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Abstract: The paper addresses the dynamic scheduling of parallel jobs with quality-of-service
demands (soft-deadlines) in multiclusters and grids. Three performance metrics (over-deadline,
makespan and idle-time) are combined with variable weights to evaluate the scheduling
performance. These three metrics are used to measure the extent to which jobs comply with
their QoS demands, the resource throughput and the resource utilisation. Therefore, clusters
situated in different administrative organisations can utilise different weight combinations to
represent their different performance requirements. Two levels of performance optimisation are
applied in the multicluster. At the multicluster level, a scheduler (which we call MUSCLE)
allocates parallel jobs with high packing potential to the same cluster; MUSCLE also takes the jobs’
QoS requirements into account and employs a heuristic to allocate suitable workloads to each
cluster to balance the overall system performance. At the local cluster level, an existing workload
manager, called TITAN, utilises a genetic algorithm to further improve the scheduling performance
of the jobs sent by MUSCLE. Extensive experimental studies are conducted to verify the
effectiveness of the scheduling mechanism in MUSCLE. The results show that, compared with
traditional distributed workload allocation policies, the comprehensive scheduling performance (in
terms of over-deadline, makespan and idle-time) of parallel jobs is significantly improved across

the multicluster.

1 Introduction

Clusters are increasingly being interconnected to create
multicluster or grid computing architectures. These con-
stituent clusters may be located within a single organisation
or across different administrative organisations [1-3].
Workload management and scheduling are key issues in
multicluster and grid computing and parallel jobs constitute
a typical workload type. Parallel jobs can be classified into
two categories: rigid and mouldable [4]. Rigid parallel jobs
are run on a user-specified number of computational
resources, while mouldable jobs can run on a variable
number of resources, often determined at run-time [4].
Specific qualities of service (QoS) can be requested by
jobs submitted to a grid system [5], an example of which
includes specifying user-defined deadlines [2]. The QoS of a
job is satisfied if it finishes before the specified deadline,
while the QoS decreases as the excess (of completion time
over deadline) increases. Therefore, over-deadline can be
used to measure the extent to which the QoS demands of a
job set is satisfied, where over-deadline is defined as the sum
of the excess time of each job’s finish time over its deadline.
The scheduling of parallel jobs has been studied extensively
in single cluster environments [4, 6—8]. In such a scenario,
submitted jobs typically have no QoS requirements and
resource utilisation is a commonly used system-oriented
metric [4]. Idle-time in a resource can be viewed as the
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metric for measuring resource utilisation [4]. An additional
goal in job scheduling in computational grid environments
is high resource throughput. In these scenarios, makespan is
often used to measure throughput [5]. Makespan is defined
as the duration between the start time of the first job and the
finish time of the last executed job.

In the multicluster architecture assumed in this paper, the
constituent clusters may be located in different adminis-
trative organisations and as a result be managed with
different performance criteria. In this work, we combine
three metrics (over-deadline, makespan and idle-time) with
additional variable weights; this allows the resources in
different locations to represent different performance
scenarios.

In this work, the multicluster architecture is equipped
with two levels of performance optimisation. A multicluster
scheduling lever (MUSCLE) is developed at a global
(multicluster) level to allocate jobs to constituent clusters.
MUSCLE is designed to allocate parallel jobs with high
packing potential (i.e. they can be packed more tightly) to
the same cluster. It also takes the QoS demands of jobs into
account and exploits a heuristic to control workload
allocation among clusters, so as to balance the overall
performance across the multicluster. When MUSCLE
distributes jobs to individual clusters, it determines a seed
schedule for the jobs allocated to each cluster. These seed
schedules are sent to the corresponding clusters where an
existing workload manager (TITAN [9]) uses a genetic
algorithm to transform the schedule into one that improves
the local (cluster) level comprehensive performance.

