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                                   Abstract 

In the general theory of relativity the four-dimensional space-time described the accelerated 

motion or moves in a gravitational field of a mass body, from the perspective of integral geometry, 

although it is a curved Riemannian geometric space, but for any instantaneous position of the 

moving mass body, there is a local Flat Space of Riemannian geometric space. The local Flat Space 

is a Mincowski space in which the inertial coordinate system can be used in the local small area. 

Between the proper coordinate systems of two interacting moving masses, or between a series of 

follow-up proper coordinate systems experienced by a mass body moving in any way, there must 

be a coordinate transformation relationship similar to the traditional special theory of relativity. 

However, they have an important difference: In these instantaneous local inertial systems, the 

speed of light is no longer the constant c of vacuum, the effect of gravitational field or acceleration 

on the speed of light is the same as that of a medium with a dielectric constant of ε  and a 

permeability of μ. Using the special theory of relativity with variable speed of light that the author 

has established can discuss relevant relativity physics issues in these instantaneous local inertial 

systems. This article uses the special theory of relativity with variable speed of light to infer the 

functional relationship between a moving mass and the change of speed. In addition to obtaining 

the traditional continuous increasing function relationship, a step function relationship with 

stepped discontinuous changes is also obtained. At the same speed, the mass can have two values, 

such as a ladder upgrade one level; the same mass can be matched with two different speeds, such 

as one step extension forward on the same step stair. From the perspective of the increase in speed, 

the mass is stagnant on the step platform (the speed increases, the mass does not change), and it 

jumps in the step up ladder (the speed does not change, the mass has a jump change). This 

obviously incorporates the main image of quantum theory into the theory of relativity, which is the 

result that all physics researchers care about and expect. 

 

Key words: Special and general relativity; Coordinate transformation in the flat space of 
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1 Introduction 

The mass of a moving body is a continuous increasing function of speed. This is 

an important conclusion of the traditional special theory of relativity, which shows that 
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classical mechanics only has some approximations under the test of relativity. 

Unfortunately, the continuity of this mass-speed relationship is incompatible with all 

quantum theories. This becomes a major obstacle to trying to dominate modern 

physics with the theory of relativity. In fact, in addition to the conventional continuous 

change of the mass-velocity relationship in the theory of relativity, there is also a 

stepped, discontinuous change relationship. At the same speed, the mass can have 

two values, such as a ladder upgrade by one level; the same mass can be matched with 

two different speeds, such as a step extension forward. From the perspective of the 

increase in speed, the mass is stagnant on the step platform (the speed increases, the 

mass does not change), and it jumps in the step up ladder (the speed does not change, 

the mass has a jump change). This obviously incorporates the main image of quantum 

theory into the theory of relativity, which is the result that all physics researchers care 

about and expect. However, it is impossible to infer this conclusion with the traditional 

special theory of relativity, but it is easy to use the "variable speed of light" special 

theory of relativity established by the author of this article [1] 
、[2] .  

There is only one core theory of the theory of relativity, and that is: the 

mathematical form of the laws of physics should not differ depending on the 

observation coordinate system used. The traditional special theory of relativity is 

limited to the covariant of mathematical forms of physics laws between inertial 

coordinate systems in a vacuum; General relativity removes the restriction on the 

observation coordinate system and discusses the covariant of the mathematical forms 

of the laws of physics in the gravitational field or between accelerated and decelerated 

coordinate systems. General relativity applies four-dimensional Riemannian geometry 

to combine the physical quantities in the laws of physics into scalars, vectors, tensors, 

and higher-order tensors in a four-dimensional geometric space individually or with 

each other, and then according to the mathematical relationship between physical 

quantities established in physics, the relationship between scalar, vector and tensor in 

geometry is established. Geometry is deduced and demonstrated by a coordinate 

system, but the geometry proved by deduction does not differ depending on the 

selected coordinate system. In this way, the mathematical equation connecting these 

physical quantities has a very simple and symmetrical covariant form. This is the 

mainstream relativity work of the Classical Academy. If this work develops smoothly, it 

should not be out of touch with this aspect, that aspect, or any aspect of modern 

physics. Unfortunately, although the mathematical form of the laws of physics has a 

very symmetrical and beautiful covariant form in the mathematics tower of four-

dimensional Riemannian geometry; however, it is very difficult to solve, apply, and 

