Software Testing based on Formal Specifications:
a theory and a tool

Published in Software Engineering Journal (SEJ), Vol.6, num.6, p.387-405, 1991

Gilles Bernot** Marie Claude Gaudel* Bruno Marre*
bernot@frulm63 mcg@frlri61 marre@frlri61
bernot@dmi.ens.fr mcg@lri.Iri.fr marre@Iri.lri.fr
Abstract

This paper addresses the problem of constructing test data sets from formal
specifications.
Starting from a notion of an ideal exhaustive test data set which is derived from
the notion of satisfaction of the formal specification, it is shown how to select by
refinements a practicable test set, i.e. computable, not rejecting correct programs
(unbiased), and accepting only correct programs (valid), assuming some hypothe-
ses.
The hypotheses play an important role: they formalize common test practices and
they express the gap between the success of the test and correctness ; the size of
the test set depends on the strength of the hypotheses.

The paper shows an application of this theory in the case of algebraic specifi-
cations and presents the actual procedures used to mechanically produce such test
sets, using Horn clause logic. These procedures are embedded in an interactive sys-
tem which, given some general hypotheses schemes and an algebraic specification,
produces a test set and the corresponding hypotheses.

Key Words: software testing, algebraic specifications, logic programming.

* LRI, UA CNRS 410, Université PARIS-SUD, F-91405 Orsay cedex

** LIENS, URA CNRS 1327, Ecole Normale Supérieure, 45 rue d’Ulm,
F-75230 Paris cedex 05

Introduction

Most the current methods and tools for software testing are based on the program to be
tested: they use some coverage criteria of the structure of the program (control flow graph,
data flow graph, call graph etc.). With the emergence of formal specification languages,
it becomes possible to also start from the specification to define some testing strategies
in a rigorous and formal framework. These strategies provide a formalization of the well
known “black-box testing” approaches. They have the interesting property of being in-
dependent of the program; thus they result in test data sets which remain unchanged
even when the program is modified. This is specially important for regression testing.
Moreover, such strategies allow to test if all the cases mentioned in the specification are
actually dealt with in the program. It is now generally agreed that “black-box” testing
and “white-box” testing are complementary.

This paper presents both a theoretical framework for testing programs against formal
specifications and a system, developed in PROLOG, which allows to select a test data set
from an algebraic specification and a testing strategy. All the “good” selection strategies,
as defined in the theory, are supported by the system.

The starting point of the theoretical framework is the notion of an ideal erhaustive
test set associated with the formal specification. The success of a program against this
exhaustive test set is stated to be a correctness reference (under some hypotheses to be
discussed later). Clearly, the definition of the exhaustive test set is determined by the
semantics of the kind of formal specification which is used.

This exhaustive test set is of course not usable in practice since it is (most of the
time) infinite and, moreover, not always decidable: there are some cases where it is not
possible to decide whether or not an execution returns a correct result, mainly for reasons
of observability. It is an aspect of the so called oracle problem. However, as said above,
the exhaustive test set provides a theoretical correctness reference, and we show how to
select, by successive refinements, test sets which are finite, decidable and keep some other
good properties of the exhaustive test set.

The crucial notion in the selection process is the concept of testing hypotheses, already
introduced in [3] for different purposes. Hypotheses represent and formalize common test
practices. Very roughly, when one chooses a finite test set T = {m,...,7,} satisfying
some criteria to test a property P(x), one assumes at least the following hypothesis:

[P(r) A P(m) A ... AP(,)] = Va, P()

As a matter of fact, such an hypothesis is the result of the combination of several simpler
and more sensible hypotheses. These hypotheses are usually left implicit. We believe that
it is of first importance to make them explicit. Besides, we claim that they are a good
conceptual tool for the selection of test data sets: it seems sound to state first some gen-
eral hypotheses and then to select a test set corresponding to them. Actually, we propose
to build these hypotheses by combination and specialization of some general hypothesis
schemes.

Generally, stronger hypotheses will result in smaller test sets: the weakest hypotheses
are the ones associated with the exhaustive test data set; the strongest one is that the

program under test is correct and it corresponds to ...an empty test set. The practi-
cally interesting pairs of hypotheses and test sets are obviously somewhere between these
extremist views of testing. As usual in testing, the problem is to find a sound trade-off
between cost and quality considerations.

