the user will have to bear in mind:

e Dynamic proxy code inherits from ‘Proxy’ when it is
generated within the ‘classloader’, which means that
such proxies cannot form part of another inheritance
structure in a single-inheritance language such as Java.
o A programmer-defined invocation handler must be used
to dispatch the method invocation to the wrapped instance at
runtime, requiring the skills of an expert programmer. . The delegation to proxies is restricted to interface
methods. Field and exception access is thus not possible
using these proxies. This is a distinct limitation.

3 . Runtime: This can only be done by means of a reflective
JVM [16], which allows the already-loaded bytecode to be
altered so that a proxy can be substituted for the original class.

In cases where very simple behavioural changes are
required it may be that proxies are less intimidating to
the average programmcr than MOPs. The JavaCloak
system 1171 was an experiment to investigate the possibi-
lities of statically-generated proxy classes. JavaCloak has
worked well for simple cases. However, some implementa-
tion challenges were encountered and these will be
discussed in Section 4. The following Section will intro-
duce the JavaCloak system.

3 The JavaCloak system

JavaCloak does not require acccss to base-class source
code and generates proxies using the ‘java.lang.reflect’
package. The proxies intercept all method invocations to
the base-class and delegate calls to the base-class. The
programmer can custornise the proxy source code so as to
change the runtime behaviour of the class that the proxy
class wraps up. The preceding Section mentioned two
problems related to the use of statically-generated proxies.
These have been overcome in JavaCloak as follows:

1. Dual existence: One runtime problem that JavaCloak has
to overcome is that the JVM needs to have instances of both
classes within the system at the same time. One cannot load
two different definitions of the same class name into the
JVM without some special mechanism. The only way to
achieve this apparent conflict is by means of the use of a

IEE Pmc.-SoJ~~!. y id 14Y. ,Vo. 6. December- ZOO2

different ‘classloader’ for each class. This is because the
JVM tests type equivalence by testing both the class name,
and the ‘classloader’ that loaded the class definition. If the
two classes are loaded by two different ‘classloaders’ the
JVM considers them to be different classes, even though
the fully-qualified class names are the same.
2. Bridging: Once the two classes are in the JVM it is
essential that instances of the two classes be kept strictly
separate, so that they function within their own context, as it
were. If instances of these two classes are used in the same
piece of code, e.g. one instance is passed to one of the
methods of the other instance, a ‘ClassCast’ exception will
he raised. JavaCloak uses a runtime manager to maintain a
strict separation between the two types of objects. This is
achieved by storing the type of the original class, by name
only, in a character string and manipulating it via the
reflection mechanism defined in ‘java.lang.reflect’.

The key enabling features of JavaCloak, shown in Fig. I ,
will be described below:

I. Proxies: Proxies ;re geikated for the base-class by
means of the ‘java.lang.reflect’ package. The programmer
can then specialise the.runtime behaviour of thc class in a
finely-grained and flexible manner. (Shown as PC in Fig. 2)
2. Manipulation of the ‘classpath’ at runtime: the location
of the proxy classes is inserted into the ‘classpath’ instead
of the location of the original classes. The location of
the original classes is .then provided for use by the
.lavaCloak ‘classloader’ by means of a runtime system
property setting. So, for example, when the system is
being run without the proxy, the programmer would start
it from the command line as follows:

‘java Application’

and when the system should run with the proxies, the
programmer starts it as:

2ava -Dconfig= run.cfg Application’

The ‘rumfg’ file will tell the JavaCloak runtime manager
where to find the base-class class files.
3. A customised classloader: JavaCloak makes use of a
specially defined ‘classloader’, embedded within the
runtime manager, to load the original classes at runtime
(Shown as wcl in Fig. 2). This ‘classloader’ loads
the original definition of the class from a location supplied
to the ‘classloader’ by a runtime variable when the applica-
tion is executed as shown above.

The JVM tests type-equivalence by comparing both the
class name and the instance of the ‘classloader’ that loaded
the class. Thus if two different ‘classloaders’ are used to
load classes with the same name the JVM does not
consider the classes to be identical.
4. The JavaCloak runtime manager: this manager is the key to
JavaCloak’s extra level of abstraction. The runtime manager

encapsulates the ‘classloader’ and loads the original classes
when requested by the proxy objects. It also maintains a
mapping between proxies and their matching original objects
so that any parameters passed between the two can be
translated as required.