even use. Einstein focused on the fundamental difference between "inertia" and 

"gravitational field existence", go all out to explore the difference between space and 

time structure in Riemannian geometric expressions, and uncontrollably transform 

what should be called general relativity into the study of gravitational field and 

gravitational field equations. In the calculation of the structure of mathematics to 

relieve the spatial structure of the gravitational field,  only  the  metric tensor 𝑔𝜇𝜈 
and its first derivative  𝜕𝑔𝜇𝜈𝜕𝑥𝜆   can be taken care of, they appear in the curvature tensor 
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𝑅𝜇𝜈 , 𝑅 and affine connection (Christoffel symbols) Γ𝜇𝜈𝜆  ; for the second and higher 

derivatives of the basic metric tensor 𝑔𝜇𝜈 to the coordinate  𝑥𝜆   ,the "approximation" 

steps that are generally accepted in mathematics are omitted. In fact, this does not 

necessarily mean that a function is written as a convergent series in a serious 

mathematical way, which approximates the numerical problem of calculating this 

function. Serious mathematics must look at the mathematical steps with the known 

"boundary conditions" in real physics. Ignore the "boundary conditions" and use 

mathematics, or use generally recognized mathematical methods to deal with real 

physics problems that have not yet obtained "boundary conditions". The problem is 

that mathematics sets a tone first for physics theory. When the swing reaches its 

highest position, the first derivative of its circle displacement to time is zero, but isn't 

the second derivative value very large? Therefore, certain types of higher-order 

derivatives that are omitted due to insufficient "boundary values" are likely to be the 

true focus of the evolution of certain types of cosmological problems, atomic physics 

and even nuclear physics. 

In general relativity, from the perspective of integral geometry, although the four-

dimensional space-time that describes the accelerated motion of the mass body or the 

motion in the gravitational field is a curved Riemannian geometric space, but for any 

instantaneous position of the moving mass, there is a flat space of Riemannian 

geometric space. The flat space is Euclidean space, a Mincowski space, in which the 

inertial coordinate system can be used in a small area. There must be a coordinate 

transformation relationship similar to the special theory of relativity between the 

proper coordinate systems of two interacting moving masses, or between a series of 

follow-up proper coordinate systems experienced by a mass moving in any way. 

However, they have an important difference: with acceleration or in a gravitational 

field, it is the same as in a medium, the speed of light is not a constant 𝑐 in vacuum, 

but another constant 𝑐′ [3].Therefore we must face the problem of coordinate 

transformation between instantaneous local inertial coordinate systems with different 

speeds of light as the limit speed values. After in-depth thinking, the author of this 

article believes that If we can establish such a coordinate transformation between two 

instantaneous local inertial coordinate systems, we can lead the stagnant and 

inconvenient general theory of relativity away from the complex mathematical 

structure simply and successfully, so that the work of the theory of relativity to explore 

the physics laws that is invariable in mathematical form becomes easy. 

In reference [1] and [2], the established "special theory of relativity in different 

media" is "the special theory of relativity with variable speed of light" which takes 

different speed of light as the limit value. Apply it to an instantaneous local inertial 

coordinate system on the tangent plane at any point in the curved Riemannian 

geometric space in general relativity, in fact, the general relativity is deduced into a 

convenient application form of the special theory of relativity. This article applies the 

reconstructed theory of relativity to relativistic mechanics and obtains an important 

conclusion: the change of the mass of motion with the speed, in addition to the 
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traditional continuous increasing function relationship, there is a new discontinuous 

step function relationship. In the article, firstly, the transformation between 

accelerating coordinate systems or the coordinate system in the gravitational field in 

general relativity is processed as the coordinate systems transformation between two 

instantaneous local inertial coordinate systems with different speeds of light as the 

limit speed value which is at each point of the "flat space" in the four-dimensional 

Riemann geometric space. Then, two functional relations of the moving mass change 

with speed are derived: continuous increasing function and discontinuous step 

function, they do not coexist. Finally, the results are discussed and prospected. 

