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Abstract

A level crossing control system is specified in CCS, motivated by a
temporal logic specification of the safety requirements. We show that
with certain reservations, these can be satisfactorily stated entirely within
CCS. The crossing system is divided into twosmaller subsystems which are
shown to be equivalent to the original single system, and whose behaviour
is then analysed using the methods of the calculus. By applying the
technique of bisimulation, it is proved that the crossing satisfies the full
safety requirements.

1 Introduction

This paper is an attempt to specify a safety-critical system, namely a level
crossing, in the formal language CCS. We show that the specification, including
safety requirements, may be captured entirely within that language. The infor-
mal description of the level crossing is taken from [Gor87]. In that paper the
system requirements, which are mainly safety-related, are specified in temporal
logic; here, we show that whilst these requirements may seem on first consider-
ation to be temporal, the sequential and synchronized features of CCS enable
us to state them satisfactorily within the language itself.

We begin with an informal description of the level crossing system as set
out in [Gor87]. In section 2 we give the main safety requirements, also taken
from [Gor87] and expressed in the language of temporal logic; we then show how
these may be translated into CCS. Section 3 consists of the CCS specification,
including a modified version in' which the single system is divided into two
communicating subsystems, this being more manageable than the whole. In
section 4 we show that the two versions are congruent and having proved this,
we then examine the behaviour of the composed subsystems in section 5. Lastly,
we show that the system as specified satisfies the safety requirements. The
advantages and limitations of the exercise are assessed in the conclusion.




1.1 Informal description of the system

Fig.1 shows the layout of the crossing; the names and arrangement of the phys-
ical objects are taken from [Gor87]. The two sensors on the approach side of
the line are located after the appropriate lights (in the direction of motion).
The required behaviour of the train driver is that he stops the train on a red
light and proceeds when the light is green; in proceeding, the train necessarily
crosses the sensors in the line. This behaviour is explicitly specified in the agent
ATrain. Cars making legitimate use of the crossing are sensed by RSensor and
are counted in and out. Required behaviour of drivers is that they stop their
vehicles when the light is red and do not proceed until the light changes to green.
This is not specified explicitly. Drivers attempting to use the crossing after the
light has changed to red are taking calculated risks and should be aware that
no account of this is taken in specifying the safety features of the system.

2 Temporal logic safety requirements

2.1 Global model

The top level safety requirement S1, or ‘global model’ [Gor87], is that there
should never be a train and a car inside the crossing at the same time. This
may be expressed in temporal logic as follows;

(Vt € TRAINS)(Vec € CARS)(O ~ (in(t) Ainc(c)) (S1)

‘D’ may be read as ‘henceforward’ (or the more usual modal interpretation, ‘it
is necessary that’), ‘~’ means ‘not’, zn(t) refers to a train inside the crossing
and similarly inc(c) for cars.

This main safety requirement is achleved by the followmg lower level con-
straints on the application domain. An informal description is given first in each
case.

2.2 Formalization of the application domain -

In the temporal logic statements below, red and green refer to rail lights and
rred and rgreen to road lights.

(1) For every train ¢, if ¢ is outside the crossing and the railway light is red,
then ¢ remains outside unless (L) it ‘sees’ the green light.

(Vt € TRAINS)((red A out(t) — out(t) U (green A out(t))))

(2) After the road light has been switched to red, cars in the crossing will be
allowed to leave before (<1) the barrier is lowered.

(Ve € CARS)(O(rred — (oute(c) < down) V outc(c)))




(3) If the crossing is open for cars then the rail light must be red and there must
be no train in the crossing,.

(Vt € TRAINS)(O((rgreen V up) — red A out(t)))

(4) If the crossing is open for trains then the road is blocked (gate down) before
a train enters the crossing.

(Vt € TRAINS)(O(green — down < in(t)))
(5) If the gates are closed then the road lights must be red.

O(down — rred)

2.3 The CCS version
The global model, S1, may be translated directly into CCS:

SafeCrossing def traing, traingy:.SafeCrossing (S1)
+
tari;,.SafeCrossingcars (1)
SafeCrossingcars(n) def tar;,.SafeCrossingears(n + 1)

+
TaTqut. if n = 1 then SafeCrossing
else SafeCrossingcars(n — 1)

SafeCrossing is regarded as a shared resource; it may be used either by cars
or by trains but not by both together (since car and train signals cannot be
interleaved). It does not deadlock; there is no state in which both cars and
trains are prevented from using the crossing. Cars are counted in and out of the
crossing and only when it is clear of cars does the system allow trains to enter.