For instance, consider the method call depicted in Fig. 3.
Say the proxy PC, invokes a method, M, and passes an instance
of a proxy class, PC,, as a parameter. The proxy class, PC,, has
no meaning to the original class, C j , and, if passed to it, would
cause the system to generate an exception. The JavaCloak
runtime manager offers a facility for substituting original
objects of type C, so that such parameters are ‘unwrapped’
before they are passed to the method in the original class C,.

In the same way the original object may pass a reference
to a wrapped object, of type Ck, hack to the proxies as a
return value from M. The runtime manager offers a facility
to substitute the proxy, of type PCk, for such objects so that
they do not cause ‘ClassCast’ exceptions in the application
(which has no concept of the original class Ck).

An example will now be introduced to illustrate the concepts
in the rest of this Section. Consider a bank that has a system
for handling all accounts. Assume the ‘SavingsAccount’
class offers the interface given in code fragment I .

public class SavingsAccount extends Account(
public SavingsAccount(float interestRate) { }
public SavingsAccount linkAccounts(SavingsAccount sa) { }
public float getBalance() { }
public void addlnterest() { }
public float getTaxablelnterest() { }

Code,fragment I : SavingsAccount class

Consider now that new legislation comes into being
which only charges tax on savings account interest where
the account balance is more than f1000. Since this
change only affects one method, ‘getTaxablelnterest()’, o f
one class, ‘SavingsAccount’, in the system, the JavaCloak
approach may be more suitable than more intricate and
powerful mechanisms such as Kava. A proxy class is
generated for the ‘SavingsAccount’ class. The ‘getTaxable-
Interest()’ method is shown in code fragment 2.

public float getTaxablelnterest()(
I : Object[] params=new Object[] (};
2: float result = O ;
3 : try {
4: Object real-c = WM.wm.unwrap(this);
5 : result = ((Float)methods[I].invoke(real c,params)).

6: catch(Exception ee) {deal with exceptions}
7 : return result;}

floatValue(); }

Codefrugment 2: Proxy SavingsAccount class

,...........~~~~.

manager

customised
classloader

171

application objects

JavaCloak

manager

cuStomised original object
classloader

Fig. 2 Inreractiun ar runtime

The required behavioural changes can be incorporated
into this code by the programmer, a process that requires
no additional programmer skills. In general terms the
programmer is free either to augment the classes with
reporting facilities in the very simplest case, or to change
the behaviour of the methods completely by invoking a
method on an instance of another class altogether, or on a
remote object. Specifically, to implement the new tax law
the programmer adds one line to the ‘getTaxableInterest()’
method, line 1 in code fragment 3.

After the customisation of the proxy source code has
been performed and it has been compiled, instances of the
proxy objects are created at runtime when the application
instantiates an instance o f the original class. The proxy
code then delegates all calls made on its instance’s ‘public’
methods to equivalent methods defined on the instance of
the original class. The process becomes more complex
when parameters and retum values are involved, hence the
inclusion of the JavaCloak runtime manager.

public float getTaxablelnterest() {
I: if (getBalancc0 < 1000) rclurn 0;
2: Object[] params=new Object[] {} ;
3: float result=();
4: try {
5: Object realLc = WM.wm.unwrap(this);
6: result = ((Float)methods[I].invoke(realLc,params)).float
Value();}
7: catch(Exception ee) {deal with exceptions}
8: return result;]

Code fragment 3: Adapted proxy SavingsAccount class

The structure of interaction between the application,
proxy and JavaCloak runtime manager is shown in

S

runtime L reference
manager + method call

Fig. 3

I72

(inwrapping and wrappifig p “ ~ insrnncer

Fig. 2. When the proxy i s instantiated it asks the runtime
manager to instantiate an initance of the original object.
The runtime manager then (Steps labelled in Fig. 2):

1. Uses the customised ‘classloader’ to load the original
class definition from the location specified in the runtime
variable. (lines 2 and 3 in code fragment 4).

