
http://wrap.warwick.ac.uk

Original citation:
Lim Choi Keung, H. N, Dyson, J. R. D., Jarvis, Stephen A., 1970- and Nudd, G. R..
(2003) Performance evaluation of a grid resource monitoring and discovery service. IEE
Proceedings - Software, Volume 150 (Number 4). pp. 243-251. ISSN 1462-5970

Permanent WRAP url:
http://wrap.warwick.ac.uk/61289

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

Publisher’s statement:
"This paper is a postprint of a paper submitted to and accepted for publication in IEE
Proceedings – Software and is subject to Institution of Engineering and Technology
Copyright. The copy of record is available at IET Digital Library"

A note on versions:
The version presented here may differ from the published version or, version of record, if
you wish to cite this item you are advised to consult the publisher’s version. Please see
the ‘permanent WRAP url’ above for details on accessing the published version and note
that access may require a subscription.

For more information, please contact the WRAP Team at: publications@warwick.ac.uk

http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/61289
mailto:publications@warwick.ac.uk

Performance Evaluation of a Resource Monitoring and

Discovery Service for the Grid

Hélène N. Lim Choi Keung, Justin R.D. Dyson, Stephen A. Jarvis, Graham R. Nudd

High Performance Systems Group, Department of Computer Science,

University of Warwick, Coventry, CV4 7AL, UK

hlck@dcs.warwick.ac.uk

July 7, 2003

Abstract

The Grid Information Service (GIS) is one of the Grid Common Services which make up

the basic functions belonging to Grids. This service offers a resource discovery mechanism,

of which an implementation is provided by the Monitoring and Discovery Service (MDS-

2) which is part of the Globus Toolkit r©. Grid applications are typically the users of this

resource discovery mechanism; knowledge is thus obtained about the existence of appropriate

resources on which to execute jobs. Since these Grid applications are likely to be influenced by

dynamic middleware, it is crucial that they experience a reliable performance for the proper

utilisation of resources and for accountability purposes. Consequently, the approach taken in

this paper is to investigate and evaluate a level of performance obtainable from the MDS. A

better understanding of the performance of the GRIS (Grid Resource Information Service)

and subsequently the GIIS (Grid Index Information Service), leads to a more standard way

of formalising the performance of a Grid Information Service. This is achieved by defining

a number of performance metrics which are analysed against a set of different information

gathering methods and GRIS back-end implementations.

1

1 Introduction

The Grid [1] provides a platform where the scientific and engineering communities can share data

and computation across multiple administrative domains. There are several key services that must

be offered by Grid middleware; one of them is the Grid Information Service.

A Grid Information Service (GIS) is a Grid middleware component which maintains information

about hardware, software, services and people participating in a virtual organisation (VO) [2].

Upon request from Grid entities, the GIS can launch resource discovery and lookup [3]. Several

solutions exist which implement such information services: Globus, Legion, Condor and Ninf [4, 5,

6, 7], amongst others. This paper investigates the Monitoring and Discovery Service (MDS-2) [8],

the Grid Information Service provided by the Globus Toolkit.

Performance is likely to be an important issue for Grid applications running on top of middle-

ware services. For example, the overall performance of an application will be partly dictated by the

performance incurred using a resource discovery service. This performance issue is further com-

plicated by the resources being heterogeneous and by the Grid fabric having variable bandwidth

and latencies. Such a dynamic and heterogeneous environment could result in unpredictable and

unreliable outcome for applications. As a result, this situation hinders the forecasted scheduling

of resources and for the accountability of applications.

Previous work has studied the performance of the MDS when authenticated queries are is-

sued and when anonymous ones are used [9]. Our contribution also complements a recent pa-

per [10] where the difference in scalability obtained from three monitoring and information sys-

tems: MDS2.1, R-GMA and Condor’s Hawkeye, is examined. Scalability results are obtained and

analysed when various system components are subjected to increasing user loads. Our work is

different from [10] in that we focus on the difference or similarity in querying an aggregate in-

formation server and an information server for the same set of information, based on the varying

information gathering methods at the source. Moreover, the contribution which we make addresses

comparable issues as in [10]; for instance, the effect network behaviour has on the performance

observed, especially, the load of the information server. All these performance studies are crucial in

proposing recommendations for the deployment of the monitoring and information systems under

consideration. The contribution of this paper is therefore an analysis of the performance obtain-

2

able from the GRIS and the effect on Grid applications. More specifically, this paper studies the

way in which data is provided by information providers to the GRIS. The latter advertises Grid

resource information about a node [11] from multiple information sources. Depending on whether

caching is enabled in the GRIS, it is possible that all the information providers are executed for a

query. Alternatively, a periodic information update mechanism can be implemented. These various

methods affect the query performance in different ways; therefore in this paper, a GRIS will be

repeatedly queried and the performance obtained will be analysed.