3 The CCS specification

3.1 The components of the single system
3.1.1 Sensors and track lights '

The sensors, TA(pproach), TI(n) and TO(ut), are triggered by the train (%,
ti, t,) and send signals to the control (a, ¢, 0) to indicate the train’s position.
The track lights are parameterized by colour; the A(pproach)Light is initially
green and the I(n)Light initially red. These change on receiving the signal
from Control. A function ‘change’ is assumed with domain {red, green}, where
change(red) = green and change(green) = red.

TA % ¢, 3. TA




TI% ¢, 7TI
TO % ¢,5.TO

ALight(z) ¥/ send, (z).change,.ALight(change(z))

ILight(y) = send;(y).change; ILight(change(y))

3.1.2 The train

Condition (1) of 2.2 is made explicit in the specification of the train. An ap-
proaching train sees the ALight and stops if it is red. It ‘polls’ this light until
the signal changes to green, when it can proceed and cross the TA sensor. Its
behaviour is similar at the ILight. When this is green and the train has crossed
the TT sensor it sends an observable signal train;, to the environment. When
the train leaves the crossing it sends an observable signal traing,: just before
crossing TO.

ATrain def send,(red). ATrain + send,(green).f; . ITrain!

ITrain % send; (red).ITrain + send;(green).t;.CTrain

o def e e ——— N
CTrain % train;, train.y: i, . ATrain

3.1.3 Road sensor

The Road sensor works in two ways. Firstly, it responds to the road light; when
this is red, the sensor simply waits for it to turn to green. On the green signal,
waiting cars are admitted to the crossing and are counted in and out by Cars.
If there are no cars waiting the sensor will just wait for the lights to change back
to red, or for a car to arrive, whichever is first. Each car is observed entering
and leaving the crossing through car;, and car,y,; signals. Only when all cars
have left, that is, when the number of out signals is equal to the number in,
does the sensor check the lights again, so satisfying 2.2 (2). The lights might
have changed to red in the meantime, modeling the situation in which cars may
choose to ignore red lights and hence prevent the train from using the crossing.
The sequential nature of the control makes it safe for them to do this.

It is important to note here, however, that while the sensor is reading the
red light it is not sensing cars on the crossing. Having checked once that the
crossing is clear it sends the acknowledgment sent to Control which then begins
to close the gate. If at this point a car enters the crossing it will not be sensed
and an accident may be caused; responsible behaviour of drivers is assumed (see

1Strictly, sendq should be parameterized and followed by an ‘if then else’ statement




caveat in 1.1). A car using the crossing legitimately and breaking down before
it has left will be sensed and will therefore be safe.

RSensor %/ send, (red).sent.Stop
+
send,(green).Go
def —
Stop = send,(green).sent.RSensor
Go ¥/ car;,.Cars(1) + send, (red).sent.Stop
def
Cars(n) =  cam,.Cars(n+ 1)

+
Carout. if n = 1 then RSensor
else Cars(n — 1)

3.1.4 Road lights and gate

RLight (which is initially green) is read by the road sensor. It continues to send
the ‘red’ signal until it is told by Control to change. The gate receives the signal
(a toggle) to change its state and having done so, sends the acknowledgment
‘done’ back to the control. ‘

RLight(z) &/ send,(z).RLight(z)
+ .
change, .send, (change(z)) RLight(change(z))

Gate &/ movegate.done.Gate

3.1.5 Main control

All communications in 2.2 (3) to (5) take place through Control. These are
entirely sequential, so it can be seen by inspection in what order the opera-
tions are performed, thus satisfying the conditions. Control, having sensed an
approaching train, first changes the ALight (furthest up the track) to red to
prevent any more trains entering the section. It then changes the road light
to red and on receiving an acknowledgment, closes the gate. Only when this
has been acknowledged does it change the ILight (on the track, closest to the
crossing) to green to allow the train to proceed through the crossing. When it
senses the train inside the crossing the ILight is changed back to red. When the
train has left the crossing (both track lights are still red) the gate is opened, the
road lights are changed to green and the traffic allowed to proceed. Lastly, the
ALight is changed back to green.