public SavingsAccount(float PO)(

2: Wrappingclassloader wcl = WM.wm.getclassloader();
3: Class real = wcl.findClass(“bank.SavingsAccount”);
4: if(!this.getClass().getName().equals(real.getName()))

5: assignMethods(rea1);
6: Object[] params = ncw Object[] {new Float(pO)};
7: o = constructors[O].newInstance(params);
8: ref i d= WM.wm.register(this, o);]
9: catch(Exception ee) {deal with exceptions}}

I : try [

return;

Code fragment 4 : Proxy SavingsAccount constructor

2. Creates an instance of the original class. (line 7 in code
fragment 4).
3. Inserts an entry into the mapping table linking the proxy
to the original object. (line 8 in code fragment 4).
4. Returns a reference to the original object to the proxy.
(line 8 in code fragment 4).

When a method is invoked on the proxy the following

I . If the method has parameters and the parameter objects
are references to proxies then the proxy asks the runtime
manager for references to the original objects (line I in
code fragment 5) .
2. The proxy invokes the method on the original object.
(line 5 in code fragment 5) .
3. If the method returns a value the proxy receives the
return value and stores it in a variable of type ‘Ob,ject’:

(a) If the retum value is an instance of a wrapped class
then the proxy asks the runtime manager for a reference
to the matching proxy object and the proxy returns the
reference to the proxy object to the object that invoked
the method. (line 6 in code fragment 5) .
(b) Otherwise the retum value is ‘cast’ to the correct
type and returned to the application. (line 5 in code
fragment 2).

.

occurs:

IEE Pmc.-SoJ?w.. Yol. 14Y. A’o. 6, Decemhrr ZOO2

public SavingsAccount linkAccount(SavingsAccount PO) (
I : Object[] params = new Ohjectn (W.wm.unwt~p(p0)) ;
2: SavingsAccount result = null;

4: Object real-c = WM.wm.unwrap(this);
5: Object out = (SavingsAccount)methods[0].invoke

6: result = (SavingsAccount)WM.wm.getWrapper(out);
7: catch(Exception ee) {deal with exceptions}
8: return result;}

3: try {

(realbqarams); }

~ ~~~

Code Frugment 5: The IinkAccounts method

JavaCloak has been used successfully to wrap classes and
to report on access to instances of these classes. The
following Section will discuss some problems encountered
with the use of JavaCloak proxies for specialisation. The
term ‘reflection’ is generally used to denote the ability of a
system to change its behaviour by examining certain
properties at runtime and adspting the system depending
on these properties. Some authors would refer to Java-
Cloak’s activities as reflection, and others would refer to it
as runtime specialisation. The authors of [6] use the term
reflection to refer to their proxy-based approach, and their
example will he followed from here onwards.

4 Proxy-related problems

During the development of JavaCloak some technical
problems were encountered. One JavaCloak-specific
problem is that JavaCloak makes use of manipulation of
the ‘classpath’ in order to divert the JVM to the proxy
classes rather than the original classes. This limits the use
o f the JavaCloak mechanism to non-system classes since
these classes are loaded by the JVM automatically and not
by means of a search of the ‘classpath’. Changing the
hehaviour of system classes seems to violate the spirit of
these classes and this is therefore not a serious difficulty.
Other generic proxy-enahled reflection-related problems
will he discussed in the following Sections.

4.1 Type safety
It is important for the smooth functioning of a system
incorporating JavaCloak proxies that the proxies he type-
equivalent to the original classes. Therefore the generated
proxy must have the same fully-qualified class name as
the original class and it must be loaded at runtime by the
correct instance of the ‘classloader’. This ensures that the
application can use the proxy as if it were the original
class, and the inheritance structure is not broken. The way
JavaCloak maintains two identical classes is explained in
Section 3. There are some other tricky problems related to
this apparently transparent substitution, some of which
have been solved, and others of which remain.