As soon as specifications are handled in a formal framework and the testing strategies
are expressed as hypotheses (i.e. formulas), one can consider the possibility of using
proof-oriented tools for the selection of test data sets. These tools depend on the kind of
formal specification in use: in this paper we present a tool based on “Horn clause logic”
which allows to deal with algebraic specifications and produces test sets corresponding to
the combination of some general hypothesis schemes. Our tool is even more elaborated
since it helps in the choice of hypotheses.

Let us come back to the oracle problem, i.e. how to decide whether or not a program
execution returns a correct result. The solutions to this problem depend both on the kind
of formal specification and of the program: a property required by the specification may
not be observable using the program under test. Most the formal specification methods
provide a way to express observability. In this case, the program is assumed to satisfy the
observability requirements (for instance to decide correctly the equality of two integers:
it is an oracle hypothesis), and, following the same approach as above, an ezhaustive 0b-
servable test set can be associated with the specification. Then, testing hypotheses are
used to select a finite subset of it. We present here such a solution in the framework of
algebraic specifications.

Summing up, the theoretical framework presented here introduces the important idea
that a test data set cannot be considered (or evaluated, or accepted, etc) independently
of some hypotheses and of an oracle. Thus we define a testing contezt as a triple (H,T,0)
where T is the test data set, H is a set of hypotheses and O an oracle. We then con-
struct some basic testing contexts (roughly, those corresponding to the ideal exhaustive
test sets mentioned above) and we provide some way for deriving from them practicable
testing contexts. Informally, a testing context (H,T,0) is practicable if: T'is finite; O is
defined on all the test data in T} it rejects no correct programs (unbias); and, assuming
the hypotheses H, it accepts only correct programs (validity).

The paper is organized as follows:

e Section 1 introduces the general concepts and some theoretical results for a large
class of formal specifications.

e Section 2 specializes the results of Section 1 to the case of structured algebraic
specifications. It is shown that observability issues are crucial for the oracle problem.
Besides, some fundamental hypotheses such as uniformity hypothesis or reqularity
hypothesis are introduced.

e Section 3 discusses the way these hypotheses can be combined.

e Section 4 presents the basic techniques which are used in the system. They are
mainly extensions of equational logic programming

e Section 5 describes the system and the way it makes it possible to implement the
strategies corresponding to the practicable testing contexts defined in Section 2.
Moreover, the treatment of an example is reported.

1 Formal specifications and testing
1.1 Testing a program against its formal specification

In this first part, we consider that a specification is a set of formulas, written using a fixed
set of logical connectors, and some operation names of a signature X. A program, which
is supposed to implement the specification, provides a way of computing (for instance a
function, a procedure) for each operation name of the signature . These rather flexible
definitions embeds various approaches of formal specifications such as temporal logic,
algebraic specifications, etc!.

Let SP be a formal specification and P be a program. It is possible to verify (by testing
or by proving) the adequacy or inadequacy of P with respect to SP if the semantics of
P and SP are expressible in some common framework. This role is ensured here by the
concept of an interpretation for a given signature: intuitively a Y-interpretation is a set of
values plus, for each name in the signature ¥, an operation of the relevant arity on these
values. We consider that the semantics of SP is a class of X-interpretations, and that P
defines a Y-interpretation. Then, the question of the correctness of P with respect to SP
becomes: does the Y-interpretation defined by P belong to the class of the interpretations
of SP?

More precisely, a formal specification method is given by a syntax and a semantics.

e The syntax is defined by a notion of signature. With each signature 3 is associated
a set of sentences ®@y,. Py contains all the well-formed formulas built on 3, some
variables, and some logical connectives.

e The semantics is defined by a class of X-interpretations, Inty, and a validation
predicate on Inty, X ®x denoted by |=. For each Y-interpretation A and for each
formula ¢, “A = ¢” should be read as “A validates ¢”.

In this framework, a formal specification is a pair SP = (X, Az) such that Az is a (finite)
subset of Ox..