In grid systems, the global scheduler usually has no
control over the local schedulers. This presents difficulties
when designing effective scheduling schemes for such
environments. The two-level optimisation architecture
developed in this paper overcomes this difficulty. MUSCLE
has no control over the operations of the TITAN scheduler
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at each local cluster. There is also no communication
between global-level decision making (using MUSCLE)
and local-level optimisation (using TITAN).

Another challenge in grid scheduling is that jobs can be
submitted from different locations and so a grid scheduler
generally lacks a complete view of the jobs in the grid. In
this paper we preserve realistic usage patterns in that users
are allowed to submit jobs to the multicluster through
MUSCLE or through the TITANs of each local cluster. If a
job is submitted through TITAN, another (existing) grid
component called A4 (agile architecture and autonomous
agents) [10, 11] informs MUSCLE as to the submission and
provides summary metadata (e.g. job size, arriving time) for
the job. A4 is responsible for resource advertisement and
discovery as well as for transferring jobs (or job metadata)
among schedulers or resources if necessary. This paper
focuses on presenting the scheduling mechanism found in
MUSCLE. A detailed design of the A4 component is
addressed in [10, 11].

Job scheduling is extensively documented in the literature
[2, 12—-16]. Mechanisms of co-location and adaptive
scheduling are presented in AppleS [12]. However, AppleS
does not consider jobs’ deadlines in scheduling. Condor [16]
aims to achieve high throughput in a local network
environment — a goal which is different from this work.
Nimrod [2] takes jobs’ deadlines into account. However, it
is based on an economy model and therefore also has
different concerns from this work. A QoS guided min—min
heuristic is presented in [5] for grids. The QoS in [5] is
based on the network bandwidth, and makespan is used to
evaluate the scheduling performance. In this paper, multiple
performance metrics are considered. Reference [17] also
utilises multiple metrics (timeliness, reliability, security,
etc.) to evaluate scheduling performance. However, the
scheduling policy is static and schedules single processor
jobs in a local cluster.

2 System and workload model

The multicluster architecture assumed in this work (shown
in Fig. 1) consists of n clusters, C;, C,,..., C,, where
cluster C; (1 < i < n) consists of m; homogeneous com-
putational resources, each with a service rate of u;. There are
two scheduling levels in the architecture: MUSCLE acts as
the multicluster scheduler while TITAN schedules the jobs
sent by MUSCLE within each local cluster. MUSCLE and
TITAN are interconnected through the A4 system. Users
can submit parallel jobs to the multicluster through
MUSCLE or through TITAN. If a job is submitted via
TITAN, MUSCLE is made aware of it through metadata
sent by the A4 agents. Also, if the resources in the
multicluster change (e.g. addition or deletion), MUSCLE is
also informed of this via A4. Hence, the multicluster is
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Fig. 1 Multicluster job management architecture
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a virtual organisation from the perspective of users.
Submitted jobs are judicially allocated by MUSCLE to
suitable clusters for further scheduling and execution. The
PACE (performance analysis and characterisation environ-
ment) toolkit [8, 18] is incorporated into the architecture to
provide execution time predictions for the submitted jobs.

It is assumed that the parallel jobs submitted to the
multicluster can be executed in any constituent cluster.
Parallel jobs considered in this paper are rigid. A parallel
job, denoted by J;, is identified by a 4-tuple (a;, s;, ¢;;,d;),
where a; is J;’s arrival time, s, is its job size (i.e. the number
of computational resources on which the job is requested to
be run), e;; is its execution time in cluster C;(1 <j < n) and
d; is its soft-deadline.

The jobs’ deadlines can be determined through two
approaches. On the one hand, the users are allowed to
explicitly specify the submitted jobs’ deadlines. On the
other hand, a deadline can be assigned to a job by the system
according to the service class which the job falls into [19].
For example, the jobs in the gold service class will be
assigned shorter deadlines than those in the silver class.