4.7.1 Public fields: It is possible for the original
definition of a class to contain non-static ‘public’ fields.
If this is the case, to ensure correctness it must he possible
for the field to he accessed directly from the application,
and not only via programmer-provided ‘set’ and ‘get’
methods. Unfortunately Java does not model field access
as method invocation, so there is no opportunity to redirect
accesses to the ‘public’ fields via the proxy if the applica-
tion accesses the fields of the original class directly. Given
the current definition of Java, providing the application

IEE Pmc.-S<f~:, Yo/. 149, No. 6, December ZOO2

with access to ‘public’ fields consistently and transparently
in the presence of JavaCloak proxies is not possible. This
argument also applies to fields marked ‘protected’ and
those that are scoped at the package level in Java.

In following the proxy approach, we need either to
implement a system of ‘watchers’ for each ‘public’ field,
or assume a clean object-oriented programming model
where all field accesses are controlled by means of suitable

-method calls that can then he used to forward the call to the
original object. There is no support at sourcecode level in
Java to he able to implement the ‘watchers’, thus the only
approach is to assume (and limit the programmer) to a
clean object-oriented programming model.

4.7.2 Inheritance: This is a tricky problem for Java-
Cloak. JavaCloak proxies request the runtime manager to
create a matching instance of the base-class in the proxy
constructor. This is the logical place to do it. Inheritance
causes a problem here. Consider the situation where
JavaCloak provides a proxy for class B, which inherits
from class A, which also has a proxy. If each constructor
creates a link to a matching base-class instance there will
he multiple links between the proxy world and the wrapped
world, so that the inheritance structure, while correct in the
proxy world is amiss in the wrapped world.

To illustrate this point, consider the situation as shown in
Fig. 4. We have a class A, which is extended by a class B,
in tum extended by class C. The application instantiates an
instance of C. Since the system loads the JavaCloak proxy
rather than the original class, C is loaded. Since B and A
are also wrapped, C’s constructor will also create an
instance of both B and A. If each constructor automatically

proxy
world . wraooed world

runtime manager

incorrect linking

wrapped world

9
6 0 runtime manager

correct linking

Fig. 4 Inheritance across worlds

173

creates an instance of the matching original class, the links
will be as shown on the top of the Figure.

The multiple links will cause havoc when proxy objects
invoke superclass methods, because any changes made by
methods invoked on C, which make state changes, will not
be reflected in the superclasses of the original objects,
because the associated original objects are totally unrelated
to one another.

The position should be as shown on the bottom, where
the inheritance structures in the two worlds are totally
unconnected, except at the initial explicit level within the
instantiated proxy instance. JavaCloak must ensure that
superclass constructors do not request the runtime manager
to create matching original objects if invoked from
subclass constructors.

A related problem concerns inheritance from proxy
classes. If class C now has a subclass, D, which is not
wrapped, the correct behaviour of this subclass’s methods
is debatable. It is a simple enough matter to wrap the
superclass and to invoke methods that D invokes on
the (proxy) superclass on the matching original class.
The difficulty occurs when one considers methods that D
defines. Should D also be provided with a proxy? The
SOM approach, which makes use of meta-objects, requires
D to have a related metaclass which is a subclass of the
metaclass related to C [IB] . They thus require any
subclasses of ‘wrapped’ classes to also be ‘wrapped’.
These types of issues are not trivial to solve and a
satisfactory solution is yet to be found.

4.2 Self and encapsulation
The JavaCloak approach implements the proxy class
and the wrapped class separately. This leads to two
problems, the self [I91 and the encapsulation problem.

The self problem arises because the meaning of self (or
‘this’ in Java programs) is different in the proxy and in the
wrapped instances. Thus the original object could instanti-
ate a new instance of the same class. This object would not
have a matching proxy object and therefore the hehavioural
modification being applied by the proxy would not be
applied to this newly instantiated object. Liebeman [I91
argues that inheritance-based languages such a Java cannot
be used to implement delegation, which is, in essence,
what a proxy does. If the programmer needs to intercept
accesses to all instances of the original class this limitation
is a problem, but if one wishes merely to intercept all
accesses by the client program the proxy approach does not
present a problem [6].

If the original object returns a reference to itself(‘this’),
or to another instance of the same class, to the proxy, this
will be intercepted by the runtime manager. If a matching
proxy already exists the proxy instance will be substituted,
and if not, a proxy instance of the return value will be
instantiated and returned to the proxy. This mechanism
works when simple references to wrapped objects are
passed back to the caller, but when a direct reference to an
original object is embedded in another object that JavaCloak

Table 1: Overhead of calling through a JavaCloak proxy

has no control over, then the situation is not solvable: the
reference may be ‘private’ which means JavaCloak cannot
access it to perfomi the required conversion.