Notation: the class of interpretations wvalidating SP is called the class of
models of SP and is denoted by Mod(SP):

Mod(SP) = { A€ Ints | A= Az}

The notions of signature, sentence, interpretation, and validation depend on the kind of
formal specification, for instance algebraic specifications, temporal logic,. . .

What does it mean to test a program P against a Y-formula ¢(X)? As said above, ¢(X)
is a well-formed composition of logical connectives, operation names of ¥, and variables
in X. Running a test of ¢(X) consists of replacing the variables of X by some constants,
computing by P the operations of > which occur in ¢ and checking that the results
returned by P satisfy the property required by the connectives.

For instance, let f, g, h, a, b belong to X, let V be a connective, z,y some variables; and
¢(z,y) the following formula:

(flz,y) = g(x)) vV (flz,y) = h(y))

!The readers familiar with Goguen and Burstall institutions will recognize a simplified version of them.

Let us note fp, gp, ... the functions computed by P for f, g, A test data for the
formula above is:

(f(a,b) = g(a)) VvV (f(a,b) = h(b))

Running this test consists of computing the three values fp(ap,bp), gp(ap), hp(bp) and
checking that the first one is equal either to the second one, or to the third one.

This view of program testing is just a generalization of the classical way of running tests,
where the program is executed for a given input, and the result is accepted or rejected:
in this case, the formula is the input-output relation required for the program.

We call a test data set of a X-formula ¢(X) a set of instances of ¢(X). As usual, when a
finite test data set of reasonable size is successful, the program correctness is not ensured
and when a test is not successful, we know that the program is not correct. As indicated
in the introduction, this fact is expressed in our framework by hypotheses:
given a formal specification SP and a program P, the test data selection problem consists
of stating some hypotheses H and to select some test data set T such that:

H + Success(T) = Correctness(P, SP).

When we get Success(T) with an incorrect program, it means that the program does not
meet the hypotheses H. The implication above is similar to the completeness criteria of
Goodenough and Gehrart [14]: for every incorrect program that meets the hypotheses H,
the test set T must fail.

In the discussion above, the oracle problem is hidden behind the notation Success. The
oracle is some decision process, formalized by the predicate Success, which should be able
to decide, for each elementary test 7 in 7' if 7 is successful or not when submitted to the
program P. Providing such an oracle is not trivial at all ([32][33]) and may be impossible
for some test data sets. Thus, the existence of Success must be taken into account, as
well as the hypotheses H, when selecting a test data set T.

1.2 Testing contexts

Definition: let P be the program under test and let SP = (X, Az) be its
formal specification. A testing context is a triple (H,T,Success) where:

e His a set of hypotheses about the interpretation Ap associated with P.
(This means that H describes a subset Mods(H) of Ints: the set of
Y-interpretations “validating H”)

e Tis a subset of ®y; T is called a “test data set” and each element 7 of
T is called an “elementary test”

e the Success oracle is a partial predicate on ®y; for each formula (think
“each elementary test”) ¢ in @y, either Success(¢) is undefined either it
decides if ¢ is successful in Ap.

This definition is very general and calls for some comments.

Success can be shown as a procedure using the program P: one should write Successp (P
and SP are implicit parameters of all the testing context).

It may seem surprising that test data sets can contain formulas with variables. Of course,
our aim is to select test sets which are: executable (i.e. some set of ground formulas),

finite, and as we will see later, instances of the axioms of SP. However, the definition above
is useful because it allows to build testing contexts by refinements. A good starting point
of what we call the “testing elaboration process” is the triple (“Ap is a L-interpretation”
, Axsp , undef) where undef is the never defined predicate (as for test sets, more sensible
oracles are built by refinements). This initial testing context means that one wants to test
the axioms of the specification, the oracle is not defined at all, and the hypothesis “Ap is
a Y-interpretation” simply means that each required functionality has been implemented
(not necessarily correctly implemented). This hypothesis is equivalent to Mods(H) =
I ntg .

The goal is to refine this initial testing context in order to get a practicable testing con-
text. In the rest of this subsection, we give a sufficient condition to obtain practicability.
Let us first formally define what is practicability.

