Combining Abductive Reasoning and Inductive Learning to
Evolve Requirements Specifications

A. S. d’Avila Garcez*, A. Russo’, B. Nuseibeh! and J. Kramer'

*Department of Computing, City University
Northampton Square, London, EC1V 0HB, UK

aag@soi.city.ac.uk

"Department of Computing, Imperial College
180 Queen’s Gate, London, SW7 2BZ, UK

{ar3,jk}@doc.ic.ac.uk

tComputing Department, The Open University
Walton Hall, Milton Keynes, MK7 6AA, UK

B.A .Nuseibeh@open.ac.uk

Abstract

The development of requirements specifications inevitably involves modification and evolution. To
support modification while preserving particular requirements goals and properties, we propose the use of
a cycle composed of two phases: analysis and revision. In the analysis phase, a desirable property of the
system is checked against a partial specification. Should the property be violated, diagnostic information
is provided. In the revision phase, the diagnostic information is used to help modify the specification in
such a way that the new specification no longer violates the original property.

In this paper, we investigate an instance of the above analysis-revision cycle that combines new tech-
niques of logical abduction and inductive learning to analyse and revise specifications, respectively. More
specifically, given an (event-based) system description and a system property, abductive reasoning is ap-

plied in refutation mode to verify whether the description satisfies the property and, if it does not, identify

diagnostic information in the form of a set of examples of property violation. These (counter)examples
are then used to generate a corresponding set of examples of system behaviours that should be covered
by the system description. Finally, such examples are used as training examples for inductive learning,
changing the system description in order to resolve the property violation. This is accomplished with
the use of the Connectionist Inductive Learning and Logic Programming System - a hybrid system based
on neural networks and the Backpropagation learning algorithm. A case study of an automobile cruise
control system illustrates our approach and provides some early validation of its capabilities.

Keywords: Logic-based Analysis, Requirements Specification, Theory Revision, Abduction, Inductive

Learning, Neural Networks, Hybrid Systems.

1 Introduction

The development of requirements specifications inevitably involves modification and evolution. To support
modification while preserving the main requirements goals and properties, we propose the use of a cycle
composed of two phases: analysis and revision, as illustrated in Figure 1. The analysis phase is responsible
for checking whether a number of desirable properties of the system is satisfied by its partial specification.
It also provides appropriate diagnostic information when a certain property is violated by the specification.
The revision phase should change the given specification (Spec) into a new (partial) specification (Spec’)
- by making use of the diagnostic information obtained from the analysis phase (possibly combined with
scenarios provided by stakeholders) - in such a way that Spec’ no longer violates the system’s property in

question [9].

Spec

/

Scenario s

Diagnosis

Analysis Revision

Spec'

Figure 1: The cycle of requirements specification evolution

In this paper, we present an instance of the Analysis-Revision Cycle (Figure 2), which uses techniques of
abductive reasoning [22] during the analysis phase to (i) discover whether a given system description satisfies a
system property and (i7) if not, generate appropriate diagnostic information in the form of training examples;
and inductive learning [31] during the revision phase to change the system description whenever it violates
a property, utilising a machine learning algorithm. The two techniques are combined together by using the
counter-examples generated by abduction to derive a number of training examples for inductive learning

that is consistent with the system property.

Description D

Examples

Abductive Inductive

Reasoning

/

Description D
Property P

Learning

Description D'

Figure 2: Combining abductive reasoning and learning

More specifically, we concentrate on requirements specifications composed of deterministic, state transi-
tion based system descriptions, i.e. system requirements expressed in terms of system reactions to events,
and global system properties, such as safety properties. We use abductive reasoning in refutation mode so
that the analysis of a property P consists of an attempt to identify a hypothesis A that is consistent with the
system description D such that D and A entail the negation of the property. If the abductive procedure finds
a hypothesis A then it will act as a counter-example to the validity of the property. The procedure always
terminates, and if it fails to find A then it guarantees that the system description satisfies the property [40].
In addition, we use a hybrid system - the Connectionist Inductive Learning and Logic Programming System
(C-IL? P) [10] - to revise a system description from examples. C-IL° P is a neural networks based system that
performs inductive learning from examples and background knowledge (in this case, the incorrect description

D), using the Backpropagation learning algorithm - the neural learning algorithm most successfully applied

in industry, based on efficient gradient descent computation [38].

Of course, other kinds of reasoning techniques could be used for analysis and revision such as Model
Checking [3] and Belief Revision [1], respectively. However, when considering the cycle of analysis and
revision, the similarities between the techniques of abduction and induction facilitate the integration of
these two activities, as also advocated in [12]. There are two integration steps (Figure 2): one when we
move from analysis to revision, and another when we move back, from revision to analysis. In the first
step, the analysis mechanism must produce training examples that the revision mechanism can use. In
general, there are not many examples available for learning, so that the role of analysis is also to guide the
generation of new examples. As we will see in this paper, in particular in Section 4.2, abductive reasoning
is an adequate mechanism for doing so. In the second step, the revision mechanism must produce a clear
(symbolic) description D', given an incorrect description D and a reduced number of examples. Not many
techniques of inductive learning can cope with such a difficult revision task [31]. As we will also see in the
sequel, especially in Section 5.2, hybrid learning systems are an adequate mechanism for revision in this case.

A run of the analysis-revision cycle would be as follows. During analysis, an event-based system descrip-
tion D and a system property P are given to our abductive reasoning mechanism, which checks whether D
satisfies P. In particular, it attempts to identify counter-examples to the property P, which are essentially
state transitions that violate P in the form of a current system state, an event, and an associated next
state. If abduction fails to find any counter-example to the property P then we know that the description
D satisfies P, and no revision is performed on D. If, however, a counter-example A is identified, it informs
us that, whenever the system is in a given current state, the occurrence of the detected event should not
take the system into the detected next state. As a result, a (possibly singleton) set of training examples
A’ may be derived from A automatically, for example, by defining alternative transitions, consistent with
the property P, that would take the system into different next states. Such training examples can be seen
as state transitions that should be incorporated into the system description so that it no longer violates
a given property. This is the task of revision. Given background knowledge D and training examples A’,
our inductive learning mechanism must change D into a new system description D’ that is expected not to
violate property P. D’ must incorporate A’, which eliminates A as a state transition that violates P. The
C-IL? P hybrid system does so by translating D into the initial architecture of a neural network N, applying

the Backpropagation learning algorithm on N in order to incorporate training examples A’, thus deriving a

trained neural network N’, and translating the trained network N’ back into a symbolic representation D’
[10].

During revision, while the translation of D into N is straightforward, as we will see in Section 4.3, the
translation of N’ into D’ is not trivial. It is essential, though, to provide ezplanation capability to neural
networks in the form of symbolic rules. This task is known as rule extraction from trained neural networks
[2], and although it is exponential on the number of input neurons in the worst case, it works well in practice
for considerably large neural networks [7]. In addition, note that induction alone cannot guarantee that D’
satisfies P, as it normally includes some generalisation of the training examples. As a result, the (sound and
complete) abductive mechanism of the analysis phase [40] should be responsible for verifying whether D’
satisfies P. This is one of the reasons why the process of evolving requirements specifications should be seen
as an analysis-revision cycle. Of course, due to the way that the training examples A’ are generated from
violations A of properties P, we expect inductive learning to guide us towards a description D’ that satisfies
P. Hence, a scalable analysis-revision cycle based on abduction and induction would need to concentrate
efforts on the development of efficient rule extraction algorithms and efficient abductive proof procedures, as
we will discuss in the sequel. As a result, the nature of the problem of requirements evolution renders the use
of abduction and machine learning both appealing and challenging also from a computational intelligence
perspective. While requirements engineering can benefit from the use of successful abductive reasoning and
machine learning techniques, new and efficient computational intelligence algorithms need to be developed
to support the evolution of requirements specifications [28].

The paper is organised as follows. Section 2 provides a brief introduction to abductive reasoning and
defines the use of abduction in refutation mode to analyse system’s properties and generate diagnostic
information (i.e. counter-examples) when properties are violated. Section 3 briefly introduces inductive
learning and describes the C-IL?P hybrid learning system, used to revise incorrect system descriptions.
Section 4 presents our analysis-revision cycle. It presents a technique for generating training examples of
system behaviours from a given set of counter-examples obtained from analysis, and shows how abductive
reasoning and inductive learning can be integrated to revise existing incorrect system descriptions from
examples. Section 5 applies the analysis-revision cycle in a case study, using a specification of an automobile
cruise control system. Section 6 reviews related work, and Section 7 concludes and discusses directions for

future work.

2 Abductive Reasoning

Formal reasoning techniques can be of three main forms: deduction, abduction and induction. In general
terms, deduction is an analytic reasoning process that uses a given set of assumptions A (e.g., instances of
a system’s behaviour), and a rule-based domain-specific description D (e.g., a system’s description) to infer
consequences « (e.g., a given system’s property). In contrast, abduction is a constructive reasoning process
that identifies the set of assumptions A needed in order to infer from the description D the consequence a.
Finally, induction is a synthetic reasoning process that produces general rules from a collection of specific
instances, thus expanding the description D so that it covers such instances. Deductive reasoning is often
used to support query-based reasoning on formal specifications, abductive reasoning for diagnosis, planning,
theory and database updates, as well as knowledge-based software specification analysis, and inductive
reasoning for performing machine learning tasks in different application domains, ranging from bioinformatics
to software engineering. The formal framework proposed in this paper combines two of these three reasoning
modes — abduction and induction — to support the development process of requirements specifications through
iterative phases of analysis and revision. In this section, we briefly introduce abductive reasoning as an
analysis technique. In the next section, we will look at inductive learning as a revision technique.