Hence in JavaCloak it is possible for a direct reference to
an original instance to be passed across the boundary, thus
breaking the proxy model. This occurs because a logical
proxy model is being used and Java does not allow the
redefinition of the meaning of ‘this’ in the original object.

4.3 Identity and equality
Any existing object-identity operation will work in Java-
Cloak because the identity of the two proxies will be
compared rather than the two original objects. However,
if the reference to the proxy is passed to a service that
follows the graph of objects reachable from the proxy, as
Java’s object serialisation does, then the proxy and the real
object will be serialised which the programmer may not
intend.

In JavaCloak, all invocations on the public methods of
an object are intercepted at the proxy, including the
‘hashcode’ and ‘equals’ methods defined on ‘java.lang.
Object’. Thus, in JavaCloak, it is not possible to perform
these operations on the proxies themselves as the ‘hash-
Code’ and ’equals’ methods are forwarded to the original
instance. This means that, at the JavaCloak implementation
level, we cannot make use of these methods to manage the
proxy. However, the JavaCloak management makes use of
a ‘java.util.Hashtable’ which needs to be able to call the
‘hashcode’ and ‘equals’ methods on the proxy. This
requires additional objects to be registered with the
lookup mechanism which then operate as a place-holder
for the proxy when performing a lookup on it, via the hash
table. The objects themselves cannot be used, so these
tokens represent the real objects in this case.

When calling forward on the ‘equals’ method it is
necessary to translate the call from an operation on two
proxy objects (this and the argument to ‘equals’), into an
operation on two original objects. This is made possible by
performing a proxy to original lookup in the JavaCloak
runtime manager.

4.4 Transparency
Welch and Stroud [6] cite a number of difficulties inherent
in the transparent addition of non-functional requirements
by means of reflection, one of which is the handling of
exceptions. There are two aspects to be considered:

1. Certain exceptions are declared in the method headers
and are therefore ‘expected’ by the application. One may
wish to intercept these exceptions for the purposes of better
reporting or more standardised exception handling. Welch
and Stroud note that some researchers feel that this type of
action allows adaptive runtime redefinition of exceptional
beliaviour [20]. They argue that while exception handling
should not be re-definable it might be desirable to add
additional behaviour that takes place when an exception is
raised at the base level.

Constructor getsalance addlnterest getTaxablelnterest IinkAccounts

82.05 311.9 1.459 2.255 1.578 2.0875 1.4655 2.494 1.0125 3.365

Percentage increase:
280% 54% 32% 70% 232%

I74 IEE Pn~c.-Sofm-. Yol. 149, N o 6, December 2UOZ

Table 2 Comparing the proxy approaches

Wraps Proxy inherits Programmer Overriding Static or Mediates
classes from skills required mechanism dynamic field access

Dalang Yes Meta-object class Average Meta-object Both Yes
Java proxy Only interfaces Proxy Expert Invocation handler Dynamic nla
JavaCloak Yes Base-class superclass Fair to average Changing proxy code Static ’ No

Decisions about this are best left IO the individual pro-
grammer and JavaCloak does not presume to dictate on this
issue.
2. A bigger problem for JavaCloak is that ‘unexpected’
exceptions may be thrown, caused by the reflection
mechanism. These exceptions need to be handled in some
consistent way, both in order to ‘minimise disruption of
the application, and so that the reflection system developers
are appraised of the problem in case the exception was
caused by a bug in the reflection code. JavaCloak.has dealt
with this problem by incorporating a ‘BugHandler’ into the
runtime system. If a JavaCloak-specific exception is
detected in the proxy, a hug report is generated and the
user is requested to email it to a given address.

4.5 cost
This Section describes the typical runtime performance
overhead of using a JavaCloak proxy. There is a cost related
to hehavioural reflection. Golm and Kleinoder identify the
following costs which are affected by reflection [21]:

Reflective method call: One extra level of abstraction is
added here by JavaCloak. This also includes the cost of
unwrapping of parameters before sending to the wrapped
class and wrapping of returned objects.