In the rest of this paper, a brief overview of the MDS is presented in Section 2, with an emphasis

on the evaluation methods under study. Section 3 details the characterisation of the performance

of the MDS and Section 4 explains the experimental environment which had been set up. The

experiments and their results are shown in Section 5 and Section 6 analyses the overall results.

The paper concludes with future work in Section 7.

2 The Monitoring and Discovery Service (MDS)

The functionality of the Globus MDS is encapsulated in two components: the Grid Resource

Information Service (GRIS) and the Grid Index Information Service (GIIS) [8]. The GRIS runs

on Grid resources and is an information provider framework for specific information sources. On

the other hand, the GIIS is a user accessible directory server that accepts information from child

GIIS and GRIS instances and aggregates this information into a unified space. It also supports

searching for resources by characteristics.

There are a number of ways by which an information provider can supply information to a

GRIS. They are explained below.

2.1 Evaluation Methods

The definitions of the meanings of the different evaluation methods [12] are:

1. Lazy evaluation: Obtain freshly generated information on receiving a search request.

2. Eager evaluation: Obtain freshly generated information on receiving the first search request,

and cache it in the GRIS. Thereafter, check the cache to see if the subsequent search requests

3

can be serviced. If the cache TTL (time-to-live) has not been reached, then the requests are

serviced out of the cache. Otherwise, obtain and cache freshly generated information (lazy

evaluation).

3. Speculative evaluation: Information is generated frequently and placed in a recognised loca-

tion. On receiving a search request, service is provided from information in that location.

There is no caching in the GRIS in this method. Here, the information being returned for the

search request may not be fresh as in the lazy evaluation method, but it is readily available

and is frequently updated.

3 Performance of the MDS

3.1 Introduction to the Performance of the MDS

Performance is an issue for Grid applications as they execute on heterogeneous resources with

variable bandwidths and latencies [3]. Since it is difficult to characterise the performance of

such a dynamic and heterogeneous environment, it is increasingly important to provide a reliable

performance through quality of service.

The performance of a query to the MDS cannot be predicted with a formula. This is because the

predictability of the performance decreases with the complexity of the GIIS hierarchy. Moreover,

the length of time a query might take to answer depends on the time-to-live (TTL) data [13]. The

approach normally taken to counter this performance variability is to ascertain that the data being

requested is in cache. When queries are sent to the MDS, they will be serviced by data in the cache

which is regularly refreshed. Another method is to increase the TTL value for the data, though

this might not be feasible for dynamic data. These techniques could be applied to any GRIS or

GIIS independently or at the same time.

Due to the inconsistencies above, it is crucial to perform tests at the smallest unit that can

exist in the MDS hierarchy, namely the GRIS. Understanding how information is provided at the

lowest level is important because performance is unpredictable and depends on the complexity of

the hierarchy. Furthermore, the number of information providers is large, and as they are the

original sources of information, they are accessed frequently. These factors affect the performance

4

with which this information is propagated upwards to the higher level GIIS nodes.

3.2 Assessment of Performance

Middleware has a number of characteristics: size, cost, complexity, flexibility and performance. The

importance of each characteristic depends on the application. One way of assessing performance

is to measure the rate at which requests can be sent and results received through a given system.

The most performant middleware system is the one with the least time taken for the messages to

pass through it. When time measurements are taken from the sending moment to the receiving

moment, no application-specific setup is considered. The measurement thus effectively represents

the behaviour of the middleware and the network and operating system below it.