Abduction is commonly defined as the problem of finding a set of assumptions (or explanation) that,
when added to a given (formal) description, allows a goal (or observation) to be inferred without causing
contradictions [22]. In logic terms, given a rule-based domain-specific description D and a goal G, abduction
attempts to identify a set of assumptions A such that: (1) DUA F G, and (2) DUA is consistent. The set A
is often required to satisfy two main properties: (i) it must consist only of abducible sentences, where the defi-
nition of what is abducible is generally related to some domain-specific notion of causality, and (ii) it must be
minimal. For example, given a simple description composed of just one rule Measles(X) — Red_Spots(X),
and the observation Red_Spots(John), abduction would identify the single assumption Measles(John) as
an explanation for such observation. FExisting abductive procedures, written as logic programs, work on
the assumption that the given goal G is a ground sentence (e.g., an instance). This makes such procedures
decidable since they only consider (starting from the goal and reasoning backwards) the ground instances of
the rules included in the description D that are necessary to prove the goal.

Abduction could be used to identify assumptions of system bevahiours that would allow the inference of

observations of system states from a given system description. In event-driven system descriptions, abduction
would, for instance, be used to identify a trace of events and system transitions (starting from the initial
state) that would prove a given requirement. This would be a direct use of abduction to reason about
requirements specifications. In our approach, abduction is used, instead, in refutation mode, in order to
enable both (7) the analysis of system descriptions with respect to system properties, and (i¢) the generation
of counter-examples (incorrect system transitions) as diagnostic information of properties violation [39, 40].
In refutation mode, the analysis task is translated into the equivalent task of showing that it is not possible
to consistently extend the description D with assumptions A in such a way that the extended description
entails the negation of the goal G, i.e. DU A F —G. The equivalence between these two tasks is shown in
Theorem 1. Note that, in the context of analysis, our goal G is a global system property P such as safety

properties.

Definition 1 [/0, 41] Let < D, Ab,C > be an abductive framework, where D is a system description, Ab is
a set of abducibles, and C' is a (possibly empty) set of constraints of the form c¢1 A ca A ... A e, —L, which
indicates that satisfying all conditions ¢; (1 < i < n) simultaneously is undesirable, and should lead to an
inconsistency (indicated by 1). Let G be a global system property. A set A of abducibles (A C Ab) is called
a counter-example of the property G if and only if (i) DUA F =G, (ii) D U A is consistent, and (iii)

DUAFC if C £ 0.

Theorem 1 [40, 41] Let < D, Ab,C > be an abductive framework, and let G be a global system property.

Then, D G if and only if there exists no counter-example of property G.

Theorem 1 shows that the analysis of a global system property can be defined as the process of detecting
counter-examples to the validity of the property by means of abduction. However, since global system
properties can be seen as sentences universally quantified over time, the use of standard theorem proving
techniques may become computationally expensive. To overcome this problem, we perform a reduction step,
which simplifies the inference task by instantiating the system description and the system property to a time
structure consisting of two arbitrary time points ¢; and 2 such that ¢; < to. An abductive proof procedure
can then be applied more efficiently to such a reduced (ground) system description. Theorem 2 shows that
the reduction step is sound and complete. The proof is by induction on ¢; and, therefore, only accounts for

the analysis of global system properties such as the ones considered in this paper.

Theorem 2 [/0, /1] Let D be a system description and G a global system property. Let T be a time structure
consisting of three time points: t1 and ty such that ty < ta, and an initial time point ty. Let D be the ground
system description, and let Gt; be the ground property at time t; (0 < i <2). Then D+ G if and only if

DF Gto and DT U Gt1 = GtQ.

Theorem 2 states that, in order to show that D F G, it is sufficient to show that (i) the property is
true at an initial time point (an initial system state), and (iz) given a ground system description Dy, if the
property is true at an arbitrary time point ¢; (a current system state) then it is also true at t;11 (the next
system state). This summarises important results on abduction. Section 4.1 will illustrate its use as part of

our analysis-revision cycle.

3 Inductive Learning

In this section, we introduce inductive learning as a revision technique, and describe the C-IL°P hybrid
learning system. Learning can be defined as the change of behaviour motivated by changes in the environment
in order to perform better in different knowledge domains [30]. “A computer program is said to learn from
examples F, with respect to some class of tasks T' and performance measure M, if its performance at tasks
in T, as measured by M, improves with F ” [31]. More recently, the importance of adding background
knowledge in the form of additional information about the application domain at hand, in order to help the
learning process, has been highlighted [20]. In Inductive Logic Programming (ILP), for example, background
knowledge is part of the definition of learning. “The task of inductive learning is to find hypotheses, in the
form of rules, that are consistent with background knowledge to explain a given set of examples. These
hypotheses are definitions of domain concepts, the examples are descriptions of instances and non-instances
of such concepts to be learned, and the background knowledge provides additional information about the
domain” [25]. More formally, given background knowledge B, positive examples e*, and negative examples
e~ of a concept, ILP learning is about searching for the most general hypothesis i such that: (1) BURF e™,
and (2) BUh ¥ e™. According to Occam’s Razor, the most likely hypothesis is the simplest one that is
consistent with all observations. As a result, the most general hypothesis h is assumed to be the most simple
one (see [14] for a discussion on Occam’s Razor in the context of Machine Learning).

Using the same example domain of Section 2, assume that the background knowledge is empty, and

that the set of examples, also called training examples, is composed of the following instances (all positive

examples):
el : Measles(John), Red_Spots(John)
e3 : Measles(Dan), Red_Spots(Dan)

e3 : Measles(Susan), Red-Spots(Susan)

A hypothesis for the above training examples could be Measles(X) — Red_Spots(X). Of course, an
alternative hypothesis would be Red_Spots(X) — Measles(X). Now, assume that the background knowl-
edge, instead of being empty, contained the common-sense knowledge about the domain diseases trigger
symptoms. This information would clearly eliminate the latter hypothesis Red_-Spots(X) — Measles(X).
Similarly, the presence of more training examples; such as the observation that even though Peter presented
red spots, he had not contracted measles; could achieve the same result.! This illustrates that the quality
of the selection of hypotheses increases as the amount of information about the domain increases, either in
the form of more training examples or better background knowledge.

When an incorrect (partial) system description is part of background knowledge, one needs to relax the
above restriction of standard ILP, that hypotheses be consistent with background knowledge. Clearly, the use
of inductive learning for revision requires the capability to exploit background knowledge (i.e. an evolving

specification), even when parts of it are incorrect. The following definition of learning captures this idea.

Definition 2 A computer program is said to learn from positive ezamples e*, negative examples e~ and
background knowledge B, with respect to some class of tasks T and performance measure M, if it changes B
into B' such that (1) B' & e™, (2) B'¥ e~ and (3) the performance of B’ at tasks in T is, in average, greater

than the performance of B at tasks in T, as measured by M.

As before, Occam’s Razor should be applied when it comes to deciding how B ought to be changed into

B'. In the case of deterministic systems, the (computationally expensive) task of showing that B’ ¥ e, for

+

i

a particular negative example e; , can be reduced to the task of showing that B’ I e;", where €] is obtained

from e; by changing its next state (recall that we see training examples e;” and e as tuples composed of a

1For instance, a negative example e] = Measles(Peter), Red_Spots(Peter) would indicate that new hypotheses must not
contain Measles(Peter) and Red-Spots(Peter) together.

current system state, an event, and a next state). In this case, condition (2) of Definition 2 can be dropped.
In the sequel, we will refer to negative examples simply as counter-examples.

Different inductive learning techniques can be applied to evolve B based on different forms of represen-
tation, such as symbolic rules [37], neural networks [18], and hybrid systems [5]. Symbolic learning, such
as ILP learning techniques, [34] has the advantage of using existing background knowledge to reduce the
search space during the learning process, making it more efficient. As discussed above, the basic assumption
is that the given background knowledge is correct, and that the learned concept should simply be added
to such knowledge. In contrast, neural networks perform inductive learning using statistical, rather than
declarative, definitions of data dependency, encoded in their weights. This approach has enabled neural net-
works to outperform symbolic learning systems in different application domains, especially when the set of
examples is noisy?, despite the fact that no background knowledge is used [45]. In response to these results,
there is a growing interest in combining symbolic and neural learning systems [8]. Such hybrid models of
inductive learning try to exploit certain advantages of both the symbolist and connectionist paradigms of
Artificial Intelligence. For example, by combining background knowledge and neural networks, the number
of training examples that a hybrid system requires to learn a given concept may be reduced. Moreover, when
background knowledge is encoded in the set of weights of a neural network, the subsequent neural learning
process (which changes such weights based on the training examples) can not only expand the background
knowledge, but also revise it when necessary. The Connectionist Inductive Learning and Logic Programming
System (C-IL? P) [10] is one such hybrid learning system.

C-IL? P neural networks integrate inductive learning from examples and background knowledge with
logic programming. The system is composed of three main modules: knowledge insertion, revision and
extraction, as shown in Figure 3. The insertion module consists of a Translation Algorithm that takes
background knowledge, described as a general logic program® [26], and generates the initial architecture
and set of weights of a (single-hidden layer) feedforward neural network (Figure 3(1)). The revision module
revises the background knowledge by training the neural network with examples (Figure 3(2)) using standard
Backpropagation [38]. The examples are presented to the network as pairs of input and output sequences,

and the revision of background knowledge, which defined the network’s initial set of weights, is done by

2 A set of examples is noisy when some examples are not 100% correct.
3A general logic program is a finite set of rules of the form L1 A ... A L, — A, where A is called an atom and L; (1 < i < n)
is called a literal (an atom or the negation of an atom).