Installation: The costs related to making a method
reflective. In JavaCloak the price is paid at compile-time.
e Memory: Two versions of each reflective class are held
in memory, the proxy and the wrapped class. The runtime
manager also maintains tables mapping these two worlds to
each other. The JavaCloak proxies are fairly lightweight
though, since they do not contain any class-specific vari-
ables or fields.

In addition there is an initial setup time to he considered.
In the constructors JavaCloak reflects over the methods,
and registers the proxy and the actual object with the
JavaCloak runtime mechanism. JavaCloak also initialises
the wrapped and proxy classes and essential JavaCloak
runtime classes and maintains the mapping table in the
runtime manager.

The major impact seems to convert mainly to time, at
runtime, when it matters. JavaCloak’s impact on the system
needed to he measured. The timing results were taken on a
lightly loaded Pentium 11 with version 1.3 of Java 2 from
Sun Microsystems. The original class that was wrapped is
given in code fragment 1 and a proxy for it was generated
by JavaCloak. A small test program was written that
created an instance of ‘SavingsAccount’ and invoked
methods ‘getBalance’, ‘addlnterest’, ‘GetTaxahleInterest’
and ‘IinkAccounts’ 100 times. An average of the time
taken for each method was recorded. This program was
run 20 times, both with and without the proxies, and an
average of the elapsed time taken. AI1 the figures given are
in milliseconds for one method invocation or one call to
the constructor. The times for the proxy are on the right of
the pair in Table 1.

The overhead at the constructor is as expected. The
overhead imposed on the invocations stems from needing

IEE Pm:Sq/lw., Yol. 14Y. No. 6, December ZOO2

to track the relationship between the proxy object and the
wrapped object. For example, when an instance of ‘Saving-
sAccount’ is passed hack from itself by the ‘linkAccounts’
method, we need to map this value to its corresponding
proxy. Since ‘SavingsAccount’ actually returns an instance
of itself that does not have an equivalent proxy instance
JavaCloak has to generate a proxy instance for this return
object and enters it into the mapping table before returning
it to the caller.

It is obvious from the Tables that JavaCloak proxies
introduce a substantial overhead. I t may he that this over-
head is unimportant as it would he if, for example,
applications run at night when an extra few milliseconds
are negligible. In real-time systems obviously this perfor-
mance penalty could become an issue.

5 Conclusions

JavaCloak has demonstrated that it is possible to use
statically-generated proxies to specialise runtime beha-
viour. During the development of JavaCloak many techni-
cal problems were encountered, some of which were
solved. The other two proxy approaches, Dalang and the
Java proxy approach, were compared to JavaCloak. Table 2
compares and contrasts the three major proxy approaches.

The Java proxy approach is not a serious competitor
since it takes the easy route of only providing proxies for
interfaces. Since Java is a single-inheritance language this
limitation neatly prevents any inheritance problems. The
Dalang approach has its strengths and weaknesses. It is
more powerful than JavaCloak since it is able to operate
both statically and dynamically and can mediate access to
fields, which JavaCloak cannot do. However, it does break
the inheritance structure of the base-class by inheriting
from the meta-object class, something JavaCloak does
not do. JavaCloak’s impact on performance is high, as
pointed out in Section 4.5, but this may not he an issue
depending on the nature of the application. Its main
strength is its ease of use to the inexperienced programmer.

6 Acknowledgments

I acknowledge the contributions of Huw Evans at the
University of Glasgow. His collaboration and insights
were essential during the course of this work. 1 also
thank Gordon Blair and Duncan Pemherton at Lancaster
University for their helpful comments on a previous draft
of this paper.