The difference must be made between high performance and high quality middleware. Middle-

ware performance can be measured by the time taken to carry out an operation. However, the

fastest middleware is not the only issue for many middleware applications. Other issues including

scalability, flexibility and adaptability, ease of use, tool support, and standards conformance could

be more important, depending on the application. Nevertheless, these characteristics are very

difficult to measure since they are relatively subjective.

Furthermore, scalability depends on performance; for example, for an information service to

handle a large number of concurrent requests, it needs to process each request at a high speed. If

the information service takes a shorter time to process one request, it can handle more requests in

a particular period of time.

However, high performance alone does not guarantee high scalability. For instance, it is possible

that some information services perform well when run single-threaded but as soon as multiple

threads of control are used, the performance greatly degrades. This occurs because all the threads

are competing for the same resources and so must block and waste cycles, attempting to acquire

the locks required to use the resources.

In the experiments in this paper, reliable performance is built on an analysis of the performance

of the Grid Information Service. Since it is important to analyse the GRIS, this paper investigates

the different information provider mechanisms and the benefits of using different caching strategies.

5

4 Experimental Environment

The experiments were carried out on a Grid testbed at the University of Warwick and were based

on MDS 2.1. This particular version of the MDS was chosen because MDS 2.x is currently utilised

in the majority of UK e-Science projects [14] and US testbeds including NASA’s Information Power

Grid [15]. Across the various experiments, the following agent setup was maintained. Agents which

make request queries to the MDS, are sent from a set of ten machines (mscs-02 to mscs-11). With

a maximum of 500 agents simultaneously making queries over a period of ten minutes, the desired

effect was to load-balance the queries and to sustain the MDS querying. The maximum number

of agents attributed to one machine is therefore 50.1 The time it takes for each request to be

serviced is measured and an average response time is calculated. Moreover, every agent sleeps for

one second before sending the next request.

To test the scalability of the MDS, a GRIS was set up.2 For the lazy evaluation experiment,

the MDS default cache time values were used. Furthermore, for the experiments, the core infor-

mation providers included by default in the MDS are used. These include the gram reporter which

provides information about the fork job manager. The aim of the experiments was to analyse the

performance of the GRIS with a minimal number of information providers which offer relevant

status information about the Grid.

To evaluate the performance of the GRIS, an agent application was developed to query either

a GRIS or a GIIS. One set of experiments was carried out with the agent using the Java CoG

Kit [16] libraries and the other set with the Globus C APIs. The aim was to determine whether

the implementation language actually affected the performance obtained when querying the MDS.

The Globus C and Java CoG APIs have been used instead of visualisation tools because it is typical

for Grid applications to use those APIs directly.

Figure 1 shows the different components of the experimental setup with a focus on speculative

evaluation (SE).

[Figure 1 about here.]

1The mscs machines each has the Linux operating system with kernel 2.4.18-27.7.x, a 2.4 GHz processor and
512 MB RAM. The mscs machines are also on an Ethernet LAN and they are connected to the GRIS host by a 100
Mb link.

2It was set up on a Linux kernel 2.4.18-14 machine (M1) which has a 1.9 GHz processor and 512 MB RAM.

6

4.1 Experimental Factors

The approach in this paper is to consider that performance is defined by a number of factors, in-

cluding response time, throughput, the total number of responses and system load. The scalability

of the MDS directly depends on the performance observed.

The average response time in seconds, is the mean time it took each query made by an agent, to

be serviced by the respective MDS component. The average throughput denotes the mean number

of queries which are processed by the GRIS per second. Each experiment also keeps a count of the

number of successful queries processed by the MDS. Moreover, the system load has been measured

as the load on the system during the last minute (1-minute load average) and during the last 5

minutes (5-minute load average). The load average is a measure of the number of jobs waiting in

the run queue.

In this paper, the complexity of queries is not assessed. Therefore, the complex relationships

amongst data objects such as the sophisticated searches on objects, are not being tested. The

experiments only query the MDS for all the data available; Grid applications are likely to carry

out such an operation to discover the status of the Grid. Thus, queries are sent to the MDS by

specifying the subtree search scope which searches from the base DN (distinguished name) [17] and

down. Once the data is returned from the MDS, filtering could happen as a subsequent step.