3 Local-level scheduling via TITAN

This Section briefly describes the genetic algorithm used by
TITAN [9]. A two-dimensional coding scheme is developed
to represent a schedule of parallel jobs in a cluster. Each
column in the coding specifies the allocation of the
resources to a parallel job, while the order of these columns
in the coding is also the order in which the corresponding
jobs are to be executed. An example is given in Fig. 2 and
illustrates the coding for a schedule as well as the execution
of the corresponding jobs.

Three metrics (over-deadline, makespan and idle-time)
are combined with variable weights to form a comprehen-
sive performance metric (denoted by CP), which is used to
evaluate a schedule. The CP is defined in (1), where I', @
and 0 are makespan, idle-time and over-deadline, and W',
W™ and W? are their weights. For a given weight
combination, the lower the value of CP, the better the
comprehensive performance:

cp— W'+ W"w + W0
- wi W WO

(1)

A genetic algorithm is used by TITAN to find a schedule
with a low CP. The algorithm first generates a set of initial
schedules (one of these being the seed schedule sent by
MUSCLE and the others are generated randomly). The
performance of a schedule, evaluated by the CP, is
normalised to a fitness function which is shown in (2),
where CP™* and CP™" represent the best and the worst
performance in the schedule set, and CP* is the performance
of the kth schedule:

order of jobs

352164 1 | job 1
y w 2 Bl Nijob2
coding g )
101010 3 9 a M jobs
111101 S 4 ] Hiob4
001010 B .
- ob 5
111010 8 mi
000011 : > M jobs
time

Fig. 2 TITAN coding scheme for a schedule and corresponding
execution map
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CcP™ — CP*
= CPmax _ CPmin (2)

In the genetic algorithm, the value of the fitness function of
a schedule determines the probability that the schedule is
selected to create the next generation. Crossover and
mutation operations are performed to generate the next
generation of the current schedule set. This procedure
continues until the performance in each generation of
schedule stabilises.

Ji

4 Multicluster-level scheduling via MUSCLE

The main operations performed by MUSCLE are as follows.
First, MUSCLE determines which parallel jobs can be
packed into a resource space with a given size (i.e. available
resources of a given number). It is possible that with a set of
parallel jobs, different compositions of jobs can be packed
into a given resource space. These possible compositions of
parallel jobs for packing into a given resource space are
organised into a composition table. MUSCLE then searches
this table for suitable parallel jobs when allocating jobs into
an available resource space in a cluster. When the resource
space is available in multiple clusters, MUSCLE orders the
processing of the spaces using a heuristic.

4.1 Organising parallel jobs

Suppose the maximum cluster size in the multicluster
is my;x and that, at some time point, p parallel jobs,
Ji,J2,...,J,, are collected by MUSCLE (into a queue).
Algorithm 1 outlines the steps for constructing the
composition table. The p jobs are filled into suitable rows
in the table. When trying to fill job J; (with size s;) into the
jth row, the algorithm checks if there exists such a
composition in the (j—s;)th row that no job in
the composition has appeared in the jth row. If such a
composition exists, it indicates that J; and the jobs in the
composition can be packed into the resource space with
size j. Hence, J; and these jobs are filled into this row.

Algorithm 1: Constructing the composition table

for each parallel job J;, 1 <i < p, to be scheduled do

for each j satisfying 1 < j < my;ux do

if Si :]

Append J; to the tail of the jth row of the table;

if 5, <j

re—J =S

if the rth row in the table is not NULL

if there is such a composition of parallel jobs in the rth
row in which no job is in the jth row of the table;

Append J; as well as the parallel jobs in the composition
from the rth row to the tail of the jth row;

PNANA D=

A

The composition table has m,,4y rows. A composition in the
table is located by a pair (r, /) and the composition is
denoted by cps(r, [), where r is the row number in which the
composition lies and / is the position subscript of the first job
of the composition in the row. A job is not permitted to
appear more than once in the same row. This rule is to
guarantee that a job will not be allocated to a different
resource space. There are two for-loops in Algorithm 1.
Step 8 searches a row for the qualified composition. In the
worst case, the time taken by Step 8 is O(p). Hence, the
worst-case time complexity of Algorithm 1 is O( p?nyay)-
Algorithm 1 is illustrated by the following case study. The
cluster setting and the parameters of the jobs in the queue
are listed in Table 1; these are used as the working example
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Table 1: Working parameters of case studies
demonstrated in this paper