7 References

I WU, 2.: ‘Reflective Java and a reflective component based transaclion
architecture‘. Proceedings of OOOPSL.4’98. Workshop on Reflective
Programming in C++ and Java, Vancouver, Canada 18-22 October

2 DE 0 GUIMARAES, J.: ‘Reflection for statically typed languages’.
Proceedings of ECOOP’98, Brussels, Belgium 20-24 July 1998,
pp. 440-461

3 GOLM, M.: ‘Design and implementation of a mera architecture for
lava’. Master’s thesis, University of Erlangen, Gemany, I991

199x,pp. 6-10

175

4 OLIVA, A,, and BIZATO, L.E.: 'The design and implementation of
guarana'. Proceedings of USENIX conference on object-onenled tech-
nology, San Deigo, CA, USA

5 GAMMA, E.. HELM, R., JOHNSON, R., and VLISSIDES, J.: 'Design
Dattems: elcment~ of nusable obiect-oiented soflwarc' (Addison-
Wesley. Reading, MA, 1994)

6 WELCH, I., and STROUD, R.: 'Dalang-A reflective extension for
Java. Technical Rcmn CS-TR-672. Comoutine Science Deoanment~ , ~~.
University of Newckllc Upon Tyre, Septeiberi999

7 COHEN, C.A., CHASE, J.S.. and KAMINSKY, D.L.: 'Automatic
program transformation with JOIE'. Proceedings of the USENIX 1998
Annual Technical Conference. Berkelev. CA. USA. 15-19 June 199X. ,. . ,
pp. 167-178 -

8 DAHM, M.: 'Byte code engineering'. Proceedinps of JIT'99, Dusssel-
dorf Germany 1999

9 CHIBA, S.: 'Load-time srmcflvdl reflection in Jam'. Proceedings of the
14th European Conference on Object-oriented programming. ECOOP
2000, Sophia AntipolisandCannff, France, 12-16June2000,pp. 313-336

10 WELCH. I., and STROUD, R.J.: 'Kava: Using bytecode rrwnting to add
behavioural reflection to Java'. Proceedings of USENIX Conference on
Object-oriented Technology, San Antonio, Texas, USA, 29 January-
Febmrary 2001

1 I WELCH, I., and STROUD, R.: 'From Dalang to Kava the evolution of a
reflective Java extensiqn', Lccc N o m Conput. Sci., 1999, 1616, pp. 2-21

I2 KELLER, R., and HOLZLE, U 'Binary component adaptation', Lect
N o m Contpirt. Sci., 1998, 1445, pp. 307-329

13

14

15

16

I7

18

19

20

21

Objectstore Enterprise Edition Homepage. l,Rp:ilwww.object-store.~~ti
objecratorel, accessed May 2000. Excelon Corporation
KICZALES. C., DES RIVIERES, J., and BOBROW, D.G.: 'The an of
the meta-object protocol' (MIT Press, Cambridge, MA, USA, 1991)
Java 2 Platform, Standard Edition online documcntation. http:lljava.
sun.comlj2seil.3lducriapiimdex.htmli, accessed April 2000
OGAWA, H., MATSUOKA. K.S.S., MARUYAMA, I;,SOHDA. Y.,anrl
KIMURA. Y.: 'OpenllT an open-ended reflective JIT compiler frame-
work far Java', Lect. Noirs Cmpur. Sci., 2000, 1850, pp. 362-382
RENAUD, K., and EVANS, H.: 'Javacloak engineering Java proxy
objects using reflection'. Proceedings of NET.OBJECTDAYS 2000,
Mrsrekongressrentrum Erfun, Germany, 9-12 October 2002
DANFORTH, S., and FORMAN, I.R.: 'Reflections on metaclass
programming in SOM', ACM SIGPLAN Nolices, 1994, 29, (IO),
p. 440
LIEBERMAN, H.: 'Using prototypical objects IO implement shared
behavior in object-oriented systems'. Conference proceedings: Objcct-
oriented programming: systems. languages, and applications
OOPSLA'86, pp. 214-223
CHIBA, S., and MASUDA, T.: 'Designing an extensible dcdnbuted
language with a mrtdevel architecture'. Procccdings of the ECOOP '93
European Conference on Object-oriented programming, LNCS 701,
July 1993, Kaiserslautem, Germany, pp. 483-502
GOLM. M., and KLEINODER, J.: 'Jumping to the mela level.
Behavioural reflection can be fast and flexible', Lecr. Mxes Compirr.
Sci.. 1999, 1616, pp. 22-39

176

	citation_temp.pdf
	http://eprints.gla.ac.uk/3652/