e

a.changey.change,.sent.movegate.done.
change;.i.change;.o.
movegate.done.change,.sent.change,.Control

Control

3.1.6 The composed system (see Fig. 2)

The composed crossing system is given by

Crossing®! ATrain|TA|TI|TO|ALight(green)|ILight(red)
|Control|RLight(green)|Gate|RSensor \ A

where
A= {a,i,0,t4,t;t,,change,, change;, change,,
send,, send;, send,., sent, movegate, done}

so that the only actions visible to the environment are train;,, train,u:, carin,
CaToyt.

We now wish to analyse the behaviour of the Crossing as a whole. We can
do this by applying the expansion theorem [Mil89] to the composed system;
however, attempts to do this show that possible states for the whole system
proliferate within one or two lines; the proof becomes unmanageably complex.
We should like, if possible, to decouple the total system into smaller more man-
ageable subsystems which may be analysed independently and then composed.
The following is an attempt to achieve this.

3.2 Divide and conquer

We propose to divide the crossing system into two subsystems:. the road vehi-
cles with R_Control and the trains with T_Control. Only Control needs to be
changed to do this; it is split into two smaller but communicating control subsys-
tems, one each for the road vehicles and the trains. The extra signals introduced
are stopcars, gotrains, gocars and restore; these are used to synchronize the
two subsystems and prevent any interleaving of trains and cars.

3.2.1 Road control

R-Control cannot act until it has received the stopcars signal from T_Control.
On receiving this, R.Control changes the road lights to red and on receiving an
acknowledgment closes the gate. When this has been acknowledged, the signal
gotrains is sent to T_Control and the signal gocars awaited. On receiving this,
R_Control then changes the road lights back to green and opens the gate. Finally
the restore signal is sent to T_Control.




R_Control %/ stopcars.change,.sent.movegate.done.

gotrains.gocars.movegate.done.change,.sent.
restore.R_Control

3.2.2 Train control

The T-Control having sensed an approaching train first changes the ALight
to red to prevent any more trains entering the section. It then sends the sig-
nal stopcars to R_Control and cannot proceed until it has received the signal
gotrains. On receiving this from R.Control, it sends the signal to change the
ILight to green to allow the train to proceed through the crossing. When it
senses the train inside the crossing the ILight is changed back to red. When
the train has left the crossing (both track lights are still red) the signal gocars
is sent to R-Control and the signal restore is awaited. On receiving this the
ALight is changed back to green.

T_Control %/ a.change, .stopcars.gotrains.
change;.i.change;.0.gocars.restore.
change,.T_-Control

3.2.3 The composed road vehicle and R_Control subsystem

The observable communications for the road subsystem are car;y,, caroy:, stopcars,
gotrains, gocars and restore.

RX = RLight(green)[Gate]RSensor[R;Control
{change,, movegate, send,, sent, done}
3.2.4 The composed train and T.Control subsystem

The observable communications for the train subsystem are train;,, traingy:,
stopcars, gotrains, gocars and restore.

TX = TA|TI|TO|ALight(green)|ILight(red)|T_Control|ATrain
\{a,1i,0,t4,1i,t0,change,, change;, send,, send;}

3.2.5 The subsystems composed (see Fig. 2a)

Crossing2 = ((TX \ T)|(RX \ R))\ C

where
T= {a,i,o,t4ti,t,, changes, change;, send,, send;},
= {change,, movegate, send, , sent,done} and
C = {stopcars, gotrains, gocars, restore}




Before proceeding, we need to show that that the composition above and that
in 3.1.6 are congruent. We can then consider the composed subsystems in the
confidence that whatever is shown to be true for Crossing2 will also be true
for Crossing.

4 Equivalence of the single and decoupled
systems

Before continuing, we recall the particular Restriction Laws which we shall be
invoking, and define some notation.