10

the iterative change of the weights until the network adapts to the examples *. The extraction module
consists of an FEztraction Algorithm that takes the trained network and generates new symbolic knowledge,
described in the form of a general logic program (Figure 3(3)). The set of extracted rules are in general more

comprehensible than the trained network, thus facilitating the analysis of the knowledge refinement process

by a domain expert.

Revision
I’/ \\|
| |
Insertion i @ i Extraction

| |
: i 2 | ‘.
| ! ! |
i Background | Neural | |
| Knowledge ! Network ! |
g !)

Figure 3: The C-IL?P System

The translation from logic programs P to neural networks A is done as follows. Each rule (r;) of P is
mapped from the input layer to the output layer of A through one neuron (X;) in the single hidden layer
of . Intuitively, the Translation Algorithm has to implement the following conditions: (C1) The input
potential of a hidden neuron (N;) can only exceed N;’s threshold (6;), activating N;, when all the positive
antecedents of r; are assigned the truth-value true while all the negative antecedents of r; are assigned false;
and (C2) The input potential of an output neuron (A) can only exceed A’s threshold (64), activating A,

when at least one hidden neuron NN; that is connected to A is activated.

Example 1 Consider the logic program P = {ry : BACA-D — A;ry: EANF — A; r5 : — B}. The
Translation Algorithm derives the network N of Figure 4, in which hidden neurons Ny, Ny and N3 encode
rules r1, ro and 13, Tespectively, and defines the values of the weights (W's) and thresholds (0's) in such
a way that conditions (C1) and (C2) above are satisfied. Note that, if N ought to be fully-connected, any

other link (not shown in Figure 4) should receive weight zero initially.

Note that, in Example 1, each input and output neuron of A is associated with an atom of P. As a

4In the case of Backpropagation, weight changes are done by applying gradient descent on an error surface, which is obtained
by comparing the network’s output sequences with target output sequences. The objective of gradient descent is to minimise
such an error by changing the network’s weights.

11

T

Interpretations

Figure J: Sketch of a neural network for a logic program.

result, each input and output vector of ' can be associated with an interpretation® for P. Note also that
each hidden neuron N; corresponds to a rule r; of P. In order to compute the models® [16] of P, output
neurons should feed their corresponding input neurons (e.g., B in Figure 4) such that A is used to iterate

Tp, the fixpoint operator of P, defined as follows.

Definition 3 Let P be a general logic program. Let Bp denote the set of atoms occurring in P, called the
Herbrand base of P. The mapping Tp : 257 — 2B7 s defined as follows. Let I be an interpretation, then
Tp(I)={Ao €Bp | Ay AN .. NAy A=A Ao A A — Ag is a rule in P and the atom A; (1 <i<n)is

mapped to true by I, while the atom A; (n+1<j <m) is mapped to false by I'}.

For example, if P = {— a; a — b} and we iterate Tp starting from {a = false, b = false}, we obtain
{a = true, b = false}, and then {a = true, b = true}, which is the unique model for P. The following
theorem shows that the C-IL? P network N obtained by the translation of a logic program P computes the

fixpoint operator Tp of the program. This guarantees the correctness of the translation algorithm.

Theorem 3 [10] For each general logic program P, there exists a feedforward neural network N with ezactly

one hidden layer of semi-linear neurons such that N' computes Tp.

5 An interpretation is a function mapping atoms in P to {true, false}.
6A model for P is an interpretation that maps P to true. For example, the models for P = {— a; a Ab — c} are
My : {a = true, b = false, c = false}, Ma : {a = true, b = false, ¢ = true} and M3 : {a = true, b = true, c = true}.

12

C-IL? P networks typically use f(z) = x as the activation function of input neurons (called linear neurons)
and h(z) = 1/(1+4e~7) as the activation function of hidden and output neurons, called semi-linear neurons.
The activation of each neuron is obtained by applying its activation function on its input potential. The
input potential of an input neuron is its associated interpretation (we use 1 to represent true, and 0 to
represent false). The input potential of a hidden or output neuron is the weighted sum of the activation
of its predecessor neurons, according to the network’s weights, thresholds and input vector. The network’s
output vector is given by the activation of its output neurons. We say that a neuron is activated if its

activation value is greater than a given (pre-defined) minimum activation A, € R, e.g., Amin = 0.5.

Example 2 Consider the following interpretation for the program P of Example 1: {B = true, C = true,
D = false, E = false, F = false}. Since input neurons are linear, the activation of input neurons B, C,
D, E and F is1, 1,0, 0 and 0, respectively (Figure 4). Then, the input potential Iy, of hidden neuron Ny
is given by W - Actp + W - Actc — W - Actp — 01, where Act; denotes the activation of neuron j, and 01 is
called the threshold of N1. In general, I; = Zj(VVij -Actj) —0;, where Wy; denotes the weight from neuron j
to neuron i. The activation of hidden neuron N is given by h(In,). Assume W = 1.0 and 01 = 1.5. In this
case, we obtain Iy, = 0.5 and h(In,) = 0.62 as the activation of N1. We can repeat this process to obtain
the activation of hidden neuron Ny and N3, and of output neurons A and B. Taking 65 = 0.5, we obtain
In, = —0.5 and h(In,) = 0.38 as the activation of Na. Finally, the input potential 14 of output neuron A is
given by W - Acty, + W - Actn, — 0. Taking 04 = 0.5, we obtain I4 = 0.5 and h(I4) = 0.62. As a result,
if Amin = 0.5, we say that output neuron A is activated for input vector i =[1,1,0,0,0]. In other words, A
is true if B is true, C is true, D is false, E is false and F is false. Clearly, A must be activated since
BANCAN-D — A is arule in P. Similarly, 03 and 0p must be such that output neuron B is activated for

any input vector, since B is a fact in P.

In the sequel, we use o = N (i) to denote the output vector o obtained from network N, given input
vector i. In this setting, learning is the process of changing the weights initially defined by P, in order to
adapt N to new examples given in the form of input vectors and their corresponding output vectors. For
example, from Example 2, if a new training example stated that, as a matter of fact, A should be false
when B is true, C is true, D is false, E is false and F is false, the weights of A" would have to be changed

in order to revise the rule B A C A =D — A, originally given in P. The interest on semi-linear (derivable)

13

activation functions is that an efficient gradient descent learning algorithm, such as Backpropagation, can be
applied directly onto networks that contain such neurons.

If the application at hand contains too many degrees of freedom and too few training examples, an induc-
tive learning algorithm may end up simply memorising the examples. This behaviour is known as overfitting.
The ultimate measure of success, therefore, should not be how well the inductive learner approximates the
training examples, but how well it accounts for yet unseen examples, i.e. how well it generalises to new
cases. In order to evaluate the generalisation performance of an inductive learning algorithm in a given
application, the set of examples is commonly partitioned into a training set and a test set. The training
set is used for learning a problem description, while the test set, which is not used for training, provides an
estimate of the description’s generalisation performance. This process of (randomly) partitioning the set of
training examples can be repeated many times to provide an statistically valid estimate [?].

After learning and evaluation is performed, the final task of C-IL?P is to perform knowledge extraction
from the trained neural network N’. Typically, while the original network N has a neat architecture, the
trained network is allowed to be fully-connected. For example, after learning, the network of Figure 4 would
have 21 different weights. Since we do not want to impose restrictions on the learning process itself, the
task of knowledge extraction becomes challenging, especially in the case of large networks. Rule extraction
from trained networks is an extensive research topic in its own right (see [2] for a comprehensive survey).
Intuitively, the extraction task is to find the relations between input and output concepts in a trained network,
in the sense that certain inputs cause a particular output to be activated. Neglecting many interesting details,
C-IL? P performs rule extraction by simply presenting the trained network A with different input sequences,
and generating rules according to the output sequence obtained. The core of C-IL°P’s rule extraction
algorithm is concerned with the selection of good candidate input sequences to be presented to N, so that

the network can be described by a correct and compact set of rules [7].

4 Evolving Specifications

In this section, we describe how abductive reasoning and inductive learning can be combined to, respectively,
analyse and revise specifications. We present an automated formal reasoning process that interleaves analysis

and revision phases, eventually stopping when no more violations of system properties are detected, thus

14

providing a revised specification that is consistent with such properties. In what follows, we describe the
combined abductive and inductive reasoning techniques in detail, and illustrate a run of the analysis-revision
cycle using the (intentionally corrupted) description of a simple electric circuit. Recall that we are concerned

with state transition based descriptions of deterministic systems.

4.1 Abducing Counter-examples

We combine in a single automated decision procedure the tasks of validating system descriptions with respect
to system properties and of generating appropriate diagnostic information whenever a property is violated.
This procedure uses abductive reasoning in refutation mode. This means that the problem of finding whether
a system description D satisfies a system property P (i.e. D | P) is translated into the equivalent problem
of showing that it is not possible to find a set A of state transitions that is consistent with D and that,
together with D, entails the negation of P. In logic terms, as discussed in Section 2, our abductive procedure
shows that D - P by failing to find a set A of abducibles, consistent with D, such that D UA + =P, If,
on the other hand, the abductive procedure finds such a set A of incorrect state transitions, then A acts
as a set of counter-examples to the validity of P. These counter-examples describe particular (system or
environmental) events occurring in particular contexts (classes of system’s current states). In practice, this
is done more efficiently by applying abduction on a ground system description D, and by considering each
property P as a number of integrity constraints of the form c¢; A ca A ... A ¢, — L on an arbitrary current
state.