Clusters (o C,

Size 4 6

Service rate of resources 1 1

Jobs Ji Jo Js Ja Js Js
Job size 2 1 4 3 1 2
Execution time 2 4 4 6 2

Slack 6 8 14 12 4 8

Table 2: Composition table case study; jobs J;-Jg are
listed in Table 1 and mysx is 6

1 Js
2 U A

3 Jdy Js. Js
4 gy Jids  Je s
5 Jsdy  Jah

6 JuJdy JeJa o

for all remaining case studies in this paper. Table 2 shows
the composition table after filling these jobs.

4.2 Searching the composition table

The procedure of allocating jobs to a resource space with
size r in a cluster proceeds as follows (Algorithm 3). First, it
searches the composition table from the rth row up to the
first row to obtain the first row that is not null. Then, in this
row, the algorithm selects the composition in which the
number of jobs having been allocated is the least. If the
number is zero, these jobs are allocated to the resource
space. If a job J;, whose size is s;, in the composition has
been allocated, a function (Algorithm 2) is called to search
the s;th row for alternative jobs for J;. The function is called
recursively if a composition cannot be found in the s;th row
in which no job in it is allocated. The recursive call
terminates when there is only one composition in a searched
row (i.e. there are no alternative jobs) or when the
composition consisting of unallocated jobs is found. If the
algorithm fails to allocate jobs to the resource space with
size r, it continues by trying to identify jobs to allocate to the
resource space with size r = r — 1. The procedure continues
until r reaches 0. After allocated jobs have been determined,
the schedule for these jobs can also be computed (Step 11 in
Algorithm 3).

Algorithm 2: Calculating the alternatives for the job
allocation in composition cps(r, 1)

Input: the position of the composition in the composition
table (r, [); an array g (used to store alternative jobs).
Output: if success, return 1; otherwise, return 0; (array
q contains partial alternative jobs).

1. lc — I; fail — 0;
2. while /c does not reach the end of the composition and
fail equals 0

Get the job J; pointed to by Ic;

if J; has not been allocated

Append J; to array g;

else if there is only one composition in the s;th row of the
composition table (s; is the size of J;), which consists of
J; itself

SNk w
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7. fail — 1;

8. else

9. In the s;th row (except the composition consisting of J;
itself ), get such a composition cps(s;, /) in which the
number of allocated jobs is minimum (if more than
one composition has the same minimum number,
select the first found);

10. if the number of allocated jobs in cps(s;, ) is O

11. Append the jobs in the composition cps(s;, [) to array g;

12. else

13. Call Algorithm 2 with (s;,) and array ¢ as input;

14. if its output is 0

15. fail — 1;

16. lc — lc +1;

17. end while;

18. if fail equals 0

19. return 1;

20. else

21. return 0;

Algorithm 3: Allocating jobs to a resource space (z, r, cp)
in cluster C;, where ¢ is the time when the space is available,
r is the size of the space and cp is the resource number that
the space starts from

Input: the resource space (¢, r, ¢p); an array g (used to
contain jobs allocated to the resource space).

rc «—r;

while the rcth row is NULL

rc —rc—1;

Get such a composition of jobs in which the number of
allocated jobs is minimum in the rcth row (if more
than one composition has the same minimum number,
select the one first found; suppose the composition
found is cps(ro,1));

if the number of allocated jobs in the composition is O

Put the jobs in the composition into array g;

else

Call Algorithm 2 with (ry, /) and ¢ as inputs;

. if Algorithm 3 returns 0

10. rc «— rc — 1; Go to Step 2;