Up to 500 agents queried the MDS simultaneously; they also waited one second when they

received a query response, before issuing the following request. In the speculative evaluation

method using a relational database, the frequency with which the information providers wrote to

the database simulated the cache TTL of the core information providers.

The performance measurements obtained are:

• Average response time in seconds (RT)

• Average throughput in terms of the number of queries answered per second (T)

• Total number of successful query responses (Re)

• 1-minute load average (L1)

• 5-minute load average (L5)

7

5 Experiment Contexts and Results

The behaviour of the MDS can only be understood after the collection of performance data for a

long period of time. Therefore, the experiments were carried out 5 times and an average taken.

The results graphs show the situations below.

5.1 GRIS back-end Implementations

The curves in all experiments are:

• Lazy evaluation (LE)

The GRIS cache TTL is equal to zero. On the receipt of each query, the GRIS launches its

core information providers.

• Eager evaluation (EE)

The GRIS cache TTL is not equal to zero (default values) and the information providers are

invoked when the cache is expired. The cache is also filled with the new data.

• Java speculative evaluation (SE) (PostgreSQL)3

The GRIS cache TTL is equal to zero and the information providers write their data to a

relational database (PostgreSQL) on average every minute. The frequency at which these

information providers write to the database is set to emulate the GRIS cache TTL. The

information provider accessors are written in Java.

• Java speculative evaluation (MySQL)4

The GRIS cache TTL is equal to zero and the information providers write their data to

a MySQL database on average every minute. The frequency at which these information

providers write to the database is set to emulate the GRIS cache TTL. The information

provider accessors are written in Java.

• Eager & Java speculative evaluations (PostgreSQL)

The GRIS cache TTL is not equal to zero and the information providers write their data

3The version of PostgreSQL used is 7.2.3 with no extra features such as caching enabled.
4The version of MySQL used is 4.0.1 and caching is disabled.

8

to a relational database (PostgreSQL) on average every minute. The information provider

accessors are written in Java.

• Eager & Java speculative evaluations (MySQL)

The GRIS cache TTL is not equal to zero and the information providers write their data to

a MySQL database on average every minute. The information provider accessors are written

in Java.

• Perl speculative evaluation (PostgreSQL)

The GRIS cache TTL is equal to zero and the information providers write their data to a

relational database (PostgreSQL) on average every minute. This implementation is similar to

the Java speculative evaluation method with the difference lying in the information provider

accessors which are written in Perl.

• Perl speculative evaluation (MySQL)

The GRIS cache TTL is equal to zero and the information providers write their data to a

MySQL database on average every minute. The information provider accessors are written

in Perl.

In all of the speculative evaluation methods, the information providers are written in Perl rather

than Java due to their smaller execution time.

The experiments have also been repeated using C agents in order to determine whether the

implementation language of the application querying the MDS makes a difference to the overall

performance. It was found that there was no major difference between Java and C agents. Thus,

Java agents will be used to show the results obtained for measuring only the performance of the

MDS and not that of the applications.

Additionally, experiments have shown that there is no marked difference between the perfor-

mance of an agent written in Java CoG and one written in JNDI (Java Naming and Directory

Interface) [18]. Therefore, all the experiments will involve Java CoG.

9

5.2 Experiment: GRIS scalability with Java CoG agents

This experiment tests the way in which the scalability of a GRIS changes with an increase in the

number of Java CoG agents. Moreover, the eight GRIS back-end implementations discussed in

Section 5.1 have been implemented and the results obtained are shown in the graphs below.

[Figure 2 about here.]

From Figure 2 it is seen that the average response time generally increases with up to 150

concurrent agents but it slowly stabilises after that number of agents. It has been found that

the best sustained average response time results from the EE implementation. The second best

average response time is obtained with the EE and Java SE; in both cases, the response time does

not increase beyond 3.6 seconds. These behaviours can be explained by the fact that caching data

in the GRIS reduces the length of time it takes to process a query. Furthermore, using the Java

SE method with GRIS caching only increases the response time by an average of 49%. The benefit

of using the Java SE with GRIS caching is to have immediate access to data which is updated

periodically, as compared to launching the information providers when there is a cache miss.