The Restriction Laws [Mil89]

(1) P\L=PifL(P)N(LUL)=0

(2) P\E\L=P\(KUL)

@) ...... (not invoked) _

@) (PIQ\L=(P\DIQ\L) i LP)NLQ)N(LUL)=0

Notation

T, R and C are as defined in 3.2.5. L(P) is the sort of P, that is, its label
set. An overbar above the name of such a set refers to the complement of that
set. So

L(TX)= {a,i,o,ta,t;,t, changes,change;, send,, send;, stopcars,
gotrains,gocars, restore, traini,, traingy: }

L(RX) = {change,, movegate, send,, sent, done, stopcars, gotrains, gocars,
restore, carin, caroys}

From this we note that

(f) TUR= A (as defined in 3.1.6)
(@) LTX)N(RUR)=0
(@) LRX)N(TUT)=10




4.1 Proving equivalence

First we need the following lemma:

Lemma 4.1 Control = (T-Control|R-Control) \ C
Proof

(T_Control|R._Control) \ C = (a.change,.stopcars.gotrains.change; .i.
change;.o.gocars.restore.change,.
T_Control|stopcars.change, .sent.
movegate.done.gotrains.gocars.

movegate.done.change,.sent.restore.
R._Control) \ C

= (a.change,.T.change,.sent.
movegate.done.T.change;.i.change;.o.

T.movegate.done.change,.sent.T.change,.
(T-Control|R_Control) \ C)

= (a.change,.change,.sent.
movegate.done.change;.i.change;.o.

movegate.done.change, .sent.change,.
(T-Control|R-Control) \ C)

= Control O

We use this congruence in the following theorem.




Theorem 4.1 Crossing2 = Crossing

Proof

Crossing2

I

(TX\T)(RX\ R)\C
(TX\T\ R)|(RX\R))\C

(by (1) and (ii)

(TX\TIRX)\R\C

(by (4))

(TX\TIRX\T)\ R\ C

(by (1) and (iii))

(TX|RX)\T\R\C

(by (4))

(TX|RX)\C\TUR

(by (2)
(ATrain|TA|...|T-Control)|(R-Control|...|RSensor)
\C\ T UR) (by commutativity of ‘—’)
ATrain|TA|...|(T-Control|R-Control)|...|RSensor
\C'\ T'UR (by associativity)

(ATrain\ C|TA\C|...|(T-Control|R-Control) \ C|
...|RSensor \ C)\ T U R (by (4))
(ATrain|TA|...|(T-Control|R_Control) \ C|
...|RSensor)\ T U R (by (1))
(ATrain|TA|...|Control|...|RSensor)\TUR

(by lemma 4.1)
(ATrain|TA|...|Control|...|RSensor) \ A

by (i)

Crossing

5 Analysis of the subsyétems’ behaviour

We now use the expansion theorem to analyse the behaviour of the two sub-

sytems.

5.1 Expansion of the train subsystem

In the interests of clarity, only those agents which are able to communicate will
be shown in full. Notice that there is no communication possible within this
subsystem until a train approaches. We have specified the train so that having
left the crossing, it returns to its original state; in other words, we are assuming
a steady stream of trains with no notion of elapsed time in between. This is a

limitation of (untimed) CCS.

Lemma 5.1.1

TX\T = r.stopcars.gotrains.train;,.

traingy:.gocars.restore. TX \'T

10




Proof
TX\T = ATrain|ALight(green)|TA|TI|ILight(red)|TO|T_Control\T

= send,(green).t,.ITrain|send,(green).change, . ALight(red)|
TA|...|a.change, ... T-Control\T

= r.(f;.ITrain|change,. ALight(red)|ts @.TA|
...|a.change, ... T-Control) \ T

= r.7.(ITrain|change,.ALight(red)|a.T A|ILight(red)
...|a.change, ... T_Control)\ T

At this point two sets of communications are running concurrently: the red
signal between the ILight and the ITrain (modelling the train waiting at the
lights while they show red), and the communication through the a and then
change, ports of the control. These last two must take place before the visible
signal stopcars is sent; the first must act, at the latest, immediately after the
gotrains signal. Strictly speaking, the expansion hereafter should be expressed
as a sum of the form 7Y s;, where the s; are the different states induced by the
various placings .of 7’s. However, as interleaved 7’s are absorbed then s; = s;
for all ¢, j and we are justified in examining one particular summand. The
significant fact is the order in which the visible actions occur and this is fixed.