11. The starting time of these jobs is #; these jobs are

allocated to the resources in the order specified in

array ¢, starting from resource cp.

b

© 0N,

It can be seen that Algorithm 3 always attempts to identify
the jobs that maximally occupy the given resource space.
In doing so, the number of resources left idle is minimised.
Consequently, the jobs sent to a cluster are packed tightly.
The time complexity of Algorithm 3 (including Algorithm 2)
is based on the number of jobs that are allocated.
The best-case time complexity is O(1), while the worst-
case time complexity is O(p’nyx), since the worst case
involves searching the complete composition table.

4.3 Employing a heuristic to balance
performance

In each local cluster, TITAN uses a genetic algorithm to
adjust the seed schedule sent by MUSCLE, aiming to further
improve the CP. Although MUSCLE has no control over the
detailed operations of the genetic algorithm, it analyses the
objective factors influencing the performance and allocates
different levels of workload to each cluster through a
heuristic ensuring the CP can be well balanced among the
clusters.

The fundamental attributes of parallel jobs allocated to
cluster C;, include:
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p; : the number of jobs;

etSum; : the sum of execution times of all jobs;

sizeSum; : total job sizes;

slkSum; : total slacks (the slack of a job is its deadline
minus its execution time and its arrival time, which
relates to the QoS of jobs).

The fundamental attribute of a cluster, C;, is the number of
resources m; (the attribute of the service rate has been
reflected in the execution times of jobs).

The scheduling performance achieved in a cluster is
determined by the resultant forces of these attributes. In
addition to this, the packing potential for the parallel jobs
allocated to a cluster is also considered a critical factor. This
problem, however, is solved in Algorithm 3, which ensures
that jobs are selected to maximally occupy a given resource
space.

When the value of the attributes of p;, etSum; and
sizeSum; in a cluster is higher, the cluster can be
allocated more jobs, while the relation is opposite for
slkSum; and m;. These attributes are integrated to form a
new metric (denoted by &), shown in (3). When multiple
clusters offer available resource space, the cluster with
the smallest ¢ is given the highest priority and will be
allocated the jobs. When more than one cluster has the
same value of ¢, the cluster with the greatest size is
given the highest priority. In the case of equal sized
clusters, one is selected randomly:

pi X etSum; X sizeSum;

(3)

slkSum; X m;

The complete scheduling procedure for MUSCLE is
outlined in Algorithm 4.

Algorithm 4: MUSCLE scheduling

1. while the expected makespans of the jobs yet to be
scheduled in all clusters (provided by TITAN) are
greater than a predefined threshold

Collect the arriving jobs in the multicluster;

Call Algorithm 1 to construct the composition table for
the collected jobs;

do

for each cluster do

Calculate ¢ using (3);

Get the earliest available resource space in cluster C;
which has the minimal &;

Call Algorithm 3 to allocate jobs to this space;

Update the earliest available resource space and the
attribute values of the workload in C;;

10. while all collected jobs have not been allocated;

11. Go to Step 1;

i

Nk

S

The time of Algorithm 4 is dominated by Step 3 and
Step 8 in the do-while loop. Their time complexities
have been analysed in Sub-Sections 4.1 and 4.2.

A case study is presented below to illustrate Algorithm 4.
The working parameters are listed in Table 1. The
corresponding composition table is found in Table 2.
Figure 3 shows the evolution of the job scheduling in C,
and C, (a, b are for Cy; ¢, d for C,). After Algorithm 4 is
completed, the seed schedules in both clusters are
determined, which are shown in Figs. 3b, d. It can be seen
that these jobs have been packed tightly. These seed
schedules will be sent to TITANs situated in C; and C, for
further performance improvement.
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Fig. 3 Evolution of job scheduling in cluster C; and C,
a, b are for C;; c, d for C,

5 Experimental studies

A simulator is developed to evaluate the performance of the
scheduling mechanism in MUSCLE. The presented exper-
imental results focus on demonstrating the performance
advantages of the scheduling mechanism in MUSCLE over
the traditional scheduling policies frequently used in
distributed systems. Weighted random (WRAND) and
dynamic least load (DLL) policies are two selected
representatives.