To illustrate the use of abduction for analysis, we provide a simple example. Consider an electric circuit
consisting of a single light bulb and two switches (SwitchA and SwitchB), all connected in series. Let us
assume that a partial (possibly incorrect) description D of our electric circuit includes the following rules
r1 to r4, formalised using propositional logic programming [26] and the prime notation often used in formal
specifications, where unprimed conditions ¢ denote that c is true at the current state, and primed conditions
¢ denote that ¢ is true at the next state.

—SwitchA-On A —Light-On A FlickA — Light-On’ (rq)
—SwitchB-On A —Light-On A FlickB — Light-On’ (r2)
—SwitchA-On A FlickA — SwitchA-On’ (rs)

—SwitchB-On A FlickB — SwitchB-On’ (rq)

15

For example, rule 1 can be read as “if, in the current state, SwitchA is not on and the Light is not on
and the event FlickA happens then the Light will be on in the next state”. These rules could be thought of
as derived from the state transition diagrams of Figure 5, where X = {A, B} and FlickA and FlickB are the

only two possible events of the system.

Flick_X

—Light_On

—SwitchX_On

Flick_X

Flick_X

SwitchX_On

Flick_X

Figure 5: State transition diagrams for the light bulb example. X = {A, B}.

One of the system properties that we would like the above description D to satisfy (since the two switches

are supposed to be connected in series) is:

P = {Light-On — SwitchA-On A SwitchB-On}

Let us assume that, at the initial state, both SwitchA and SwitchB are not on. In order to check whether
D+ P, our abductive procedure assumes P to be true at an arbitrary current state and checks whether =P
is true at an arbitrary next state. Starting from —P, it applies backward reasoning from the current goal over
the rules (r; — r4), and makes use of the default assumption that each condition preserves its truth-value,

unless changed by the occurrence of some event. We refer to this as the no change assumption’.

"For example, the rule r5 : =SwitchA-On — —SwitchA-On’ would capture a no change assumption about the state of
SwitchA. Rule r5 would need to have lower priority than rule r3, since when —=SwitchA-On and FlickA are both true, we would
like to apply r3 and derive SwitchA-On’, instead of r5 to derive =SwitchA-On. Alternatively, rule r5 could be seen as a domain
property to be satisfied by the system description.

16

The negated property, instantiated at an arbitrary next state, is given by =P = ((—SwitchA-On’ Vv
—SwitchB-On’) A Light-On’), which can be re-written in disjunctive normal form as =P = —P; V =P,

where:

—P; = =SwitchA-On’ A Light-On’
—P, = =SwitchB-On’ A Light-On’

To prove —P, the abductive procedure checks whether —=P; or =P can be proved from the description
D. At this point, the procedure makes an arbitrary choice, say —P;, which is taken as an intermediate goal.
To prove =P, the procedure has to prove both =SwitchA-On’ and Light-On’. Consider the first condition.
Since no rule in the description D defines =SwitchA-On’, no backward reasoning step over the description
can be applied. The procedure may use, however, the no change assumption to conclude that a possible
explanation for not having SwitchA on at the next state is simply not to have it on at the current state and
not to have the event FlickA happening. At this point, the procedure constructs a first temporary set of
assumptions Ag = {=SwitchA-On, —FlickA}, and tries to prove, taking into account the set Ag, the second
condition of —P;, which is Light-On’. To prove Light-On’, reasoning backwards, we can use either rule r; or
ro. In the first case, the procedure generates, in its abductive phase, the additional temporary assumptions
—SwitchA-On, —Light-On and FlickA, and then checks whether these assumptions are consistency with Ag.
This consistency check clearly fails, since Ag includes —FlickA and the new assumptions include FlickA.
Thus, this first attempt to prove Light-On’ is rejected, and the abductive reasoning phase starts again, now
considering rule ro. In its second attempt, similar to that above, the procedure generates the new additional
assumptions Ay = {=SwitchB-On, —Light-On, FlickB}, which, this time round, are all consistent with the
assumptions in A and, therefore, accepted. As a result, A = AgUA, is a possible explanation for =P, since
A is a possible explanation for =SwitchA-On’, and A; is a possible explanation for Light-On’. Since all
conditions in —P; have been considered and =P = —P; V =P, the abductive procedure can stop. Otherwise,
it would repeat the above process for =P, and, in failing to find any explanation for its violation, it would
conclude that P is satisfied by D (according to Theorem 1).

A = Ap U A; contains a current system state and events that, according to the partial description D,
would lead the system into a new state in which =SwitchA-On and Light-On are satisfied, according to —P;
= {—=SwitchA-On’, Light-On’}. This is so because D UA - =P;. As a consequence, DUA F =P and D ¥ P.

In addition, according to Theorem 2, only two time points ¢; and ¢;11 need to be analysed when it comes

17

to finding counter-examples to the validity of P. We capture all the diagnostic information obtained from

abductive analysis in the set A = A U =Py, such that:

A = {-SwitchA On, —SwitchB_On, —Light On, —FlickA, FlickB,

—=SwitchA_On’, Light On’}

which states that both SwitchA and SwitchB are not on, and Light is also not on, and only the event FlickB
happens, taking the system into a new state where Light is on but SwitchA is not on, thus violating the system
property. In the general case, A = {A, =P}, where A is the first non-empty set of abducibles AgU...UA,,
found by the above abductive proof procedure as explanations for atoms Ao, ..., Am, "Ams1, ..., 74y, in =P

such that -P =-P;V..V-FV..V-Pand P, = Ao A ... ANAp A=A Ao A-A,.

4.2 Generating Training Examples

A crucial aspect of the analysis-revision cycle is how to use the diagnostic information A, identified by the
analysis phase, to generate system behaviours A’ that should, instead, be covered by the system description
(i.e. training examples). A, as a counter-example, informs us that some state transitions are not correct.
Considering that a state transition is defined by a current state, an event and a next state, A’ should include
information about alternative transitions, in which one or more of these three components has been changed.
For instance, we might want to assume that the current state needs to be changed, or else that the current
state and event should take the system into a different next state. Both modifications would be plausible.
Therefore, we need to decide (a) which changes to consider, and (b) which of the alternative values of such
changes to consider. In this paper, we address item (a) by only considering changes in the nezt state of a
diagnosed incorrect state transition. We address item (b) by arbitrarily selecting one of the alternative new
states that make A’ consistent with the property P.

In what follows, we use the term entry configuration to refer to the current state and the event of
a given state transition, and exit configuration to refer to the next state of the transition. The diagnostic
information A = {A, =P;}, generated by our abductive procedure, informs us that a given entry configuration

A should not produce a given exit configuration —P;. In the electric circuit example, A = {=SwitchA_On,

18

—SwitchB_On, —Light On, —FlickA, FlickB} should not produce —P; = {—=SwitchA-On’, Light-On’}. In

other words, {A, =P;} represents an incorrect state transition, as shown in Figure 6.

—Light_On
—=SwitchX_On

Flick_X

Figure 6: An incorrect state transition (counter-example) for the light bulb example. X = B.

A way of solving this problem is to make sure that entry configuration A produces an exit configuration
®, different from —P; (assuming, as before, that the system description is deterministic), such that ® is

consistent with P. The set {A, ®} would be one of our training examples (or correct state transition).

Definition 4 Let D be a (partial) system description and P a system property. Let A be an entry configu-
ration and —P; and ® two exit configurations. Let D UA F —P. The set A’ = {A, P} is called a training

example if and only if (i) there exists an atom o; in ® such that o; ¢ —~P;, and (ii) P U ® is consistent.

Returning to the electric circuit example, given —P;, we could flip =SwitchA-On’ to SwitchA-On’, ob-
taining {SwitchA-On’, Light-On’}, or we could flip Light-On’ to —Light-On’, obtaining {—-SwitchA-On’,
—Light-On’}. Now, if we assume that SwitchB-On’ is false, we obtain ®; = {SwitchA-On’, =SwitchB-On’,
Light-On'}, which is inconsistent with P. ®3 = {SwitchA-On’, SwitchB-On’, Light-On’}, however, is such
that {A, @5} is a training example, according to Definition 4. Similarly, ®3 = {-SwitchA-On’, SwitchB-On’,

—Light-On'} is such that {A, ®3} is a training example. Let us take A’ = {A, @3}, as shown in Figure 7.

A" = {=SwitchA On, —=SwitchB_On, —Light On, —FlickA, FlickB,

—SwitchA On’, SwitchB_On’, —Light On’}

Although there are 2¥ — 1 potential training examples to be checked for consistency, where k is the number

19

of atoms in the partial description D, in practice, we flip one atom at a time, as done above, and stop when

the first training example is derived.

—Light_On
SwitchB_On

Flick_B

—Light_On
—SwitchB_On

Flick_B

Figure 7: An alternative state transition (training example) for the light bulb example.

It is interesting noting that the generation of training examples from diagnostic information is based on
attempts to find alternative state transitions to an incorrect state transition. As a result, any alternative
will be at least as good as the current transition. Instead of concentrating efforts on how to choose the
best alternative, which is a highly domain dependent task, in the analysis-revision framework we simply
select one and iterate. The analysis-revision cycle is then expected to eliminate all incorrect transitions
eventually. This approach could also be appealing from a machine learning perspective, specially in data

starved domains.