Definitions: let (H,T,Success) be a testing context. Let us note D(Success)
the definition domain of Success.
1. (H,T,Success) has an oracle means that:

o T'is finite?
o If Ap validates H, then T'is included in D(Success)

2. (H,T,Success) is practicable means that:

e (H,T,Success) has an oracle

o If Ap validates H then Success(T) <= Ap = Ax
where Success(T) denotes “Success(t) for all 7 in T73.

We need to define some more properties on test data sets and oracles. These properties
are sufficient conditions for practicability: “unbias” properties avoid rejection of correct
programs; “validity” properties ensure that, assuming the hypothesis H, any incorrect
program is discarded.

Definitions:

1. The test data set T'is valid means that:
If Ap validates H then

Ap): T = AP): AI’SP

2. The oracle Success is valid means that:
If Ap validates H then

V¢ € D(Success), Success(p) = Apf=¢

3. The test data set T is unbiased means that:
If Ap validates H then

AP):AI’ — AP)ZT

2 Actually, one should ask for T to be “of reasonable size”
3Success(T) is defined if (H,T,Success) has an oracle.

4. The oracle Success is unbiased means that:
If Ap validates H then

Vo € D(Success), Ap = ¢ = Success(¢)

A test data set is unbiased if and only if it contains only formulas which are theorems
provable from the axioms of the specification. Equivalently, this means that a testing
context should never require properties about the program which can discard correct
programs.

The sufficient condition for practicability of testing contexts is given by the following
fundamental fact.

Fact: let (H,T,Success) be a testing context. If (H,T,Success) has an or-
acle and T and Success are both valid and unbiased, then (H,T,Success) is
practicable.

The proof is trivial. However, this fact is fundamental since it justifies the testing elab-
oration process: the initial testing context presented above is valid and unbiased; in the
following subsection we give a refinement criterion which preserves validity; and in Section
2 we give another criterion, for algebraic specifications, which preserves unbias.
Consequently, practicability is ensured providing that we stop the refinement process
when the triple (H,T,Success) has an oracle.

1.3 The refinement preorder
In this subsection, we define the refinement preorder and we show how it makes it possible
to build only valid testing contexts.

Definition: let TCy, = (Hy, Ty, Successy) and TCy = (Ha, Ty, Successsy) be
two testing contexts. T'Cy refines T'Cy, denoted by T'C, < TC5, means that:

e “the hypotheses about the program under test may increase”
MOdE(Hg) g MOdE(Hl)

or equivalently H, — H;

e “under the hypotheses Hy, T5 reveals as many errors as T does”
\V/Ap S MOdz(HQ), Ap): T = Ap): T

e “under the hypotheses H,, the oracle Successs is more defined than, and
consistent with Success;”

If Ap validates H then
D(Successy) C D(Successy) and
Vo € D(Successy), Successs(p) = Successi(¢)

The refinement criterion is clearly a preorder? relation. Thus, it allows to built test-
ing contexts incrementally (because of the transitivity). Let (H,T,Success) be a testing
context; we have the following results.

4it is not anti-symmetric

Fact: Tis valid if
(“Ap is a Y-interpretation”, Azgp,undef) < (H,T,Success)

(The proof results directly from the definitions.) This fact is important because (“Ap is
a Y-interpretation”, Azgp,undef) is the starting point of our testing context refinement
process; thus, the validity of T is always ensured.

Fact: Success is valid if
(“Ap is a L-interpretation”,,[Ap =]p(success)) < (H, T,Success)

where [Ap = _||p(Success) is the restriction of the formal validation predicate
to the definition domain of Success.

(The proof results directly from the definitions.) We show in section 2 how to built oracles
which trivially meet this property.

In this framework, the oracle is a decision procedure of the validity of the statement:
Ap E ¢. In most the cases, there is only a subset of the -formulas ¢ such that this
statement is practically decidable (see Section 2.3). We call observable those formulas
such that Ap = ¢ is trivially decidable for every program P. The oracle problem is
then reduced either to select only observable tests (in that case the unbias property is
trivial) either to extend observability by modifying the program under test, i.e. by adding
procedures to P. However, this last solution is not always safe since the extensions may give
biased results. In this paper we only consider the first solution. There are other possible
approaches, for instance to require any program under test to be “fully observable”, i.e.
to provide sufficient functionalities for deciding all the properties in its specification. This
is related to the general problem of design for testability which obviously requires further
research.