In the experiments, the generated parallel jobs are
submitted to the multicluster. MUSCLE, DLL or
WRAND are used as the multicluster-level scheduling
policies, respectively, while in all cases TITAN is used as
the cluster-level scheduler in each local cluster. The
combination of the weights for the over-deadline, the
makespan and the idle-time is denoted by (W°, W, W').

The workloads in the experiments are generated as
follows. 20 000 parallel jobs are generated; the submissions
of parallel jobs follow a Poisson process.

The execution times of the jobs in cluster C; follow a
bounded Pareto distribution [20], shown in (4), where ¢; and
e, are the lower and upper limit of the execution time x. It is
shown in [20] that this distribution will represent a more
realistic workload model than a simple exponential
distribution,

oef

1 - (el/eu)a

If a job is scheduled to another cluster consisting of
resources with a service rate s;, the execution time is
determined through multiplying by the ratio between s; and
sj (i.e. 5;/s;). A job’s deadline d; is determined by (5), where
dr is the deadline ratio. dr follows a uniform distribution in
MIN_DR, MAX_DR)]. The range is used to measure the
deadline range:

70 = )
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d; = max{et;} x (1+dr) (5)

The job size can follow different probability distributions
according to different application scenarios. Reference [21]
studies jobs whose sizes follow uniform or normal
distribution, while [22] shows that the probability that a
job uses fewer than n processors is roughly proportional to
logn. These experiments are conducted under these
different distributions to verify the effectiveness of the
scheduling mechanism proposed in this paper. The results
show similar patterns, and hence only the results for a
specific representative distribution are presented in each
experiment in this Section.

Dynamic least-load (DLL) is a scheduling policy
extensively used in heterogeneous systems [3, 20]. The
workload in cluster C;, denoted as L;, is computed using (6).
When a parallel job is submitted to the multicluster, DLL
schedules the job to the cluster whose workload is the least
and whose size is greater than the job’s size:

L= Z e;s;/m; WQ, is the set of jobs allocated to cluster C;
JieWQ;

(6)

The weighted random (WRAND) policy is another
frequently used scheduling policy in distributed systems
[3, 20]. When a job arrives at the multicluster, the WRAND
policy first picks out all clusters whose sizes are greater than
the job size (suppose these clusters are C;;, Cp, ..., C;;), and
then schedules the job to a cluster Cy (1 < k < j) with the
probability proportional to its processing capability (m;u;,)-

The performance metrics evaluated in the experiments
are the mean comprehensive performance (MCP) and
performance balance factor (PB). Each time MUSCLE
sends seed schedules to TITANs in individual
clusters C;,1 <i < n. These TITANs further improve the
performance in terms of the CP. When the performance
improvement between two generations of schedule sets is
less than a threshold, the CP performance for cluster C;,
denoted by CP;, is recorded. The MCP is the average of
CP;, 1 <i < n, calculated by (7), where p; is the number of
jobs allocated to C;. The procedure continues until all
generated jobs are processed. Each point in the performance
curve is plotted as the average of the MCP calculated each
time:

mcp=Y"cp, x (7)
i—1 p

The PB is defined as the standard deviation of CP;,
computed by (8):

PB = \/ﬁ > o (cpi—mcpy (8)

5.1 Workload levels

Figures 4a, b compare the performance of MUSCLE, DLL
and WRAND policies under different workload levels. The
workload level is measured by the mean job number in the
queue in the multicluster, whose setting is listed in Table 3.