The sequential T_-Control ensures that lights are not changed until the ap-
propriate signals have been received. In particular, the ILight is not changed to
green until after the gotrains signal. The state at which the system is ready to
communicate stopcars is shown next; at this point, both sets of track lights are
showing red (indicating also that any approaching train will be stopped outside
the critical zone). '

= 7.(ITrain|ALight(red)|TA|TI|TO)
change;.ILight(green)|
stopcars.gotrains ... T_Control) \ T

= r.stopcars.gotrains.(ITrain|ALight(red)|TA|TI|TO|
change;.ILight(green)|change;.i... T-Control)\ T

= r.stopcars.gotrains.r.(send,-(green).?,—-.CTrainlALight(réd)]TA|TI|
TO|send;(green).ILight(green)|i...T-Control) \ T

= r.stopcars.gotrains.t.7.(f;.CTrain| ALight(red)|T Alt; i.TI|TO|
ILight(green)|i...T-Control)\ T

= r.stopcars.gotrains.r.7.7.(CTrain|ALight(red)|TA[i.TI|TO|
ILight(green)|i...T_Control)\ T

11




As above, we have more than one possible state to move to next, but for the
same reasons we consider just one of these states. The most important safety
feature is that T_Control must have received the o signal from T'O (that is, the
train must have left) before the gocars signal is sent.

= T.stopcars.gotrains.T.T.T.Arain;, traitnoy:.
(to.ATrain|ALight(red)|TA|T1|t,.3.TO|
ILight(green)|o.gocars.restore.change, . T-Control) \ T

= T.stopcars.gotrains.T.7.T.irain;, .trainy;.gocars.restore.
(AT'rain|ALight(red)|T A|TI|
TO|ILight(green)|change, . T-Control) \ T

= T.stopcars.gotrains.T.7.7.train, .train.y;.gocars.restore.
(ATrain|ALight(green)|TA|TI|TO|ILight(red)|T _Control) \ T

= T.stopcars.gotrains.T.7.7.train;y, train.y,.gocars.restore..
TX\T
= Tt.slopcars.gotrains Irain, 1raing,: .gocars.restore. TX \T O

5.2 Expanéion of the road subsystem

We show the following result:

Lemma 5.2.1

RX\R =
(cari, . . . stopears . . .CaTqoys.
gotrains.gocars.restore. RX \ R ’
+ ‘ -
stopcars.gotrains.gocars.restore.RX \ R
+
TaTin - - . CaTout-RX \ R)
+
stopcars.T.
(r.Carsy, . . .Carqgz.gotrains.gocars.restore. RX \ R
+
7.gotrains.gocars.restore. RX \ R)

Proof

We begin by examining the behaviour of the road traffic before a train ap-
proaches, that is, before R-Control receives the stopcars signal. (There may, of
course, be no cars present, in which case the road sensor will continue to ‘watch’
the lights until they change to red.) This involves communication between the

12




|

cars and road lights only. Note that while RLight stays green, the movement
of cars is independent of Control.

RSensor|RLight(green) \ R = send,(green).Go.|(send,(green).
RLight(green) \ R
= r.(cariCars(1)|RLight(green)
+
(send,(red).sent.Stop|RLight(green)) \ R

= r.(cari,.(Cars(1)|RLight(green))
+
(send,(red).sent.Stop|RLight(green)) \ R

In the Cars state, there can be no further communication with RLight; only
RSensor, Stop and Go can ‘see’ the lights. It can be seen from the specification
of Cars that in order to leave this state and return to a state which can see
the lights, the number of caryy; signals must equal the number of car;, signals,
that is, the crossing area must be clear of cars before RLight can be read again.
When this happens, RLight must be read before another car enters the crossing
area; this will give rise to interleaved 7’s between groups of car;y,, carqy,: signals.
Considering the above as part of RX, we see that since stopcars is visible, it can
be received at any time during the activity described above. When this happens
then change, is sent to RLight; RSensor cannot send the acknowledgment sent
back to R_Control until all the cars that have entered the crossing have also
left. We consider the behaviour of RX, then, from this point:

RX\R = .

(cari, . .. stopcars.t.(Cars(n)|

send,(red).RLight(red)|sent . ... R_Control|Gate)

A o J
stopcars.(send,(red).sent.Stop|send, (red). RLight(red)|
sent ... R_Control|Gate) ‘

+ :
TaTsy, . . .CaTou;.(RSensor|RLight(green)|RControl|Gate)) \ R
+

stopcars.