4.3 Inducing a New Specification

So far, we have seen that a desirable property P of a system may be checked against a partial system
description D, abducing a number of counter-examples A whenever P is violated. This information can
then be used to generate a set A’ of state transitions that should be covered by the system description, if
property P is no longer to be violated. In terms of Machine Learning, the set A’ can be seen as the training
examples upon which a learning mechanism can be applied. By either defining new state transition rules or

appropriately revising existing ones, a new system description D’ is expected to cover all the transitions in

20

the set of training examples.

We are now in a position to induce a revised description D’ from A’ using D as background knowledge.
Recall that our ultimate goal is to find a description D’ such that D’ + P, in which case A’ would be
empty (indicating that the analysis-revision cycle could terminate). In this paper, we use the Connectionist
Inductive Learning and Logic Programming System (C-IL?P) [10, 7] to induce D’. C-IL°P is a hybrid
machine learning system that uses Backpropagation [18], the neural learning algorithm most successfully
applied in industry, as the underlying learning technique. As presented in Section 3, C-IL?P integrates
inductive learning from examples and background knowledge with logic programming, using three main
modules: knowledge insertion, revision and extraction. In what follows, we illustrate a run of C-IL°P using
the electric circuit example above. A discussion about the choice of C-IL?P, in comparison with other
machine learning techniques, is given in Section 5.2.

Module 1 of C-IL?P is responsible for translating rules r; — 74 of the (partial) description D into the
initial architecture of a neural network A. It does so by mapping each rule (r;) from the input layer to the
output layer of NV, through a hidden neuron N;. For example, rule 11 = =SwitchA On A —Light On A
Flick A — Light On’ is mapped into N by simply: (a) connecting input neurons representing the concepts
SwitchA On, Light On and Flick A to a hidden neuron Ny, (b) connecting hidden neuron N; to an output
neuron representing the concept Light On’, and (c) setting the weights of these connections in such a way
that the output neuron representing the concept Light On’ is activated (or ¢rue) if the input neurons
representing SwitchA On, Light On and Flick A are, respectively, deactivated (or false), deactivated
(false) and activated (true), thus reflecting the information provided by rule r;.

Figure 8 shows the neural network obtained from rules r; — r4. Note that output neuron Light’ must
also be activated, now through hidden neuron Ns, if input neurons B_-On and Light are deactivated and
input neuron FlickB is activated (corresponding to rule ro = =SwitchB_On A —Light On A Flick B —
Light On’). In this initial network, positive weights (indicated in Figure 8 by solid lines) are used to represent
positive concepts (such as Flick A in 1) and negative weights (indicated in Figure 8 by dotted lines) are
used to represent negative concepts (such as =SwitchA On and —Light On in r1). As discussed in Section
3, C-IL” P’s Translation Algorithm is responsible for defining these weights such that the network’s output
neurons perform an or of the concepts represented in the hidden neurons that are connected to them, and

the network’s hidden neurons perform an and of the concepts represented in the input neurons that are

21

connected to them. For example, from Figure 8, output neuron Light’ will be activated if and only if either
Ni or N, is activated. Hidden neuron N7 will be activated if and only if A_On and Light are deactivated
(see dotted lines) and FlickA is activated. Similarly, hidden neuron Ny will be activated if and only if B_-On
and Light are deactivated and FlickB is activated. In logic terms, Light’ will be true if and only if either
A-On and Light are false and FlickA is true (corresponding to rule r1), or B_-On and Light are false and
FlickB is true (corresponding to rule r3) [10].

Module 2 of C-IL? P is about adapting the weights of A/, which encodes a (possibly incorrect) background
knowledge, with training examples. Each training example is a pair containing an input sequence i and a
target output sequence t for N (see Figure 8). The network is fully-connected so that, in addition to changes
to the background knowledge, completely new rules can be learned. The input sequence i is presented to the
network and its corresponding output sequence o = N (i) is calculated. If such an output is different from the
target t, an error Ey that depends on the current set of weights W of the network, is calculated. Typically,
Ey = % > (t; —0;)?. Finally, in the case of Backpropagation, a gradient descent method is applied, guiding
iterative changes to W so that Ey is minimised [38]. In this process, the network’s output sequence o is
expected to approach the target sequence t. When this happens for all training examples, i.e. when Eyy is
close to zero, the learning process is concluded.

From Section 4.2, one of our training examples is A’ = {=SwitchA On, —=SwitchB_On, —Light On,
—FlickA, Flick B, =SwitchA _On’, SwitchB_On’, =Light On’}. As a result, given the network A/ of Figure
8 with input neurons [A-On, B_On, Light, FlickA, FlickB] and output neurons [Light’, A-On', B_.On'], in
this order, the pair i = [-1,—-1,—-1,-1,1], t = [-1,—1,1] is a training example for N/, where 1 is used to

indicate true and —1 is used to indicate false®.

Module 3 of C-IL°P is responsible for extracting the knowledge encoded in the trained network. It
uses a rule extraction algorithm to do so [7]. Rule extraction is commonly accepted as the way to provide
neural networks with explanation capability, by mapping each network into a set of rules. Some extraction
algorithms treat the network as a black box and try to capture the function computed by it, by querying the

network with certain input sequences and obtaining their corresponding output sequences. Other algorithms

8The choice of —1 instead of 0 to represent false will lead to faster convergence of the learning process in almost all cases.
The reason for this is that the update of a weight connected to an input variable will be zero when the corresponding variable
is zero in the training pattern [4].

22

Output Sequence

Input Sequence

Figure 8: The network A obtained from description D

decompose the network into subnetworks, and look at the set of weights to try and capture general rules
about the network, sometimes by pruning and clustering weights. Typically, methods that treat the network
as a black box produce high quality rules, but are less efficient than methods that decompose the network.
On the other hand, methods that decompose the network may produce low quality rules, for example, as
a result of pruning the network’s weights. In other words, there is a trade-off between the quality of the
extracted set of rules, measured in terms of correctness, readability, completeness, etc., and the complexity of
the rule extraction algorithm employed. C-IL?P deals with this trade-off by guaranteeing correctness of the
extraction algorithm, and by using information from the weights to reduce the number of input sequences
queried in average. It does so by defining a partial ordering on the set of input sequences that guides the
querying process. For example, in the network A of Figure 8, after example (i,t) has been trained, if one
queries input sequence i = [1,—1,—1,—1, 1], one obtains output sequence o = [1,1,1]. This is equivalent
to three logic programming rules (e;,e2 and ez, below), all having the same antecedent (given by i), and

consequents given by the output neurons activated by i, in this case Light’, A_.On’ and B_On' ?:

9In the general case, given input neurons [a1,a2,...,an] and output neurons [b1,ba, ...,bm], in this order, and an input
sequence i = [1,—1,...,—1] and its corresponding output sequence o = [1,—1,...,1], k rules (all with the same antecedent
a; A —az A ...\ —an) will be derived from (i, 0), where k is the number of output neurons activated by input sequence i (shown
as 1 in output sequence o). For example, a1 A —az A ... A =an — b1 is one such derived rule.

23

SwitchA On A =SwitchB_On A —Light On A —Flick A A Flick B — Light On’ (e1)
SwitchA On A =SwitchB_On A —Light On A —Flick A A Flick B — SwitchA_ On’ (e3)

SwitchA _On A =SwitchB_On A —Light On A =Flick A A Flick B — SwitchB_On’ (e3)

Now, as a matter of fact, input sequence i = [1,—1,—1,1,1], in which Flick A is true, produces output
sequence 0 = [1,—1,1] in the trained N. This is the kind of input sequence that normally would not need
to be queried in C-IL?P’s extraction algorithm, because the same information can be obtained more easily
by inspecting the weights of the trained network [7]. In the worst case, 2" input sequences would need to be
queried, where n is the number of the network’s input neurons. In practice, less than 10% of them are queried
in general, and the extraction algorithm can be halted if a given desired degree of accuracy is achieved in the
extracted rule set. Returning to the electric circuit example, C-IL?P extraction has produced the following

additional rules:

—SwitchA-On A —Light-On A FlickA — Light-On’ (e4)
SwitchA _On A =SwitchB_On A —Light On A Flick B — Light On’ (e;5)
—SwitchA-On A FlickA — SwitchA-On’ (es)

=SwitchB-On A FlickB — SwitchB-On’ (e7)

Note that e; subsumes e1, and e; subsumes e3. As a result, a simplified final set of extracted rules for
the trained N contains {es, ey, €5, €6, €7}. It is interesting noting that es is a specialisation of background
knowledge rule r5. Clearly, rule ro was under-specifying the system and, in fact, causing a property violation.
The suggestion of C-IL’P to the requirements engineer, as a result of learning A’, was to add to 75 the
condition that switch A also needs to be on for the light to come on once switch B is flicked to on. The
analogous change to rule e4 (in which SwitchB_On would be added to it) would require another run of the
analysis-revision cycle, with the derivation of a new training example to cater for it.

The revision of D into D' = {ea, €4, e5,€6,e7} guarantees that A is no longer an explanation for the
violation of the domain property P. It does not guarantee that P will not be violated by the new description
D’. This is why we regard the process of evolving specifications as cyclic, in which the specification is being
refined during each cycle, until the domain properties of the system are provably satisfied, in which case our

analysis phase will not produce any new training example.

24

5 Case Study

We have applied the analysis-revision cycle to evolve a specification of an automobile cruise control system
[24]. Different specifications of such a system have been presented in the literature [43]. In this case study,
we have considered a deterministic, partial state transition based specification, in which the system must
be in one of four possible states at any given time: off, inactive, cruise or override. Several environmental
and system variables are considered in the specification, such as the ignition switch, the cruise control lever,
and the automobile’s speed. Events in the environment cause changes in the values of domain and system
variables, and may cause the system to change its state, according to the values of the event conditions. For
example, when the system is in state inactive, if the ignition is on, the engine is running, and the brake is
off, the event of moving the cruise control lever to the activate position is supposed to take the system into
the state cruise. Figure 9(a) shows two such state transitions where the event of pressing the brake should
take the system from state cruise to state override, provided that the automobile is not going too fast; and
the event of moving the lever to activate should take the system from state override back to state cruise,
provided that the brake is not engaged.