The lazy and Perl SE methods have a similar average response time with an increase in the

number of concurrent agents. However, the Perl SE has a slightly better response time. The

Java SE implementation produces the most significant increase in average response time with an

increasing number of agents. This is due to the overhead caused by running the Java Virtual

Machine (JVM) for each query. Furthermore, the Java SE methods using GRIS caching and both

a PostgreSQL database and a MySQL database produce similar behaviour. This can be explained

by the fact that on average, for each query, the data required is in cache and therefore, accessing

the database does not affect the average response time from the GRIS. Nevertheless, it can be seen

that once the GRIS caching is turned off, the Java SE consistently performs better with MySQL

than with PostgreSQL. In contrast, if PostgreSQL is used with Perl information provider accessors,

this performance is similar to the Java SE with MySQL. Therefore, it can be deduced that using

Perl scripts where possible can dramatically reduce the average response time by 65%.

On the bottom graph of Figure 2, the throughput achieved by the MDS is shown. The rela-

tionship between throughput and response time is:

10

RT ∝ 1/T (1)

Since T is inversely proportional to RT , the number of queries processed per second is the largest

with EE and the smallest with Java SE (PostgreSQL). Caching in the GRIS also causes the average

throughput to increase from 1 to 50 agents and then to sharply drop when the number of agents

increases to 150. This effect shows that caching can make the GRIS more efficient in handling an

increasing number of queries up to a certain point. The throughput with Perl SE (MySQL) is only

very slightly more than that for Java SE (MySQL); this occurs for up to 150 agents, after which

both throughputs are the same. The slightly better efficiency of Perl over Java levels off for more

than 150 agents because the GRIS has reached its maximum query processing capability.

[Figure 3 about here.]

The graph in Figure 3 shows the total number of successful query responses which return as

the number of agents simultaneously querying the GRIS, increases. The three curves involving EE

display a gentle increase in the number of responses (about 5000) when up to 10 agents concurrently

query the GRIS. Then, there is a sharp, steady increase in Re when the number of agents increases

up to 150. As this number continues to increase, Re stabilises at around 65000. Again, caching in

the GRIS enables more queries to be serviced; however, for more than 150 agents, the GRIS has

reached its saturation point and it cannot process more than about 66000 queries.

The rest of the curves, apart from Java SE with PostgreSQL, show comparable behaviour with

Re ranging from 76 to 1000. Because the average response time for Java SE (PostgreSQL) was

significant, its Re struggles to increase beyond 600 for 500 agents.

[Figure 4 about here.]

Figure 4 shows the load averages on the GRIS node for 1 minute and 5 minutes. Querying the

GRIS using EE places an increasing load on the GRIS with the number of agents increasing up

to 150. This behaviour can be explained by the sharp increase in Re seen in the previous graph.

But for any further increase in the number of agents, the load remains stable at around 10.0 due

to the GRIS being unable to process a larger number of queries. The remaining curves show a

11

relatively stable load with an average of 2.0 and not exceeding 4.4. Moreover, MySQL places a

lower load on the GRIS node than PostgreSQL with Java as the information provider accessors;

however, the inverse is true for Perl accessors. The loads shown with MySQL follow each other

very closely indeed.

5.3 Speculative Evaluation Analysis

Since the four different speculative evaluation methods display contrasted performance measure-

ments, they are analysed here to show how they compare.

[Figure 5 about here.]

In Figure 5, the y-axis (Rank) denotes how well each SE method fares. The lower the rank,

the more performant the method. The Overall label indicates the overall rank for each of the

methods; the best performance is achieved by Perl SE with MySQL and the worst is Java SE with

PostgreSQL.

5.4 Speculative Evaluation with GRIS caching

As well as using the above SE methods, GRIS caching can be enabled. The caching effect is

illustrated in the bar chart below.

[Figure 6 about here.]

Figure 6 shows the averages for each performance metric; while GRIS caching reduces the

average response time, it increases the average throughput, total number of responses and load

averages. Moreover, comparing EE and SE (PostgreSQL), and EE and SE (MySQL) shows that

caching results in the performance metric values being very similar.