(RSensor|RLight(green)|change, ... RControl|Gate) \ R

= (r.(RXy + stopcars.RX, +€arsy, . . . CaTont. RX)

+
stopcars.RX3) \ R

13




We consider the behaviour of RX; first:

RX1\R = cary,...stopears...T.Carqu;.(Cars(1)]
send,(red).RLight(red)|sent ... R_Control|Gate) \ R

= <Carip...stopcars...T. .W.RSensoﬂ
send,.(red).RLight(red)|sent ... R_Control|Gate) \ R

= Cari,...stopcars...T.Carqyz.(sendy (red).sent.Stop)
send,(red).RLight(red)|sent ... R_.Control|Gate) \ R

= <¢ary,...stopcars...T.Carqou;-RX2 \ R

We now consider the behaviour of RX5; the first communications are the hidden
ones through send, and then sent:

RX3\ R = r.7.(Stop|RLight(red)|movegate ... R_Control|Gate) \ R

= r.7.(Stop|RLight(red)|movegate.done ... R_Control|
movegate.done.Gate) \ R

The next several actions all communicate through R_Control sequentially, up
to the point where RLight is changed back to green: the gate is closed and
acknowledgment received, and then gotrains is sent to T_-Control; on receiving
gocars the gate is opened and the lights changed back to green. (As in the case
of TX, the expansion here is a sum }_ s; with all summands s; congruent.)

RX;\R = r.r1.7.7.gotrains.gocars.7.7.7.7.
(RSensor|RLight(green)|restore. R.Control|Gate) \ R

= r.1.7.7.gotrains.gocars.t.T.T.T.restore. RX \ R

= r.gotrains.gocars.restore.RX \ R

14




Lastly we consider RX3:

RXs\R =

(RSensor|RLight(green)|change, ... RControl|Gate) \ R

7.(Go|RLight(green)|change, ... RControl|Gate) \ R

+
7.(RSensor|send, (red). RLight(red)|sent ... RControl|Gate) \ R

T.

(r.carip . ..(Cars(k)|RLight(green)|change, ... RControl|Gate)
+

(1.(send, (red).sent.Stop|send, (red). RLight(red)|

sent ... RControl|Gate)))

+

r

(send, (red).sent.Stop|send,(red).RLight(red)|
sent ... RControl|Gate) \ R

(r(r.RX4 + 7.RX3) + 7RX2)\ R

(r.(r.RX4 + 7.RX5))\ R

The behaviour of RX4 is substantially the same as that of RX;, the only dif-

ference being in

RX\R =

the position of stopcars. Substituting back into RX gives

T.
(CaFin . . . stopears . . .CaFou;-gotrains.gocars.restore.
RX\R

+ .
stopcars.gotrains.gocars.restore. RX \ R

+

TaTip . . .CaTout-RX \ R)

+

stopcars.T.

(r.Cariy, . . . CaTouz-gotrains.gocars.restore. RX \ R

1 .
7.gotrains.gocars.restore.RX \ R) : a

(Strictly speaking, restore may be sent at any time during the movement of
cars from Go when the train has left, that is if there are cars present. However,
as restore is hidden at the next level of composition, it will simply give rise
to a 7 interleaved between car;, and caryy: signals. It has also been assumed
that while the RSensor is in Cars(k) state, the change, signal will be sent to
RLight by RControl; in fact, this communication cannot be forced while the
visible car;,, caryy: are able to act. There is a possible world where cars use the

15




crossing indefinitely, so preventing the trains from using it; i.e., #car;, tends
to infinity.)

5.3 Expansion of Crossing2

From 3.2.5 and the congruence proved in 4.1

Crossing = Crossing2

= (RX\R)[(TX\T))\C

and so by composing the subsystems above, we prove the following result:
Theorem 5.1

Crossing = 7.(CaFiy, . .. CaTou; traing, train,:.Crossing
+
TArain;, traing,; .Crossing
+
TaTiy . . . CAToyCT0SSING)
+
T.(TCFip . . . CaToui ATAINip E7 AN oyt Crossing
+
T.1rain;, train.y: .Crossing)
Proof
Crossing = .
CaTip «+ - T+ . . CaTgui. T-A7AI NGy 1T AN o1 T.T.Cros5iNg

+

T.7.8rain;, 1rain,y;.7.7.Crossing

L .