One of the cruise control system’s safety properties states that “if the system is in state cruise then the
ignition switch should be on, the engine should be running and the brake should not be engaged”. This
property has been found to be violated. The partial state transition given in Figure 9(a) implicitly assumes
that, whenever the conditions of the events are not satisfied, the system will stay in its current state. As a
result, when the system is in state cruise and the brake is engaged, but the automobile is going too fast, the
system remains in state cruise, therefore violating the above safety property. Such an incorrect transition

is depicted in Figure 9(b) as the diagnostic information A, derived by abduction.

The process of deriving training examples A’ from A can be seen as simply changing the state to which
an incorrect transition points to. In this case study, as we will see in the sequel, the incorrect transition A
is turned into transition A’; as illustrated in Figure 9(c), so that when the system is in state cruise and the
brake is engaged, but the automobile is going toofast, the system moves into state override. Finally, we
need to accommodate A’ consistently into the original specification. In this case study, this has been done
by changing the conditions of the original state transition from cruise to override, as illustrated in Figure

9(d) (compare with Figure 9(a)).

25

(a) —toofast A happens(brake) (d) happens(brake)

Override Override
—brake A happens(activate) -brake A happens(activate)
(b) —toofast A happens(brake) (C) —toofast A happens(brake)

A" = toofast A happens(brake)

Override Override

A = toofast A happens(brake) —-brake A happens(activate) -brake A happens(activate)

Figure 9: Analysis and revision of state transitions

In what follows, we will explain in detail how the analysis-revision cycle has been used to achieve the
above. We use a logic programming implementation of the original cruise control system formalisation given

in [40]. Each state transition is formalised as follows:

/
SeNepr N Ney, Ne— s,

where s. and s, represent, respectively, the current and next state of the transition, e denotes the event
transition, and ¢y, ..., ¢, denote the conditions of the event (n = 0 if the event transition does not have any
condition). The rule defines the transition of the system from a current state to a (different) next state,
whenever an event happens and the conditions of the event are true. Each rule has a counterpart rule of the
form s. Ac1 A ... Acy A e — —sl to express that, when the transition occurs, its current state is no longer
true. In addition, each event has rules to express the effect on its associated variable. For example, for an
event brake, the rule —brake A happens(brake) — brake’ must be introduced. Domain properties have also
been considered, as for example, the property that, at any given time, the cruise control lever has to be in
exactly one of the three positions: activate, deactivate or resume. Rules 1 to r4 below are part of the logic

programming representation of the case study!?:

0Rule r3 defines fully the state transition from cruise to override, which is only partially illustrated in the diagrams of
Figure 9.

26

override A —brake A —activate A happens(activate) — cruise’ (r1)
—brake A happens(brake) — brake’ (r2)
cruise A ignited A running A —toofast A —brake A happens(brake) — override’ (r3)
—activate A happens(activate) — activate’ (r4)

The set of properties that the system description has to verify at any point in time is given by P; to Ps

below, where “|” means “exclusive or” and the logical operator “—” means “if and only if”.
off | inactive | cruise | override (Py)
off «» — ignited (P2)

inactive — ignited A (- running V —activated) (Ps)
cruise — ignited A running A —brake (Py)
override — ignited A running (Ps)

In the logic programming representation, each of the properties (P, — P5) is converted into a set of
integrity constraints (ic). The rationale behind the conversion is that if, for example, a | b | ¢ were a
desirable property of the system, then having any two of a, b and ¢ would not be desirable, and should lead
to an inconsistency. Of course, having none of a, b and ¢ should also lead to an inconsistency (indicated
by L). Similarly, if @ — b were a desirable property, having a and —b should imply L, if a — bV ¢ were a
desirable property, having a, —=b and —¢ should imply 1, and so on. For example, the conversion of property
P, gives three integrity constraints: icy 1 = {cruise A —ignited — 1}, icg o = {cruise A —running — L} and
ica.3 = {cruise A brake —_L}. The conversion of Ps derives two integrity constraints: ics.1 = {override A

—ignited — 1} and ics.2 = {override A ~running —_L}.

5.1 A Run of the Analysis-Revision Cycle

Let us now illustrate a run of the analysis-revision cycle, when checking whether property P is verified.
As discussed in Section 4.1, the abductive phase tries to prove the negation of P, at an arbitrary next
state of the system. Taking, for instance, icy 3, it tries to prove cruise’ A brake’. To prove brake’, reasoning
backwards, it considers rule 3 above, and starts constructing a temporary set of assumptions Ay = {—brake,
happens(brake)}. Tt then tries to prove cruise’. One possibility is to use the no change assumption, i.e.

assume cruise to be true as a current state and prove that transitions leading to any other state do not

27

happen. In this case, rule r3 (taking the system into override) must not be applied. To prove this, the
procedure has to fail proving, consistently with Ag, at least one of the conditions of r3. Both ignited
and running must be true; otherwise integrity constraints ics1 and icy4.o, respectively, would be violated.
However, —toofast can be proved to fail, by simply considering (or abducing) the assumption toofast. At

this point, the abductive procedure stops, generating a counter-example!!:

A = {cruise, ignited, running, toofast, —brake, happens(brake),

cruise’, brake’}

A number of training examples (A’) can be obtained from A. If, for instance, we make cruise’ false, we
know from property P; that one of override’, inactive’ or of ' has to be made true. If we choose override’,
from property Ps, we must also have ignited and running. If we choose inactive’, from property Ps, we
must have either ignited and —running or ignited and —activated. Finally, if we choose of f’, from property

Py, we must have —ignited’ as well. Therefore, there are four possible new training examples:

AL = {cruise,ignited, running, toofast,~brake,happens(brake),

override’, ignited’, running’, brake’}

5 = {cruise, ignited, running, toofast, —brake, happens(brake),

inactive’, ignited’, ~running’, brake'}

& = {cruise, ignited, running, toofast, ~brake, happens(brake),

inactive’, ignited’, —activated’, brake'}

Al = {cruise, ignited, running, toofast, ~brake, happens(brake),
off!, —ignited’, brake'}
At this point, we could recourse to the knowledge of a domain expert to choose between Af,..., Al.
Alternatively, we could make use of some sophisticated heuristics. For example, we could try to quantify the
potential for future property violation of each training example. For instance, although neither A} nor A}

is inconsistent with P, ..., Ps, in the case of A}, none of the constraints regarding override’ (see property

Ps) could possibly be violated, since A} states that both ignited’ and running’ must be true. On the other

Note that other counter-examples could be generated by running the abductive procedure again and applying backward
reasoning on other rules of the system description.

28

hand, one of the constraints regarding inactive’ (see property Ps) could be violated by A) because, although
running’ is true in A}, activated’ is undefined. If we assumed, thus, that activated’ were true in Al then
inactive — (—running V —activate) would be violated. In this case, we would say that A} is preferred over
% according to their potential for property violation. The definition of a metric to guide the above choice
of mutually exclusive training examples is work in progress. In this paper, as discussed in Section 4.2, we
simply select the first alternative state transition obtained that is consistent with the system properties.
Taking A as our training example A’ (Figure 9(c)), we are now in a position to apply C-IL°P in order
to (1) translate the system description into the initial architecture of a neural network N, (2) train N with

examples, and (3) extract a revised description from the trained network.

A" = {cruise, ignited, running, toofast, ~brake, happens(brake),

override , ignited , running , brake'}

Figure 10 shows a small part of the network, in which rules ro and r3, as well as the no change assumption
about cruise, are represented. The no change assumption is encoded in the network with the use of rges
rules and a priority relation [6], as follows. In the case of cruise, the no change assumption states that,
by definition, 74e¢ : cruise — cruise’, unless any other rule r; in the system description D supersedes rgcf.
Rule r3, for example, supersedes 740 because, whenever 73 is applicable (i.e. whenever the antecedent of
r3 holds), the conclusion of 7q.; must not hold. In this case, we say that rs has priority over 74, and
write r3 > r4er. Priority relations can be implemented in a neural network with the use of negative weights
connecting hidden neurons to output neurons (see [6]). rs > 74cs, for example, is implemented in the network
of Figure 10 by connecting hidden neuron r3 to output neuron cruise’, and making sure that whenever r3 is
activated, cruise’ is deactivated (i.e. the conclusion of rule 4.5 is blocked) by means of a negative weight
(represented by a dotted line in the figure). Summarising, a no change assumption can be represented in a
neural network by adding a rule of the form a — a’ with lower priority than that of the rules already in D.
In this case, in Af, the value of toofast’ would be true because toofast is true; in A, the value of running’
would be true because running is true, and so on.

The network N was trained on A’ using Backpropagation. After that, C-IL?P rule extraction algorithm

29

cruise’ override brake’

\ ~

\ NN
\ S0

cruise ignited running toofast brake happens
(brake)

Figure 10: Part of the network for the cruise control system

produced the following rule:

rh = cruise A ignited A running A —brake A happens(brake) — override’

The rule extraction indicates that C-IL? P has combined the background rule 73 and the training example
A’ to determine that the truth-value of toofast should be irrelevant to the conclusion of override’. It has
done so by changing the background rule r3 into the above new rule 74, as anticipated in the state transition

of Figure 9(d).