2 Algebraic specifications and testing

In the rest of this paper, we consider a special case of formal specifications: the theory of
algebraic abstract data types. Section 2.1 recalls the main definitions; Section 2.2 shows
that valid and unbiased test data sets can be selected from the so-called “exhaustive”
test data set; Section 2.3 explains how the oracle problem can be handled and Section 2.4
proves that it is sufficient to select elementary tests reduced to a simpler form, namely
ground equalities. This justifies that our system generates such simpler elementary tests
selected from the exhaustive test data set.

2.1 Algebraic specifications

In the framework of algebraic specifications, a signature ¥ is: a finite set S of sorts (i.e.
type-names) and a finite set of operation-names with arity in S. The corresponding class
of algebras Algs, is defined as follows: a Y-algebra is a heterogeneous set A partitioned
as A = {A;}ses, and with, for each operation-name “op : s1 X ... X s, — s” in X, a total
function op? : Ay, x ... x A, — A,. Y-algebras correspond to the Y-interpretations of
part 1. The formulas of ®y, are positive conditional equations of the form:

(v =wy Ao AN g =w) = v=w

where v;, w;, vand w are ¥-terms with variables (k > 0). An algebra A validates (=) such
a formula if and only if for each variable assignment o with range in A, if o(v;) = o(w;)
for all i then o(v) = o(w) (as in [1]).

Moreover, specifications are structured: a specification module ASP = (AX, AAzx) uses
some imported specifications SP; = (X;, Ax;) such that SP = ASP + (union of SP;)
is a (bigger) specification. The signature % of SP is the disjoint union of AY and the
union of the ¥;; the set of axioms Az of SP is the union of AAx and the Az;. For example,
a List specification over the imported specification of natural numbers can be expressed
as follows:

ANATLIST uses NAT /* Here ANAT uses BOOLEAN */

AS = { NatList }
SObs = { NCLt, BOOZ}

AY =
empty : — NatlList
cons : Nat * NatList — NatList
sorted : NatList — Boolean
insert : Nat * NatList — NatList

Generators: empty, cons
AAx =

sorted(empty) = true
sorted(cons(N1,empty)) = true
sorted(cons(N1,cons(N2,L))) = and(<(N1, N2), sorted(cons(N2, L)))

insert(N1, empty) = cons(N1, empty)

8

<(N1,N2) =true = insert(N1,cons(N2,L)) = cons(N1,cons(N2,L))
<(N1,N2) = false = insert(N1,cons(N2,L)) = cons(N2,insert(N1, L))

where N1 and N2 are variables of sort Nat, L of sort NatList.

Note that, given a structured specification SP, a subset Spys of observable sorts is dis-
tinguished among the sorts (Nat and Bool in the example). In our case, these observable
sorts are specified by imported predefined specifications. They correspond to the observ-
able primitive types of the used programming language; in particular for every program
P, we assume that there are built-in equality predicates which are correct and defined on
the observable sorts.

We also declare a set of generators included in AX.. This means that every element of an
algebra validating the specification must be denotable by a ground term built on those
generators. For example, every list must be denotable by a composition of empty and
cons.

Lastly, let us remark that the uses mechanism is transitive: if A uses B and B uses C then
A uses C. This transitive view of imports is not the most common one in programming
languages, but it is the most common one in specification languages.

2.2 The exhaustive test set

Of course, all the results of Section 1 remain for the particular case of structured algebraic
specifications. In particular, given a testing context (H,T,Success), an elementary test of
T can be any positive conditional equation. This subsection proves that it is possible to
select only ground instances of them without loosing validity. Moreover, in that case, we
show that the unbias property is easily obtained.

Definition: given a specification ASP, the ezhaustive test data set,
Ezxhaustsp, is the set of all ground instances of all the axioms of ASP.

Exhaustsp = {o(¢) | ¢ € AAx , range(o) = Wx}
where Wy, is the set of ground terms on .