It can be seen from Fig. 4a that MUSCLE outperforms
DLL and WRAND under all workload levels. This is
because the jobs are packed tightly in the seed schedules
sent by MUSCLE to individual clusters. Therefore, the
further improvement in each cluster is based on an excellent
seed value. However, the jobs sent by DLL or WRAND to
each cluster are random in terms of whether they can be
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Fig. 4 Performance comparison of MUSCLE, DLL and WRAND under different work-load levels in terms of mean comprehensive

performance (MCP) and performance balance factor (PB)

(WO, W™, W' = (4,3,1); ¢;/e,, = 5/100; MIN_S/MAX _S = 1/10 (uniform distribution); MIN_DR/MAX_DR = 0/5

a MCP
b PB

Table 3: Multicluster setting in Fig. 4

Clusters (o C, Cs Cy
Size 20 16 12 10
Service rate ratio 1.0 1.2 1.4 1.6

packed tightly or not. This reduces the possibility of
achieving a high MCP in the multicluster.

A further observation from Fig. 4a is that the advantage
of MUSCLE over other policies becomes increasingly
pronounced as the workload increases. When the mean
number of the jobs in queue is 40, MUSCLE outperforms
DLL in terms of the MCP by 12.1% and outperforms
WRAND by 8.4%. When the mean number of jobs is 100,
the performance advantages increase to 56.7% and 48.9%
compared with DLL. and WRAND, respectively. This is
because, when the number of jobs in the queue increases,
MUSCLE can gather more information regarding parallel
jobs and as a result make better allocation decisions among
clusters.

As can be observed from Fig. 45, when the mean number
of jobs in the queue is less than 60, the PB achieved by
MUSCLE is slightly worse than that by DLL. However,
MUSCLE significantly outperforms DLL in all other cases.
This can be explained as follows. When the workload is low,
a small number of jobs miss their deadlines and the MCP is
mainly caused by makespan and idle time. Therefore, DLL
shows more balanced MCP performance. However, as the
workload increases further, more jobs miss their deadlines.
DLL ignores the QoS demands of these jobs. In contrast,
MUSCLE takes the QoS demands into account so that the
MCP performance remains balanced among the clusters
when the over-deadline gradually becomes a significant
factor in the MCP performance.

5.2 Deadlines

Figure 5 compares the performance of MUSCLE, DLL and
WRAND under different deadline ranges, which is
measured by the range of dr in (5). In Figs. 5a, c, the
mean number job in the queue is 40, while in Figs. 5b, d this
is set to 100.

A general observation from Figs. 5a, b is that MUSCLE
performs better than DLL and WRAND in terms of MCP.
Further observations show that the advantages are different
under different combinations of workload levels and
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Fig.5 Performance comparison of MUSCLE, DLL and WRAND
under different deadline ranges

Mean number job in queue is 40 in (a) and 100 in (b); mean number of
jobs in queue is 40 in (¢) and 100 in (d); (W, W™, W') = (4,3,1); ¢;/e, =
5/100; MIN_S/MAX_S = 1/10 (uniform distribution); multicluster setting
is listed in Table 3

deadlines. When the workload is low and the deadline is
loose, the advantage is low. This is because in this case the
over-deadline, makespan and idle-time are all low. Hence,
the potential of MUSCLE cannot be fully released. When the
deadlines become more urgent relative to the workload,
the advantage of MUSCLE over DLL and WRAND becomes
increasingly prominent. However, when the deadlines
become even shorter relative to the workload, the advantage
of MUSCLE diminishes. This is because the workload is
saturated relative to the urgent deadlines and the finish times
of many jobs exceed their deadlines by a large amount. This
performance deterioration is due to overloading, and
scheduling policies are able to do little in this situation.
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As for the performance in terms of PB (shown in
Figs. 5c, d), MUSCLE significantly outperforms DLL and
WRAND under all workloads and deadline ranges (except
when the workloads are low and the deadlines are loose).
This is because, compared with DLL and WRAND,
MUSCLE is able to distribute the workload evenly
among the multicluster by taking the QoS demands of
the jobs into account.