5.2 Tool Support and Discussion

The analysis phase of our analysis-revision cycle uses an abductive logic programming proof procedure. The
tool was implemented in Prolog and uses (i) a logic program conversion of the given specification, and (i)
the abductive logic program module described in [23]. The revision phase of our analysis-revision cycle uses
the modules of knowledge insertion, revision and extraction of the C-IL° P system, which was implemented
in C.

The choice of the most appropriate learning technique for the task of revision is an important one.
Firstly, it is desirable that a push-button technique is used, i.e. a technique that does not require the user

to have specific knowledge about inductive learning. In addition, in comparison with most problems of

30

machine learning, here we are faced with a limited number of training examples, which may compromise
the accuracy of the results of the learning process. On the other hand, we have background knowledge,
i.e. some domain specific, prior information D, which may be useful to compensate the reduced number
of training examples. Moreover, such background knowledge may be incorrect, since we work with partial
specifications in an analysis-revision evolving cycle. As a result, traditional techniques of inductive learning
that perform training from examples only, do not seem to be adequate. This includes Case Based Reasoning
[31] and most models of Artificial Neural Networks [18]. We are left with (i) Inductive Logic Programming
(ILP) techniques, (i7) Hybrid (neural and symbolic) Systems; and (ii7) Explanation Based Learning (EBL)
algorithms (see [31]). Among these, hybrid systems seem to be more appropriate as far as dealing with
incorrect background knowledge and theory refinement is concerned [10, 46, 45]. Hybrid systems are not
normally push-button techniques though, as they typically use traditional neural learning algorithms (such
as Backpropagation), which require the adaptation of a learning rate via trial and error. On the other
hand, explanation based learning algorithms seem to require less interaction with the user [32], but are not
appropriate in the presence of incorrect domain knowledge [31], as they rely heavily on the correctness of the
background knowledge in order to generalise rules from fewer training examples. Finally, while the strength
of ILP lies in the ability to induce relations due to the use of a more expressive language, most ILP systems
present significant limitations in terms of efficiency due to the extremely large space of possible hypotheses
that needs to be searched. In the presence of incorrect background knowledge, such a problem may become
intractable.

The above case study has indicated that the choice of training examples is important, in that the better the
choice, the faster the convergence of the system to a specification that does not violate any system property.
Although the generation of training examples is guided by A, the efficiency of our analysis-revision cycle
could be improved with the choice of good training examples. This may be domain dependent and, indeed,
require the help of an expert. Still, we have seen that heuristics could be applied to decide between mutually
exclusive training examples. Thus, an important extension of this work, currently being investigated, is the

use of different heuristics to help in the generation of good training examples.

31

6 Related Work

The approach presented in this paper integrates two formal techniques for analysing and revising requirements
specifications. Most of the techniques presented in the literature address either one of these two activities
independently, but not both.

Several formal techniques have been developed for analysing requirements specifications, such as those
based on theorem proving or model checking, and declarative logic-based approaches. Techniques based on
theorem proving [36] might not be decidable, thus not always terminating. On the other hand, techniques
based on model checking facilitate automated analysis and generation of counter-examples, when errors
are detected [3, 19]. They provide as counter-examples long traces of system executions. In contrast, our
abductive procedure generates counter-examples as individual state transitions. This facilitates the mapping
of counter-examples into training examples to be handled by inductive learning.

Among declarative logic-based approaches for analysis, the work of van Lamsweerde et. al. [48] is
particularly relevant. It describes a goal-driven approach to requirements engineering, in which obstacles
are part of a specification that leads to a negated goal. This approach is similar to our abductive analysis
technique, in that its notion of goal is similar to our notion of system property, and its notion of obstacles
is analogous to our notion of abducibles. However, our abductive decision procedure differs from the goal-
regression technique used in [48], in that it uses grounded goals to make the procedure decidable, and integrity
constraints to validate the properties efficiently [40]. Other examples of the application of abduction to
software engineering tasks can be found in [29].

A variety of (logic-based) formal techniques have also been developed for revising requirements speci-
fications in order to resolve inconsistencies. Our revision process can be seen as one of these techniques,
since a violation of a property is an example of inconsistency between the system description and the system
property. Belief revision for default theories has been suggested as a formal approach for resolving incon-
sistencies arising during the evolution of requirements specifications [50]. The inconsistency detection is
implicit in the definition of the belief revision operator, and the process is a single-shot revision. In contrast,
our approach provides an explicit analysis of inconsistency via the use of abductive reasoning, and a cyclic,
interactive process of revision. Most of the existing techniques for revising requirements specifications (see

also [42]) perform revision by adding or deleting existing and derivable requirements. In contrast, with the

32

use of inductive learning, the revision process presented in this paper enables the evolution of specifications
through the acquisition of genuinely new requirements from scenarios generalisation.

Of the inductive learning-based approaches for revision, the work of van Lamsweerde and Willemet [49]
is particularly relevant. It describes the use of an inductive based goal inference procedure to elicit new
requirements from sets of operational scenarios. The approach uses symbolic inductive learning with no
background knowledge. The use of learning is aimed at the elicitation of new requirements from scenarios
provided by the user. Differently, in this paper, the focus of the learning technique is on the generation of
new requirements in order to resolve detected errors in the specification. Training examples are generated
by the analysis phases, and the learning process performs a revision of the incorrect partial specification.
Learning techniques have also been used in other software engineering applications, such as the inference of

process models from process traces [15], and the validation of an air traffic control requirements model [27].

7 Conclusion and Future Work

In this work, we have seen that the process of systematically changing requirements specifications can be
supported by a cycle composed of an analysis phase and a revision phase, in which abductive and inductive
reasoning are applied, respectively. Our approach provides both theoretical foundations and techniques for
the development of logic-based methods of requirements specifications. It also contributes to the management
of inconsistency in requirements specifications [35, 21, 17]. Following the idea that inconsistency should be
seen as a “trigger for actions” [13], this paper shows that learning could be one of these actions [11].

An extension of this work would be to investigate the use of other techniques of machine learning for
revising requirements specifications. These include extensions of Inductive Logic Programming, Knowledge-
based Artificial Neural Networks (KBANN) [46] and FEzxplanation-based Neural Networks EBNN [44] (and
their hybrids, e.g., [33]). Experiments on a number of real-world problems would allow us to perform more
detailed technical evaluation of these techniques, and draw general conclusions on when, why, and for which
type of requirements specifications, one technique would be more appropriate than others.

The extension of our analysis-revision cycle to elicit new requirements from operational scenarios would
be another interesting direction to pursue, as scenarios can be seen as examples of how system components,

the environment and the users should interact to provide system level functionality [47].

33

Although abduction and induction can be naturally integrated in the analysis-revision cycle, the use of
Backpropagation for inductive learning does not necessarily comply with the concept of minimal change
(very common in the area of Belief Revision [1]). In other words, when changing a description D into D’ to
accommodate a new property P, Backpropagation does not necessarily change as few rules as possible in D.
Depending on the initial description D, the use of minimal change could clearly provide a faster convergence
of the analysis-revision cycle to a desirable specification D’. A new incremental learning algorithm for
neural networks that satisfy the concept of minimal change is presented in [8] (Chapter 7). An empirical
comparison between such an algorithm and Backpropagation in what regards the rate of convergence of the
analysis-revision cycle would he highly desirable.

Finally, during analysis, the abductive derivation of diagnostic information assumes that system proper-
ties are correct. However, while specifications evolve, system properties themselves could need to be revised.
If, for example, the diagnostic information is not validated by stakeholders as a counter-example to a prop-
erty, this could indicate that the property itself is wrong and, therefore, that the analysis-revision cycle
needs to re-start using a new set of system properties. Therefore, another extension of this work would be to

investigate the use of the analysis-revision cycle in the presence of potentially incorrect system properties.

References

[1] C. A. Alchourron, P. Gardenfors, and D. Makinson. On the logic of theory change: partial meet

contraction and revision functions. The Journal of Symbolic Logic, 50:510-530, 1985.

[2] R. Andrews, J. Diederich, and A. B. Tickle. A survey and critique of techniques for extracting rules

from trained artificial neural networks. Knowledge-based Systems, 8(6):373-389, 1995.

[3] R.Bharadwaj and C. Heitmeyer. Model checking complete requirements specifications using abstraction.

Technical Report NRL-7999, Naval Research Lab, 1997.

[4] N. K. Bose and P. Liang. Neural Networks Fundamentals with Graphs, Algorithms, and Applications.

McGraw-Hill, 1996.

[5] 1. Cloete and J. M. Zurada, editors. Knowledge-Based Neurocomputing. The MIT Press, 2000.

34

[6]

[10]

[13]

[14]

A. S. d’Avila Garcez, K. Broda, and D. M. Gabbay. Metalevel priorities and neural networks. In

P. Frasconi, M. Gori, F. Kurfess, and A. Sperduti, editors, ECAI2000, Workshop on the Foundations

of Connectionist-Symbolic Integration, pages 38—49, Berlin, Germany, 2000.

A. S. d’Avila Garcez, K. Broda, and D. M. Gabbay. Symbolic knowledge extraction from trained neural

networks: A sound approach. Artificial Intelligence, 125:155-207, 2001.

A. S. d’Avila Garcez, K. Broda, and D. M. Gabbay. Neural-Symbolic Learning Systems: Foundations

and Applications. Perspectives in Neural Computing. Springer-Verlag, 2002.

A. S. d’Avila Garcez, A. Russo, B. Nuseibeh, and J. Kramer. An analysis-revision cycle to evolve
requirements specifications. In Proceedings of the 16th IEEE International Conference on Automated

Software Engineering ASE01, pages 354-358, 2001.