Our first result about Exhaustgp is that it allows to select test data sets which are never
biased. Remember that it was difficult to practically ensure this property in the general
case of formal specifications (Section 1).

Fact: let (H,T,Success) be a testing context.
If T" C Ezhaustgp then T is unbiased.

(This fact results directly from the definitions.)

The X-adequacy hypothesis defined below means that the program under test only exports
the specified operations (i.e. there are no exported operations which are not specified).
Under this non restrictive hypothesis Exhaustsp always produces valid test data sets via
testing context refinements.

Definition: let Ap be the algebra associated with P.

Adequats(Ap) <= Ap is a finitely generated Y-algebra

(a X-algebra A is finitely generated if every value of A is denotable by a ground
Y-term.)

Fact: let (H,T,Success) be a testing context.
If (H,T,Success) > (Adequaty,, Exhaustsp, undef) then T is valid.

This fact results from:
(“Ap is a X-algebra”,Axpgp,undef) < (Adequats,, Exhaustsp,undef)
and from the validity fact of Section 1.3.

In particular the exhaustive test data set is valid; but unfortunately it is generally
infinite. The previous facts mean that the testing context refinement process can be
reduced to “add hypotheses in order to select a finite (pertinent) subset of Fzhaustsp.”

Let us show on an example what kind of hypotheses can be used. Let us treat the
axiom

<(N1,N2) =true = insert(N1,cons(N2,L)) = cons(N1,cons(N2,L))

One has to select instances of the list variable L and instances of the natural number
variables N1 and N2. A first idea can be to bound the size of the list terms substituting
L. This can be obtained via the general schema of reqularity hypothesis.

Regularity hypothesis: let ¢(L) be a formula involving a variable L of a
sort s € AS. Let |t|s be a complexity measure on the terms ¢ of sort s (for
instance the number of operations of sort s € AY occurring in ¢). Let & be a
positive integer. A regularity hypothesis of level k, Reguly ;(Ap), is expressed
as follows:

(VieWe)(ftls <k = Ap o)) = (Ve Ws)(Ap = o(t))
where Wy is the set of all ground X-terms.
For example, a regularity level 3 allows to select the following instances of L:

L = empty

L = cons(N3, empty)

L = insert(N3, empty)

L = cons(N4, cons(N3, empty))

L = insert(N4, cons(N3, empty))
L = cons(N4,insert(N3, empty))
L =insert(N4,insert(N3, empty))

The corresponding refinement of the testing context is obtained by adding the regularity
hypothesis of level 3 to H, and by replacing the previous axiom by the seven axioms
related to those seven instances of L. Consequently, only variables of sort natural number
remain: N1, N2, N3 and N4.

The four instances of L involving the operation insert seem to be less relevant than those
involving only cons and empty because cons and empty generate all the list values. Let
us note AQ the set of generators. The operations of AY — A€, such as insert, are called
defined operations. Here, the treated axiom is one of the three defining axioms of insert
in NATLIST.

Instances of L involving only generators of the sort s of L can be selected via the so called
Q-regularity hypothesis.

10

(2-Regularity hypothesis: let Waq,y, . +», be the set of the ¥-terms which
do not contain defined operations (3; are the imported signatures). Let |t|s
be a complexity measure defined on those terms of sort s. A Q-regularity
hypothesis of level k is expressed as follows:

(Vt € Waars,.as,)([ts <k = ApEo(t)) = (VteWs)(AprFEo(t))

Then, a regularity level 3 allows to select only the three interesting instances of L. In our
system, we mainly use a (-regularity hypothesis for each sort of AS and the user can
choose the level k.

At this stage in the example, the test selection problem is reduced to the replacement of
the variables of sort natural number by ground terms. In the general case, after a finite
number of regularity hypotheses, only variables belonging to imported sorts remain.

The replacement of these variables by ground terms can be obtained “by brute force”
using uniformity hypothesis.

Uniformity hypothesis: let ¢(V) be a formula involving a variable V of
imported sort s. A uniformity hypothesis, Unifs(Ap), is expressed as follows:

(Voo € Was)(Ap |= ¢(vo) = [Vo € WyJ[Ap = ¢(v)])

Such an hypothesis means that if a formula is true for some value vy then it is always true
... This is a strong hypothesis, and it may seem unreasonable at first glance. However, it
states explicitly what is often assumed when testing a program.