2 Coordinate transformation between instantaneous local inertial systems 

The purpose of general relativity is to derive the covariance of the laws of physics 

for non-inertial frames in accelerated motion and gravitational fields. Although the 

application of four-dimensional Riemannian geometry can combine the physical 

quantities in the laws of physics into vectors, tensors, and higher-order tensors that 

are covariant with the coordinate system in the four-dimensional geometric space, so 

the mathematical equations connecting these physical quantities have a very simple 

and symmetrical covariant form , but its calculation, application and utilization are very 

difficult. It is a work that Einstein has worked hard and failed to complete in the latter 

half of his life. [4] Einstein’s focus is on the fundamental difference between "inertia" 

and "gravitational field existence", and goes all out to explore the differences in the 

Riemannian geometric expressions of their respective space and time structures. The 

content that should really be called general relativity uncontrollably transformed into 

the study of gravitational field, this is easy to make people misunderstand that general 

relativity is a theory that specializes in the study of gravitational fields and cosmology, 

which is far from the original purpose of relativity. In fact, according to the principle of 

equivalence, every point in the space-time four-dimensional Riemann space 

describing the gravitational field or the accelerated motion has an instantaneous local 

inertial coordinate system. The trajectory of a mass point in arbitrary motion is a 

continuous or approximately continuous curve in space. "Approximately" means that 

if the point experienced in turn are discontinuous "points" ,connect these points into 

a curve as a trajectory. The vertical line of the contact surface of this curve and the 

tangent line and normal line on the contact surface can according to "forward" 

advanced in sequence of the mass point, and "left-handed" or "right-handed" on the 

tangent line and the system is "clockwise" or "reverse time" , determine a mutually 

orthogonal follow-moving "proper coordinate system" three-dimensional space (x, y, 

z), (or take "spherical coordinates", "cylindrical coordinates"), and the moving mass 

point is always located at the origin of the coordinate system. If you agree with the 

view of integral geometry, the four-dimensional space composed of the three-

dimensional space of the real physical world plus the “one-dimensional time” is a 
curved space installed in more than four-dimensional European space, based on the 

tangent line and the contact surface plus "time one-dimensional" to determine its 

follow-moving "proper coordinate system" constitutes a Euclidean folded flat space of 

four-dimensional space suitable for the application of differential geometry. In terms 
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of geometry, such a flat space is all equivalent to a Minkowski space in which an inertial 

coordinate system can be used in a small instantaneous local area. So at the view point 

of a small instantaneous local area this kind of "proper coordinate system" is also an 

inertial coordinate system. [1] Because in general relativity the speed of light is no 

longer the constant c . It has been proved that in the gravitational field or when there 

is acceleration, just like in the medium, the speed of light is no longer the constant c in 

vacuum, but another constant c . [3] The influence of gravitational field or acceleration 

on the speed of light is the same as that of a medium with a dielectric constant of ε 

and a magnetic permeability of μ. In the static gravitational field with unit mass 

gravitational potential energy  , the speed of light is 𝑐′ = 𝑐𝑛 = 𝑐√𝜀𝜇 = 𝑐√(1 + 2𝜒𝐶2) [5]; 

a coordinate system traveling with acceleration a is like an inertial coordinate system 

traveling in a gravitational field with 𝜒 as the gravitational potential energy, the speed 

of light is:𝑐′ = 𝑐 (1 + 𝑎𝑥𝑐2) = 𝑐√(1 − 𝑎2𝑡2𝐶2 ) = 𝑐√(1 + 2𝜒𝐶2) [6]—[8]. Of course, since the 

flat space is only for each local locality and instantaneous time, the 𝑥 and 𝑡 in the 

above formulas for the speed of light can only be regarded as valid for each taking a 

sufficiently small value, in terms of reality, both  𝑎𝑥 and  𝑎𝑡 can be treated as 

sufficiently small constants. In short, the speed of light in the instantaneous local 

inertial coordinate system introduced at each point in the gravitational field (or each 

instantaneous position of the accelerating particle) is no longer the speed of light 𝑐 in 

a vacuum. The values of the speed of light in these instantaneous local inertial 

coordinate systems  𝑐′, 𝑐′′, 𝑐′′′ ⋯  actually include the effects of "medium", 

"gravitational field", "acceleration and deceleration" on the speed of light. Of course, 

all "weak field", "strong field", "meson field" and even "acceleration" or 

"deceleration"...and so on may have an impact on the speed of light, and can also be 

included in the value 𝑐′, 𝑐′′, 𝑐′′′ ⋯  of the speed of light. This type of inertial coordinate 

system is the inertial coordinate system with different speed of light as the speed limit 

determined in [1] [Theorem 5]; If you want to apply the established special theory of 

relativity to them, you must consider using the established special theory of relativity 

with variable speed of light (𝑐′ ≠ 𝑐) in [1] and [2]. Looking at the theory of relativity on 

this basis, there is basically no difference between the general relativity and special 

relativity. In this way, it is possible to easily and systematically bypass the 

"mathematical form design task" which cannot be solved completely by the second 

half of Einstein's life due to the introduction of the “𝑔𝜇𝜈” in "𝑑𝑠2 = 𝑔𝜇𝜈𝑑𝑥𝜇𝑑𝑥𝜈 ", 

straightforwardly committed to theoretical physics work on the central thesis of 

relativity. 