6 Performance Analysis of the GRIS

These experiments show that different GRIS back-end implementations can affect the performance

perceived by the entity querying it. The cache TTL and the timeout on the GRIS have been

left constant to analyse the efficiency of caching and various information gathering methods. For

12

instance, caching information in the GRIS drastically reduces the average response time for a

query but the load placed on the GRIS is relatively high. Having a GIIS on the same node as the

GRIS might increase the load further and deteriorate the average response time and the number

of successful queries. Moreover, if a minimal average response time is required from the GRIS,

lazy evaluation should not be used, unless it is required that the load on the GRIS node be at its

minimum. The lowest load during the experiment was with LE and it stayed relatively constant

at approximately 1.5.

The advantage of SE is to facilitate the information updating mechanism which happens peri-

odically as opposed to when there is a cache miss. SE also ensures that data which is still within

its TTL, is readily available in a database. Nevertheless, SE with both MySQL and PostgreSQL

are slightly less performant than LE. Combining EE and SE results in an almost similar average

response time and number of responses to EE.

Choosing the method in which an information provider will provide information depends on

the forecasted number of agents that will query the GRIS at the same time. The experiments in

this paper showed the worst case scenario whereby a number of agents kept querying the GRIS

over a period of 10 minutes. If less than approximately 45 agents are querying the GRIS at any

one time, it would be preferable to use the methods involving EE because their loads and RT on

the GRIS node are the lowest. The cost of these methods, however, is data which might be out-of-

date. Therefore, the method chosen depends on both the simultaneous number of queries and the

permissible margin of information staleness. For example, information which rarely changes like

operating system, has a greater margin than dynamic information. For more than 45 concurrent

agents, the load with the EE methods increases dramatically and stays stable at a level much

higher than the other methods, even SE. Again, there is a trade-off amongst RT , GRIS load and

information freshness. If the agent requests the most up-to-date information, then LE should be

used, but at a higher cost of larger RT , L1 and L5 than EE.

The choice of implementation language for the information providers and the database in the

SE methods also affect performance. Perl generally provides a smaller RT than Java and MySQL

is more performant that PostgreSQL.

13

7 Performance Evaluation of the GIIS

The performance perceived by a client, for example an agent, when it queries a GIIS directly

depends on the performance of the GRISes which are registered with it. The performance is also

dependent on the time-to-live value of the information the GRISes return to the GIIS. Usually, a

quick response can be expected when the data is cached. Nevertheless, when the requested data

has expired in the cache, the GIIS will query the lower-level GRISes which supply the data. The

performance of this sub-query is equivalent to a client directly querying the GRIS; an analysis of

which is given in this paper.

Since the observable performance of a query to a GIIS relies on the complexity of the GIIS

hierarchy, it is important to analyse and understand the performance of a simple GIIS hierarchy.

Additional experiments have been carried out to investigate the resulting performance when a

user-level application queries a GIIS which has a single GRIS registered to it. Both the GIIS and

the GRIS are on the same server machine.

The experiments for the GIIS are similar to those for the GRIS, except that agents query the

GIIS instead of the GRIS. Moe specifically, the experiments observe the change in scalability of an

aggregate server with an increase in the number of agents. It has been found that when the GIIS

cache TTL is set to zero and the GRIS works by lazy evaluation, poor performance is obtained from

the GIIS for more than 10 concurrent agents. Similarly, when the GIIS cache TTL is increased

to 60s, the GIIS performance declines after more than 100 concurrent agents. Increasing the GIIS

cache TTL further to 1800s, allows up to 200 agents to concurrently query the GIIS with adequate

performance. Therefore, to obtain an acceptable level of performance from the GIIS, its cache

TTL has been set to 3600s throughout these experiments.

7.1 Comparison of GIIS and GRIS Performance

[Figure 7 about here.]

[Figure 8 about here.]

Figure 7 shows the differences in the average response times of a GRIS and a GIIS with

increasing concurrent requests. GIIS LE is more efficient than GRIS LE throughout the whole of

14

the experiment. The GIIS RT remains relatively constant as the number of agents querying the

GIIS increases from 1 to 100, but there is a sharp increase in RT thereafter. With EE, the GIIS

RT is only slightly better than that for the GRIS as the number of agents increases from 1 to

100. However, as this number increases to 500, the GRIS and GIIS RT are very similar. These

observations can be explained by the caching effect in both the GRIS and the GIIS. Similar results

are seen with Java SE (PostgreSQL) where RT stays relatively constant as the number of agents

increases to about 100. Then, there is an increase to around 3.5s at 500 agents. The GRIS and

GIIS RT for EE and Java SE (PostgreSQL) closely follow that for EE. Moreover, the Perl SE

experiments show that RT is lower than for EE and Java SE (PostgreSQL). However, it is similar

to that for Java SE (PostgreSQL), indicating that caching in the GIIS levels out any differences in

RT from the GRIS.