CaTip, -« . CaToyt.Crossing)

+ .

.

(TC@Fy .. . T .. .CAToys. T AT AN, AT AN Gyy . T.T.CTOSSING

+

T. 7A@y, Arain,ys . 7.7.Crossing) .
= r.(Cariy ... CaTou; traing, .trainy,.Crossing

+

TAPAiN;y, 1raing;.Crossing

+ .

CaTip . . .CATou1 CTOSSING)

+

T.(T.CaTy, . . . CAT oyt AP ainiy 1rain,y;.Crossing

+

TATaIN;p, 170N oy . Crossing) ]

16




where #car;, = #carou:.
We can simplify the appearance of this by making the following substitution:
Let

® 01 = CaF;p - - - CaToyz, Where #cary, = Fcaryy::
® 0y = 1rain;,.traingy; (either of these may include 0 or more 7’s):

e C = Crossing.

Then
C= r.(01.02.C+71.02.C+01.C)
+
T.(1.01.09.C + 7.03.C)
(See Fig.3)

6 Proving the system safe using bisimulation

We recall S1 from 2.3:

SafeCrossing def train;, .train,y:.SafeCrossing
+
Carin.SafeCrossingears (1)
def

tari,.SafeCrossingears(n + 1)

+

CaToyz if n = 1 then SafeCrossing
else SafeCrossingears(n — 1)

SafeCrossingcars(n)

Making the substitution as above with SC = Sa feCroésing, we have
SC = 03.5C + 01.5C

(See Fig. 4a).
Clearly this is not observation equivalent to Crossing. Every choice in Crossing
is guarded by one or more T actions, representing either the reading of a green
light by RSensor, the sensing of an approaching train by T'-Control, or some
other internal signal informing the system behaviour.

In S1, however, there is an implicit choice which the observer may make but
which, it could be argued, does not model the real situation. Taking Milner’s
[Mil89] analogy of agents of the form p = a.p’ + b.p"” with a box having two
buttons marked a and b, then either button may be pressed successfully; the
observer may choose which button to press. Applying this to S1, it would seem
that the choice between a car and a train is made by the observer, which is
clearly not the case.
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We could remove this choice by guarding each summand in SafeCrossing
with a 7 thus:

SafeCrossing’ def T.Iraing, train.g.SafeCrossing’  (S1')
+

T.Car;,.SafeCrossingcars (1)

Now, however, we are presented with the possibility of deadlock; the system
might ‘slip’ into the first state, allowing trains to enter (so barring cars from
doing so) when no train is approaching. 7’s arise because of hidden internal
communications whose nature is not known to the observer; all ’s look the
same, whether they arise from a whim of the system or from responsible decision
making procedures; and these may include desirable failsafe mechanisms. We
cannot distinguish between ‘good’ and ‘bad’ 7’s.

What we wish to model is the situation where the observer sees either a
train or cars (but not both at the same time) and is never prevented from
seeing either, but cannot choose between them; a proper ‘choice’ is made by
the system, e.g., when an approaching train is sensed actions are performed
which will eventually allow the train to cross. It might be possible to model
this by guarding the choices in SafeCrossing with visible actions but this is
moving further away from the real situation; the observer, from his helicopter
presumably, sees cars and trains and nothing else.

We leave the question open for the present and make the above substitution
in S/, giving

SC' = 1.03.8C" + 1.01.5C"
(See Fig. 4b) :
Assuming, then, that S1’ is the better model of the top level safety requirement,

we can show that Crossing satisfies this new condition. The bisimulation, R,
is o

R= {(S0,T0), (S1, ), (S, Ty), (5, T2),
(54) T2)) (85) Tl)) (SG; TZ)) (S7;‘T2)}

and so Crossing and SafeCrossing’ are observationally equivalent.

7 Conclusion

The level crossing is a ‘real world’ application of CCS and as such, illustrates
some of the strengths and limitations of the language. Despite being a small
system it is nevertheless too large to be analysed as a whole due to the prolifer-
ation of states quite early on in the analysis. However it was possible within the
language to separate the single system into smaller communicating subsystems,
provably equivalent to the original, with each subsystem smaller and so more
amenable to analysis (though even here the states are numerous).