The coordinate transformation between the instantaneous local inertial 

coordinate system 𝑆(𝑥, 𝑦, 𝑧, 𝑐𝑡) and 𝑆′(𝑥′, 𝑦′, 𝑧′, 𝑐′𝑡′) can also obtain based on the 

four-dimensional space interval differential line element of remains unchanged in the 

coordinate transformation, i.e. :  𝑑𝑠2 = 𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2 − 𝑐2𝑑𝑡2 = 𝑑𝑥′2 + 𝑑𝑦′2 + 𝑑𝑧′2 − 𝑐′2𝑑𝑡′2 = 𝑑𝑠′2  ,  (𝑐′ ≠ 𝑐) . 

So, we have: 
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This is exactly the same as the space-time coordinate transformation relationship 

between inertial systems with different speeds of light as the limit speed obtained in 

[1], except that the differential representation of the coordinates is used here. 

Suppose the speed of a moving particle relative to  𝑆 and  𝑆′ respectively are:
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The following derives the functional relationship between the moving mass and 

the speed. 

3   The jump and stagnation of mass with speed 

The relationship between mass and speed is generally deduced by the collision 

of two equivalent mass bodies using the law of conservation of momentum. The 

existence of "equivalence mass bodies" is a basic assumption, and there is no doubt 

about it. "Collision" is an indispensable minimum method for objective and subjective 

as well as existence and understanding, there is no need to suspect any man-made 

interference. The law of conservation of momentum is the most basic law of physics 

and the main foundation of the theory of relativity. According to the theory of relativity, 

all the laws of physics have the same mathematical form correctness in any 

observation coordinate system. Therefore, there is nothing fundamentally suspicious 

about deriving the mass velocity relationship based on this method. 

Suppose two inertial coordinate systems 𝑆 and 𝑆′, as defined in [Theorem 5] in 

[1], 𝑆′can be in the medium, can also be an instantaneous local inertial system of 

accelerated motion or of in a gravitational field.  In 𝑆 observing  𝑆′ moves at 
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speed v along the 𝑥 axis of 𝑆, and the speed of light is 𝑐 ; while observing in 𝑆′, 𝑆 

moves at speed v′ along the 𝑥′axis of 𝑆′, the speed of light is 𝑐′. Suppose there are 

equivalent devices in the 𝑆 and 𝑆′systems, each of which shoots an equivalent mass 

body at the same speed 𝑢 and 𝑢′in the direction perpendicular to the motion, and 

causes them to collide in the relative motion of 𝑆 and 𝑆′and then bounce back. This 

arrangement is realistic, as described in the general relativity monograph [9]. However, 

in the special theory of relativity with variable speed of light , the speed of light 

in  𝑆 and  𝑆′ are the unequal  𝑐 and  𝑐′ respectively, the mass bodies are shot  

perpendicular to the direction of motion at the same speed and should take care of 

the basics difference of the space-time metrical unit in 𝑆 and 𝑆′. That is, the ratio of 

the speed to the speed of light is equal or unequal, i.e., when 𝑆 and 𝑆′are mutually 

stationary in the speed transposition equation (2)    𝑢′𝑐′ = 𝑢𝑐   (v = v′ = 0) . This 

mutual static gives full play to all the equivalent essences of the two equivalent mass 

bodies, such as the two equivalent atoms each emitting equivalent β rays. As for any 

field or medium surrounding 𝑆 or  𝑆′ to cause  𝑐′ ≠ 𝑐 , it does not damage the 

equivalence of 𝑆 and  𝑆′ as inertial coordinate systems. This principle has been 

elaborated above and in [1] and [2]. Therefore, everything starts from equivalence. In 

terms of symbols and mathematical forms, equivalence also includes the symmetry 

between 𝑆 and 𝑆′. All this is completely in line with the relative viewpoint of relativity 

theory. It must also be pointed out that the method of cognition will not affect the 

objective existence, and all the conclusions drawn on the motion mass must exist out 

of the collision, and will not be changed by other methods of cognition. The choice of 

collision method to prove, of course, is also based on the fact that this method has no 

interference from other points. 