The differences in 1-minute load average between a GRIS and a GIIS are shown in Figure 8.

The GIIS 1-minute load average with LE steadily increases as the number of agents increases from

1 to about 150, and thereafter it stabilises at around 13.0. When the number of agents is less than

50, the load with only the GRIS is higher than that with both the GRIS and the GIIS. However,

as the number of agents keeps increasing, L1 for the GIIS becomes greater than that for the GRIS.

Similar results are seen for LE L5. With less than 50 agents, caching in the GIIS allows the load on

the node to be small but a bigger number of agents causes the load to increase as more information

providers have to be executed. In EE, L1 for both the GRIS and the GIIS closely follow each

other; the same results occur with L5. For Java SE, similar results are obtained as for LE, with

the difference that the load stabilises at about 40.0; SE places a much higher load on the node. In

addition, Perl SE places a slightly higher load on the node, and EE and Java SE produces higher

L1 and L5 due to the overhead incurred by SE.

8 Ongoing Work and Research Directions

The work described has shown that several performance issues need to be addressed in the deploy-

ment of a Grid resource monitoring and discovery service. Firstly, the behaviour of the information

gathering methods at the resource level (GRIS) is studied and conclusions deduced. Secondly, the

performance which the client observes from an aggregate information server (GIIS), is assessed

15

using the same metrics. These two sets of results are then compared to analyse the effect on the

observable performance of querying an aggregate information server rather than an information

server.

Based on the performance data collected when an aggregate information server is queried, we

are also predicting performance metrics values using different algorithms. A client transparently

querying an information server, is desirable. Subsequently, it should not impact on the behaviour

of the client in any way. This impact can be minimally reduced by knowing how long it will take

to get back the required information. Performance prediction information is also necessary when

users are faced with the issue of choosing to query one information server over another, without

knowing how they will respond.

We are also extending the performance prediction framework to include PACE (Performance

Analysis and Characterisation Environment) [19] application and hardware models which can fur-

ther be used in helping trust agents [20] select resources for job execution. Moreover, we will be

focusing on the emerging OGSA (Open Grid Services Architecture)-based [21] MDS3 (Monitoring

and Discovery System) [22] and how the findings gathered can be applied to this new framework.

The overall aim to ascertain quality-of-service characteristics of Grid middleware in its promise to

deliver computational power to geographically distributed locations.

9 Summary

The experiments in this paper have shown the effect on the performance of querying the GRIS, of

various information provider gathering methods and GRIS back-end implementations. Tuning the

GRIS by adopting the most efficient evaluation method can greatly improve the performance ob-

tained. Furthermore, carefully choosing the implementation language for the information providers

and the type of relational database can enhance performance. Every GRIS back-end implementa-

tion needs to take into account factors including the number of simultaneous queries, information

freshness and load on the GRIS node. The overriding importance of any one factor will influence

the type of evaluation method to be used.

The information service behaviour observed when queries are sent to a GIIS, has been analysed

and compared with that of a GRIS. Several scenarios have been set up with different GRIS back-

16

end implementations and the experiments result demonstrate that caching is required at the higher

levels of the MDS hierarchy for an acceptable level of performance to be obtained. A better

performance is also attained when a GIIS is queried, rather than a GRIS when caching is enabled

in the GIIS and is at least 60s. Furthermore, the value of the cache TTL depends on the expected

number of users concurrently querying the GIIS.

10 Acknowledgements

This work is sponsored in part by funding from the EPSRC e-Science Core Programme (contract

no. GR/S03058/01), the NASA AMES Research Centres (administered by USARDSG, contract

no. N68171-01-C-9012) and the EPSRC (contract no. GR/R47424/01).

References

[1] I. Foster, and C. Kesselman. The GRID: Blueprint for a new computing infrastructure. Morgan

Kaufmann Publishers, Inc., 1999.