A. S. d’Avila Garcez and G. Zaverucha. The connectionist inductive learning and logic programming
system. Applied Intelligence Journal, Special Issue on Neural Networks and Structured Knowledge,

11(1):59-77, 1999.

S. Easterbrook. Learning from inconsistency. In Fighth International Workshop on Software Specification

and Design, pages 136-140, Paderborn, Germany, 1996.

P. A. Flach and A. C. Kakas. On the relation between abduction and inductive learning. In D. M.
Gabbay and R. Kruse, editors, Handbook of Defeasible Reasoning and Uncertainty Management Systems,

Volume 4: Abductive Reasoning and Learning, pages 1-33. 2000.

D. M. Gabbay and A. Hunter. Making inconsistency respectable: a logical framework for inconsistency
in reasoning. part 1: a position paper. In Fundamentals of AI Research, pages 19-32. Springer-Verlag,

1991.

D. Gamberger and N. Lavrac. Conditions for Occam’s Razor applicability and noise elimination. In
M. Someren and G. Widmer, editors, Proceedings of the FEuropean Conference on Machine Learning,

pages 108-123, Prague, Czech Republic, 1997.

P. K. Garg and S. Bhansali. Process programming by hind-sight. In Proceeding ICSE1}, pages 280293,

Melbourne, 1992.

35

[16]

[17]

[20]

[23]

[25]

[28]

M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In Proceedings of the

fifth Logic Programming Symposium, pages 1070-1080, 1988.

C. Ghezzi and B. Nuseibeh, editors. Special Issue of IEEE Transactions on Software Engineering on

Managing Inconsistency in Software Development. November 1999.
S. Haykin. Neural Networks: A Comprehensive Foundation. Prentice Hall, 1999.

C. L. Heitmeyer et al. Using abstraction and model checking to detect safety violations in requirements

specifications. IEEE Transaction on Software Engineering, 24(11):927-947, 1998.

H. Hirsh and M. Noordewier. Using background knowledge to improve inductive learning: a case study

in molecular biology. IEEE FExpert, 10:3-6, 1994.

A. Hunter and B. Nuseibeh. Managing inconsistent specifications: Reasoning, analysis and action.

Transactions on Software Engineering and Methodology, ACM Press, pages 335-367, 1998.

A. C. Kakas, R. A. Kowalski, and F. Toni. The role of abduction in logic programming. In D. M.
Gabbay, C.J. Hogger, and J. A. Robinson, editors, Handbook of Logic in Artificial Intelligence and

Logic Programming, volume 5, pages 235-324. Oxford Science Publications, 1994.

A. C. Kakas and A. Michael. Integrating abductive and constraint logic programming. In Proceedings

of the 12th International Conference on Logic Programming, pages 399413, Tokyo, Japan, 1995.

J. Kirby. Example NRL/SCR software requirements for an automobile cruise control and monitoring

system. Technical Report TR-87-07, Wang Institute of Graduate studies, 1987.

N. Lavrac and S. Dzeroski. Inductive Logic Programming: Techniques and Applications. Ellis Horwood

Series in Artificial Intelligence, 1994.
J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1987.

T. L. McCluskey and M. M. West. The automated refinement of a requiremens domain theory. Technical

report, School of Computing and Mathematics, University of Huddersfield, Huddersfield, UK, 1999.

T. L. McCluskey and M. M. West. The automated refinement of a requiremens domain theory. Journal of
Automated Software Engineering, Special Issue on Inductive Programming, P. Flener and D. Partridge,

editors, 8(2):195-218, 2001.

36

[29]

[30]

[33]

[34]

[35]

[36]

[39]

T. Menzies. Applications of abduction: Knowledge level modeling. International Journal of Human

Computer Studies, 45:305-355, 1996.

R. S. Michalski. Learning strategies and automated knowledge acquisition. In Computational Models

of Learning, Symbolic Computation. Springer-Verlag, 1987.

T. M. Mitchell. Machine Learning. McGraw-Hill, 1997.

T. M. Mitchell and S. B. Thrun. Explanation-based learning: A comparison of symbolic and neural

network approaches. In Tenth International Conference on Machine Learning, Amherst, MA, 1993.

R. J. Mooney and J. M. Zelle. Integrating ILP and EBL. In SIGART Bulletin, volume 5, pages 12-21.

1994.

S. Muggleton and L. Raedt. Inductive logic programming: theory and methods. Journal of Logic

Programming, 19:629-679, 1994.

B. Nuseibeh, S. Easterbrook, and A. Russo. Making inconsistency respectable in software development.

Journal of Systems and Software, 56(11):171-180, 2001.

S. Owre et al. Formal verification for fault-tolerant architecture: Prolegomena to the design of pvs.

IEEE Transactions on Sofwtare Engineering, 21(2):107-125, 1995.

J. R. Quinlan. Induction of decision trees. Machine Learning, 1:81-106, 1986.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representations by error propa-
gation. In D. E. Rumelhart and J. L. McClelland, editors, Parallel Distributed Processing: Explorations

in the Microstructure of Cognition, volume 1, pages 318-362. MIT Press, 1986.

A. Russo, R. Miller, B. Nuseibeh, and J. Kramer. An abductive approach for handling inconsistencies
in SCR specifications. In Proceedings of the 8rd ICSE Workshop on Intelligent Software Engineering,

Limerick, 2000.

A. Russo, R. Miller, B. Nuseibeh, and J. Kramer. An abductive approach for analysing event-based
requirements specifications. Technical Report TR2001/7, Department of Computing, Imperial College,

2001.

37

[41]

[43]

[44]

[46]

[48]

A. Russo, R. Miller, B. Nuseibeh, and J. Kramer. An abductive approach for analysing event-based
requirements specifications. In Proceedings of 18th International Conference on Logic Programming

ICLP02, pages 22-37, Copenhagen, Denmark, 2002.

K. Satoh. Computing minimal revised logical specification by abduction. In Proceedings of International

Workshop on the Principles of Software Fvolution, pages 177-182, 1998.

M. Shaw. Comparing architectural design styles. IEEE Software, 12(6):27-41, 1995.

S. Thrun. Explanation-Based Neural Network Learning: A Lifelong Learning Approach. Kluwer Acad-

emic Publishes, Boston, MA, 1996.

S. B. Thrun, J. Bala, E. Bloedorn, I. Bratko, B. Cestnik, J. Cheng, K. De Jong, S. Dzeroski, S. E.
Fahlman, D. Fisher, R. Haumann, K. Kaufman, S. Keller, I. Kononenko, J. Kreuziger, R. S. Michalski,
T. Mitchell, P. Pachowicz, Y. Reich, H. Vafaie, K. Van de Welde, W. Wenzel, J. Wnek, and J. Zhang.
The MONK’s problems: A performance comparison of different learning algorithms. Technical Report

CMU-CS-91-197, Carnegie Mellon University, 1991.

G. G. Towell and J. W. Shavlik. Knowledge-based artificial neural networks. Artificial Intelligence,

70(1):119-165, 1994.

S. Uchitel and J. Kramer. A workbench for synthesising behaviour models from scenarios. In Proceeding

of IEEFE International Conference on Software Engineering ICSEOQ1.

A. van Lamsweerde, R. Darimont, and E. Letier. Managing conflicts in goal-driven requirement engi-

neering. IEEE Transaction on Software Engineering, 24(11):908-926, November 1998.

A. van Lamsweerde and L. Willemet. Inferring declarative requirements specifications from opera-
tional scenarios. IEEFE Transactions on Software Engineering, Special Issue on Scenario Management,

24(12):1089-1114, December 1998.

D. Zowghi and R. Offen. A logical framework for modeling and reasoning about the evolution of
requirements. In Proceedings of the Third IEEFE International Symposium on Requirements Engineering,

pages 247-259, 1997.

38

Figure 1: The cycle of requirements specification evolution

Figure 2: Combining abductive reasoning and learning

Figure 3: The C-IL?P System

Figure 4: Sketch of a neural network for a logic program

Figure 5: State transition diagrams for the light bulb example. X = {A, B}

Figure 6: An incorrect state transition (counter-example) for the light bulb example. X = B
Figure 7: An alternative state transition (training example) for the light bulb example
Figure 8: The network A obtained from description D

Figure 9: Analysis and revision of state transitions

Figure 10: Part of the network for the cruise control system

39

Spec

/

Scenario s

Diagnosis

Ana|y5is Revision

Spec'

40

Description D

Examples

Abductive Inductive

Reasoning

/

Description D
Property P

Learning

Description D'

41

Revision

Extraction

e —————————— e ——

Neural
Network

(S A

[P

Insertion
Background
Knowledge

IIIIIIIIIIII

42

Interpretations

43

Flick_X

—Light_On

—SwitchX_On

Flick_X

Flick_X

Flick_X

44

Flick_X

—Light_On
—SwitchX_On

Flick_X

45

—|Light_0n
SwitchB_On

Flick_B

Flick_B

—Light_On
—SwitchB_On

Flick_B

46

Output Sequence

:

Input Sequence

47

(@)

(b)

A = toofast A happens(brake)

—toofast A happens(brake)

—brake A happens(activate)

J

—~toofast A happens(brake)

—brake A happens(activate)

Override

Override

48

(d)

(©)

happens(brake)

—brake A happens(activate)

I

—toofast A happens(brake)

A’ = toofast A happens(brake)

—brake A happens(activate)

Override

cruise’ override brake’

\ SN
\ S

cruise ignited running toofast brake happens
(brake)

49