The subscripts "1" and "2" indicate the mass body in the  𝑆 and  𝑆′ system 

respectively; the speeds of the two mass bodies measured in the 𝑆 and 𝑆′ systems are 

expressed without "'" and with "'", and a horizontal line is added to the speed symbol 

to indicate the respective speeds after the collision; then the relationship between the 

speeds of the two equivalent masses before and after the collision are: 
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 𝛼 is a positive number. Apply the speed transformation formula (2) to get:       
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Therefore, the square of the eight speed values is calculated as: 
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Assume that the functional relationship of mass with speed in the 𝑆 and 𝑆′systems respectively is )v(fm   and )v(  fm ; two identical masses that 

are at rest refer to 
00 )0()0( mffm  . In the 𝑆 system, the law of conservation of 

momentum before and after the collision can be written as: 

xxxx uufuufuufuuf 22112211 )()()()(               （8） 

yyyy uufuufuufuuf 22112211 )()()()(               （9） 

Substituting the relevant quantities in equations (3)-(7) into equations (8) and (9) 

respectively, we can get: 

     )()( 22 ufuf   

      0)()()()( 22221111  yyyyyy uufuufuufuuf     

Which is: 
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     )/v1v()/v1v(
222

1

22222

1

2 ）（）（ cufcuf yy
       （10）     

     0)]()([/v1)()( 222

22

11  ufuufcufuf yy        （11） 

If momentum is conserved in any collision of this kind, then for any value of 𝑢, v (𝑢′, v′), the function 𝑓 should satisfy equations (10) and (11). 

Now take 01 yu , v22  uu , on both sides of the formula (10) is naturally 

satisfied; the formula (11) can be used to calculate )v(f ; at this time, there is

0)v(/v1)0(
22  fcf  , and the famous formula of traditional special relativity 

is immediately obtained: 

    
22

0

22
/v1/v1

)0(
)v(

c

m

c

f
fm





              （12） 

Because when 𝑢1𝑦 = 0  , 𝑢̅2 = 𝑢2 = v , v  in 𝑓(v) is the speed of moving mass 2 

recognized by observer in the  𝑆 system, and  v′ is the speed of the observer 

of 𝑆 system recognized reversely in the 𝑆′ system attached to the mass. In formula (12), 

22
/v c  is still retained in the denominator square root, which can fully demonstrate 

the equivalent active effect of cognition and being recognized, showing that 

)v(fm   must be determined by at least one collision. If more attention is paid to 

the objective existence of the relationship between mass and speed which does not 

vary depending on the method of recognizing, then
2222

/v/v cc  can be applied, and

22
/v c can be used to replace

22
/v c . In order to avoid confusion with the relative 

speed between 𝑆 and 𝑆′, formula (12) is best written as: 

       
22

0

22
/1/1

)0(
)(

cu

m

cu

f
ufm





              （12a） 

    It is important that: the symmetrical side of this collision, that is, in the 𝑆′system, 

we can also obtain: 

       
22

0

22
/v1/v1

)0(
)v(

c

m

c

f
fm









            （12b） 

Or   

22

0

22
/1/1

)0(
)(

cu

m

cu

f
ufm









          （12c） 

Consider the preconditions 00 mm  , comparing (12a) with (12c) proves: 
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mufufm  )()(             （12d）  

It must be understood that here ff  means that the two functions have the 

same form; it does not mean that the masses measured by the systems 𝑆 and 𝑆′ at 

the same instant and the same place of the equivalent mass body are equal. Only when

2

2

2

2

c

u

c

u




 , we have mm  . 

It is especially worth noting that in the above derivation process, 01 yu  is 

taken first, so in equations (10) and (11) can be any value. However, if we face (10) 

first, and pre-determine that )(uf must be a continuous increasing function of speed, 

we must determine that 1 , 1 are completely elastic collision. This is enough to 

inspire people to find solutions other than (12); just give up 1 and give up the 

continuous increasing function form of )(uf . According to Newton's classical 

mechanics, )(uf is a constant to the speed u and does not change with the speed, nor 

does it continuously increase with the speed, nor will it decrease. Combining the two 

forms, it is reasonable to take )(uf as a monotonic non-decreasing function form 

interrupted at a finite (or mathematically "countable") point, that is, a step function. 