[2] I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the grid: Enabling scalable virtual

organizations. International J. Supercomputer Applications, 15(3), 2001.

[3] F. Berman, G.C. Fox, and A.J.G. Hey, editors. Grid Computing: Making the global infrastruc-

ture a reality. Wiley, 2003, page 557.

[4] The Globus Project. http://www.globus.org.

[5] Legion. http://legion.virginia.edu.

[6] The Condor Project. http://www.cs.wisc.edu/condor/.

[7] Ninf: A global computing infrastructure. http://ninf.apgrid.org/welcome.shtml.

[8] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman. Grid information services for dis-

tributed resource sharing. In Proc. 10th IEEE International Symposium on High-Performance

Distributed Computing (HPDC-10), 2001. IEEE Press.

17

[9] G. Aloisio, M. Cafaro, I. Epicoco, and S. Fiore.

Analysis of the globus toolkit grid information service. GridLab-10-D.1-0001-GIS Analysis,

GridLab Project. http://www.gridlab.org/Resources/Deliverables/D10.1.pdf.

[10] X. Zhang, J. Freschl, and J.M. Schopf. A performance study of monitoring and informa-

tion services for distributed systems. In Proc. 12th IEEE International Symposium on High-

Performance Distributed Computing (HPDC-12), 2003. IEEE Press.

[11] H.N. Lim Choi Keung, L. Wang, D.P. Spooner, S.A. Jarvis, W. Jie, and G.R. Nudd. Grid

resource management information services for scientific computing. International Conference

on Scientific & Engineering Computation (IC-SEC) 2002, Singapore, December 3-5 2002.

[12] Globus: Extending GRIS functionality. http://www.globus.org/mds/extending-gris.html.

[13] S. Fitzgerald, I. Foster, C. Kesselman, G. Laszewski, W. Smith, and S. Tuecke. A directory

service for configuring high-performance distributed computations.

[14] UK eScience Programme. http://www.research-councils.ac.uk/escience/.

[15] NASA’s Information Power Grid (IPG). http://www.ipg.nasa.gov/.

[16] G. von Laszewski, I. Foster, J. Gawor, and P. Lane. A Java commodity grid kit. Concurrency

and Computation: Practice and Experience, 13(8-9):643–662, 2001.

[17] T. Howes and M. Smith. LDAP: Programming directory-enabled applications with lightweight

directory access protocol. Macmillan Technical Publishing, 1997. ISBN 1-57870-000-0.

[18] R. Lee, and S. Seligman. JNDI API tutorial and reference: building directory enabled JavaTM

Applications. Addison-Wesley, 2000.

[19] D.J. Kerbyson, J.S. Harper, A. Craig, and G.R. Nudd. PACE: A toolset to investigate and pre-

dict performance in parallel systems. Presented in European Parallel Tools Meeting, ONERA,

Paris, October 1996.

[20] J.R.D. Dyson. Trust and negotiation management for grid computing. Research Report, De-

partment of Computer Science, University of Warwick, 2003.

18

[21] I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The physiology of the grid: An open grid

services architecture for distributed systems integration. Open Grid Service Infrastructure WG,

Global Grid Forum, June 22, 2002.

[22] Information services in the globus toolkit 3.0 release.

http://www.globus.org/ogsa/releases/final/docs/infosvcs/.

19

List of Figures

1 Components of the system. 21
2 Experiment average response time and throughput. 22
3 Experiment total number of responses. 23
4 Experiment load averages. 24
5 Performance analysis of the different speculative evaluation methods. 25
6 Performance analysis of the different SE and EE methods. 26
7 Comparison of GIIS and GRIS average response times. 27
8 Comparison of GIIS and GRIS 1-minute load average. 28

20

Figure 1: Components of the system.

21

Figure 2: Experiment average response time and throughput.

22

Figure 3: Experiment total number of responses.

23

Figure 4: Experiment load averages.

24

Figure 5: Performance analysis of the different speculative evaluation methods.

25

Figure 6: Performance analysis of the different SE and EE methods.

26

Figure 7: Comparison of GIIS and GRIS average response times.

27

Figure 8: Comparison of GIIS and GRIS 1-minute load average.

28