The behaviour of the system may be summarized as follows:
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o the system has been shown to be equivalent to the required safe behaviour
of a level crosssing, provided we considered condition S1’; given that CCS
has no means of distinguishing between one silent action and another, a
case can be made for either S1 or S1’:

e apparently the system can deadlock, since in SafeCrossing’ we know
nothing about the nature of the 7’s. At this level the system may ‘choose’
to stay indefinitely in, say, the state which allows cars to use the cross-
ing and so prevent trains from doing so. We need to assume that the
hidden actions are taken responsibly and safely by the system, but there
is no mechanism within CCS for making this explicit. Without the 7’s,
SafeCrossing seems to allow the observer to experiment with the system,
rather than merely to observe it and this also is undesirable. Nevertheless,
it can still be seen that at no time are both cars and trains prevented from
using the crossing;:

o the system fails safe; cars must be counted out of the crossing before a
train may enter and the train must leave before cars may re-enter. If either
a train or a car enters the crossing but fails to leave (whether it breaks
down or for any other reason), the appropriate lights will remain on red,
preventing other vehicles from entering the crossing:

o the required behaviour of the train (i.e., the driver) has been specified
explicitly. However, in the case of road vehicles, responsible behaviour
of drivers has been assumed. Drivers who attempt to use the crossing
unlawfully do so at their own risk.

7.1

The required safe behaviour of the crossing was specified initiélly.at a high level
of abstraction; then, without going outside the language, individual components
were specified in greater detail and it was shown that the composition of these
was equivalent to the top level specification — or in other words, the system
was proved safe. On this basis, we could continue ‘down’ through the life-cycle
showing, by proving equivalence at each level, that the safety requirements were
still satisfied and eventually mapping onto a high level language such as Ada.

7.2

The model has limitations, however. It is not possible within CCS to model the
(apparently) non-deterministic arrival of trains wishing to use the crossing; in
fact, if we were to incorporate two trains within T'X, say, ATrain and BT rain,
then it is theoretically possible for the second to follow the first past each set
of lights and into the next sector before the lights change. We have assumed
that the safety features of the wider system will prevent a second train from
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following closely behind the first. This assumption is not unreasonable, but
we need to be aware that we are making it. On the other hand, changing the
ALight to red is the first action taken by Control on sensing an approaching
train and changing it back to green is the last; so although we cannot model a
second train approaching at a safe distance, we know from the state of ALight
that it will be held on a red light until the first train has left the system.

CCS cannot detect the absence of a signal, only its presence. Since all com-
munications are synchronized, it is not possible, for instance, for Rlight just to
‘show’ green; something must be there to ‘see’ it and so allowance has to be made
for this in the specification of RSensor. ‘If ...then ...else’ statements may be
used to test the parameters of an action, but not to test for the presence of the
action itself; we cannot model interrupts in CCS. This is not insurmountable
here but in other circumstances might give problems.

7.3

CCS contains no notion of elapsed time. Despite this, we were able to model
the (apparently) temporal safety constraints as set out in [Gor87]. This was
achieved in two ways. First, it ¢s possible to express temporal ordering in CCS
and it is this ordering, rather then time itself, which was required in safety
conditions (3) to (5) of 2.2. Second, the fact that all signals produced have
to be consumed means that an ack signal cannot be ‘lost’; Control will wait
indefinitely before allowing further actions and so the system as specified fails
safe. On the other hand, as was stated in 5.2, it is possible in the CCS system
for the visible actions car;y,, caryy: to prevent the change, action from being
sent by R_Control to RLight; interpreted, this means that a steady stream of
cars may prevent the train from using the crossing indefinitely. There is no way
of forcing this communication in CCS, whereas in temporal loglc it could be
made explicit that this action must happen.

Condition (2), (which said that cars must have time to leave the crossing
before the gate is lowered), seems to need some means of measuring time ex-
plicitly. In the specification of RSensor we have achieved the same end but by
different means. Instead of measuring time, we count cars in and out and only
allow the gate to be closed after the crossing has cleared. This is inherently
safer than allowing a fixed period of time to elapse.
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Fig.3 State diagram for Crossing2 (arcs without arrows are directed towards S0)
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