The theory of relativity can thus enter the category of quantum theory as a guiding 

theory. 

Let f be a step function, namely )()()( 222 ufkufuf  , k is a constant with 

velocity dimension; then the formula (10) becomes: 

)/v1v()/v1v(
222

1

22222

1

2 ）（）（ cufkcuf yy
    

Thus: 

)/v1(v)/v1(v
222

1

22222

1

2 cukcu yy
         （13） 

After squaring (13) and shifting the terms, we get: 

     )1()/v1()/v1(v2
22

1

22222

1

22  yy uccukk       （14） 

In order to be able to eliminate and get k under other conditions with known 

values, a similar equation is needed. Now the equal symmetry condition of 𝑆 and 𝑆′ 
is fully functional. In the 𝑆′ system, it has been proved that ff  ; due to equality, 

f  and f must have the same values of k and  ; according to the equivalent 

arrangement, yu2
 in the  𝑆′ system is equivalent to yu1 in the  𝑆 system, and
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yy u
c

c
u 12 )(


 , so it can be deduced immediately in the  𝑆′ system: 

 )1()/v1()/v1(v2
22

1

222222

1

222 





 yy u
c

c
ccu

c

c
kk ）（）（    （14a） 

Note that
2

2

2

2
vv

cc 


 , divide (14) and (14a), and after simple calculation, we can get: 

     )/v1(v
2 222

1

2 cu
cc

c
k y 




                      （15） 

It is easy to see that k obtained from the Ssystem of symmetry is also equal to the 

above formula. It must be pointed out that in the case of the traditional special theory 

of relativity cc  , the two equations (14) and (14a) are exactly the same, and it is still 

impossible to eliminate to solve k ; therefore, even if the trial of entering the step 

function is still forced to exit. The method of traditional special relativity is limited, this 

is an important key example. 

    Now, take )/v1v()()(
222

1

2

22 kcufufuf y  ）（  and enter (11) again, and 

still set 01 yu , then: 

     )v(/v-1)(1v)(/v1)1()0()1(
2222 fc

cc

cc
fcf 


    

From this, the step function relationship of mass with speed is obtained: 

     )v(
/v1

v)(
22

0 f
c

m

cc

cc
f 







            （16） 

For the first half of equation (16), let u
cc

cc 



v)( , then u
cc

cc
)(v

 , the first half of 

the equation becomes: 

     

2

2

2

0

1

)(

）（
cc

cc

c

u

m
uf




              （16a） 

The step function relationship between mass and speed represented by (16) and 

(16a) is shown in (Fig. 1).  

 
         (Fig.1) 
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"•" in the figure represents the first half of (16) and (16a); "△" represents the second 

half of formula (16). It can be seen from equation (16) and Fig.1: For the same mass 

22

0

/v1 c

m
m


 , there can be two different speeds, v)(1

cc

cc
u


  ("•" in the Fig.1) 

and v2 u  ("△" in the Fig.1), such as one step extension forward on the same step  

stair . On the other hand, comparing the latter half of Eq. (16) with Eq. (16a), we see 

that when uv , for the same speed u , the mass can have two different values, 

2

2

0
1

1
c

u

m
m


 ("△" in the Fig.1) and 

2

2

2

0
2

1 ）（
cc

cc

c

u

m
m




 ("•" in the Fig.1), such as 

a ladder upgrade one level. From the perspective of the increase in speed, the mass is 

stagnant on the step platform (the speed increases, the mass does not change), and it 

jumps in the step up ladder (the speed does not change, the mass changes suddenly). 

The calculation shows that when the speed gradually increases, the steps gradually 

lengthen and the stair level gradually increase. This is a kind of discontinuous step 

jump change relationship of mass with the speed, which is different from the 

continuous incremental change relationship known in the traditional special theory of 

relativity. 

It should be noted that although the second half of equation (16) is the same as 

the traditional solution (12), these two types of solutions do not exist at the same time. 