5.3 Different domain-level performance
requirements

Figure 6 compares the performance of MUSCLE, DLL and
WRAND in terms of MCP and PB when the constituent
clusters in the multicluster utilise different weights, shown
in Table 3, to calculate the MCP. The experiments are
conducted for different mean numbers of jobs in the queue
(40, 100 and 160).

As can be observed from Figs. 6a, b and c, the
performance of MUSCLE is superior to other policies in
all cases in terms of the MCP. Furthermore, the advantage of
MUSCLE over DLL and WRAND is different under
different workload levels. When the mean number of jobs

in the queue is 40, the advantage of MUSCLE over DLL is
15.6%, while the advantage increases to 57.5% when the
number of jobs is 100. When the workload increases further
and the mean number of jobs in the queue is 160, the
advantage of MUSCLE over DLL decreases to 13.7%.
These results are consistent with the trends demonstrated in
Sub-Section 5.2.

The performance comparison in terms of PB demon-
strates a similar pattern to that shown in Figs. 5¢, d. When
the mean number of jobs in the queue is 40, the performance
of MUSCLE in terms of PB is worse than that of DLL.
Under other workloads, MUSCLE performs significantly
better than DLL and WRAND. These are also consistent
with the results in Figs. 4b, S5c and d.

5.4 Multicluster size

Figure 7 compares the performance of MUSCLE, DLL and
WRAND under different multicluster sizes. In this experi-
ment, we use a cluster pool of 10 clusters, where cluster
sizes vary from 20 to 56 with increments of 4 and the service
rates of all resources are equivalent. Initially, jobs are
processed in the multicluster consisting of 4 clusters of the
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Fig. 6 Performance comparison of MUSCLE, DLL and WRAND in terms of MCP and PB
e;/e, =5/100; MIN_S/MAX_S = 1/10 (uniform distribution); MIN_DR/MAX_DR = 0/5; multicluster setting is listed in Table 3 and weight combinations
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smallest sizes (20—32); then two clusters of greater sizes are
added to the multicluster each time until all 10 clusters are
used. The workload level is also increased accordingly, so
that the ratio of the mean number of jobs in the queue to the
total processing capability remains unchanged. The results
in Fig.7 are for the case where the initial mean number of
jobs in the queue is 80 (the results for the other workload
levels show similar patterns). The probability that a job
requests fewer than my,y resources is proportional to
logmyaxy (myax is the size of the greatest cluster in the
current multicluster).

As can be observed from Fig. 7, MUSCLE outperforms
DLL and WRAND in terms of MCP and PB in all cases.
A further observation is that the advantage of MUSCLE
over WRAND becomes more pronounced as the cluster size
increases, while the trend is not obvious for the case of DLL.
This can be explained as follows. WRAND allocates the
fixed proportion of workload to each cluster. As the number
of clusters increases, this policy becomes increasingly
incompetent. DLL considers both the workload and
processing capability of each cluster. When the jobs sent
by DLL to a cluster happen to have a good packing potential
and their deadlines are not (on average) urgent, compara-
tively high performance can be achieved. However, DLL
does not provide such a general scheme as that implemented
in MUSCLE to take into account the packing potential and
QoS requirements of jobs.

6 Conclusions

A multicluster-level scheduler, called MUSCLE, is
described in this paper for the scheduling of parallel jobs
with QoS demands in multiclusters, in which the constituent
clusters may be located in different administrative organ-
isations. Three metrics (over-deadline, makespan and idle-
time) are combined with variable weights to evaluate the
scheduling performance. MUSCLE is able to allocate jobs
with high packing potential to the same cluster and further
utilises a heuristic to control the workload distribution
among the clusters. Extensive experimental studies are
carried out to verify the performance advantages of
MUSCLE. The results show that, compared with the
traditional scheduling policies in distributed systems, the
comprehensive performance (in terms of over-deadline,
makespan and idle-time) is significantly improved and the
jobs are well balanced across the multicluster.
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