To prove this conclusion, substituting formula (15) into formula (13), we can find   

to get: 

)
v

1(

]1[v

)(

2

2
2

1

22

2

c
u

cc

cc

cc

cc

y 








）（
          （17） 

It can be seen from equation (17) that in the above step function calculation, the value 

of cannot be equal to 1; 1 is only suitable for solving traditional continuous 

functions. Therefore, this important conclusion must be emphasized: the two types 

of solutions of the mass velocity relationship ,that is, the discontinuous step function 

and the continuous increasing function will not coexist at the same time; Equation (16) 

and Equation (16a), or the discontinuous step function solution shown in Fig.1, 

includes many "△" values equal to the value of the traditional continuous function 

calculation equation (12), but the former is not allowed 1 , so they will never exist 

at the same time. The traditional continuous function solution is to connect the many 

values at "△" with a curve (the dotted curve in the Fig.1); the discontinuous step 

function solution connects the horizontal step platform at the "•" and "△" (the dotted 

horizontal line in the Fig.1) is based on The assumption that the quality does not 

decrease due to the increase in speed. 

4   conclusion      
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Add some important conclusions to the formula derived above. 

(1) Because v is a real number, the maximum value of   given by (17) is

cc

cc




 , and the minimum value is zero. One situation of 0  is cc  , 0v  , 

22

22
v

）（

）（

ccc

cc




 is an indefinite value, that is, mand
0m have no definite relationship. The 

meaning of 0  means that the two particles are bonded after the collision,    

which is completely inelastic collision. Therefore, in R. A. Millikan's first experiment 

to measure the electron-to-mass ratio
m

e
in the cloud chamber, there should be 

several e in each floating oil drop, not limited to one e ; in fact, all of them meet 

cc  ， 0v  ， 0  explanation. This is actually a major aspect to be considered 

when interpreting material reunion.  

 (2) For the solution of the step function, it can be seen from equation (16a) that 

the upper limit speed of the constant velocity moving particle is cc
cc

cc
u 


~ , and 

when the upper limit speed is reached, 00 m , )~(ufm  is an indeterminate. 

Because the electron's 00 m , the actual velocity of the  -ray can never reach u~ , 

which is less than the traditional saying that it is less than c . Extrapolate from the 

experimental data to find the u~ of a certain type of  -ray, and then the value of c at 

the point where the  -ray starts can be calculated. This should advance the theory of 

relativity inside the atom. 

 (3) When the values of c and c are very close, that is, when 0)(  cc , the 

upper speed limit u~ also approaches zero. At this time, we return to the inference in 

(1) above, and explain that when 0  other solutions of equation (17) are 

unrealistic. When the speed is very small, relativistic mechanics approaches classical 

mechanics, so the solution of the step function is also the same. From the tiny value 

of )(
cc

cc


 , one can imagine the shortening of steps and the dropping of stairs in Fig. 

1, that is, the step function curve gradually approaches the smooth curve of traditional 

solution. This also explains why Newtonian mechanics is extremely realistic when

cc  . 
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 (4) When the values of c and c differ greatly, such as 1:100: cc , ）（
cc

cc




is 

very close to 1 and only slightly less than 1, such as
101

99
. This in turn makes the step 

curve close to the smooth curve of the traditional solution. Very small cmeans that 

light is difficult to penetrate, which is similar to the situation in which thermionic 

electrons are driven out of the cathode surface; it is conceivable that these thermionic 

electrons are difficult to show a stepped mass-velocity relationship curve. 

 (5) When c is closer to the middle value between zero and c , the stepped mass-

velocity relationship curve is more obvious. This can only be discovered on the ejected 

mass inside the atom. 

In the special theory of relativity with variable speed of light, the step function 

relationship of the discontinuous change of mass with speed and its related 

conclusions have opened the door for the theory of relativity to enter quantum theory. 

A schematic sketch has been prepared for the theory of relativity dominating modern 

physics. In atoms fields and various particles fields, the speed of light is definitely not 

a constant value c , The key is to grasp the meaning of the non-coexistence of the 

traditional continuous function solution ( 1
2  ) and the step function solution 

( 1
2  ), and the fact that the two solutions are very close when 0c or cc  , 

and further study in combination with the actual situation. First of all, it is to seek the 

proper combination of mass, energy and momentum allowed by the "ontology" of the 

moving mass bodies in various stages of motion properties or in different physical 

environments. 
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Figures

Figure 1

The step function relationship between mass and speed represented by (16) and (16a)