Of course, a uniformity hypothesis should not be applied directly to conditional axioms
because one has few chance to validate the precondition of the axiom. For example, the
formula

<(N1,N2) =true = insert(N1,cons(N2,empty)) = cons(N1,cons(N2,empty))
could becomes
<(2,0) = true = insert(2, cons(0,empty)) = cons(2, cons(0, empty))

which is not relevant since <(2,0) is false. Thus, uniformity hypothesis must be used
carefully. We often use uniformity on appropriate subdomains. We show in Section 3 how
we automatically derive these uniformity subdomains.

The modularity of the specification is crucial here. The choice of the hypotheses is
guided by the specification structure: the regularity hypotheses are made for the sorts
specified by ASP while the uniformity hypotheses are made for the imported sorts.

2.3 The oracle

In this subsection, we show how the oracle problem can be handled using observability
issues. Some more elaborated solutions are described in [4].

Assuming that a finite test data set T has been selected from Exhaustsp, an elemen-
tary test is of the form:

(ti=u AN .. Nt =u) = t=u

11

where t;, u;, t and u are ground »-terms. The oracle problem is reduced to decide suc-
cess/failure of equalities between ground terms, because the truth tables of A and —
can then be used to decide success/failure of the whole conditional axiom.

As already pointed out in [3], such a decision is not always trivial. For example, let P im-
plements stacks by arrays: push records the element at range height and increments height,
pop simply decreases height. Suppose the oracle has to decide if pop(push(3, empty)) and
empty give the same stack after their executions via P. There is an observability problem
which, indeed, is a concrete equality problem: these stacks get two distinct array represen-
tations (because & has been recorded in the array for the first stack) but they are abstractly
equal (as the common height is 0). Thus Success(pop(push(3,empty)) = empty) must
be decided via some carefully elaborated method.

We may add new procedures to the program, extracting the concrete representations and
computing the abstract equalities. However the added procedures may alter the program
behaviour, they must be proved or tested; moreover, if they are added into the program
code, some of the advantages of black-box testing are lost. A better solution could be to
replace each test [t=u/ by a set of tests of the form [C(t)=C{(u)] obtained by surrounding
t and u with some well chosen observable contexts C.

For the stack example, assuming that integers and elements are observable, t=u seems
to be equivalent to the observable following equalities: [height(t) = height(u)], [top(t) =
top(u)], [top(pop(t)) = top(pop(w))] ... [top(pop" =1 D(t)) = top(pop"s" =11 (u))].
Here the observable contexts are height(_) and the top(pop'(.)) such that 0 < i <
height(t). Unfortunately identifying such a minimal set of contexts is undecidable in
the general case (see [30], page 8). Besides, when testing “big” stacks, this leads to an
impracticable number of observable tests.

But the situation is even worst: when we think that height(_) and top(pop’(_)) are suffi-
cient, we implicitly assume that we manipulate (more or less) stacks. But this fact is just
what we check when testing !

Counter-example: we sketch here a program which does not validate this
implicit hypothesis. The “bug” is that top returns the height when applied
to a term t of the particular form t=push(z,pop(...)); for every other term ¢,
top(t) returns the correct value.

A “stack” is implemented by a record <array,height,foo> where
<array,height> is the usual correct implementation and foo records the num-
ber of push performed since the last pop (and the empty stack is initialized
with foo=2). [We ignore the exceptional cases of pop and top when the stack
is empty, it is not of interest here ...].

proc emptystack();
stack.height := 0 ; stack.foo := 2 ;;

proc push(x:natural);
stack.array[stack.height] := x ;
stack.height := stack.height+l ; stack.foo := stack.foo+l ;;

proc pop();
if (stack.height > 0) then
{ stack.height := stack.height-1 ; stack.foo := 0 } ;;

12

proc top();
if (stack.foo = 1) then return stack.height /* the bug */
else if (stack.height > 0) then
return stack.array[stack.height] ;;

The terms t=push(1,emptystack) and u=pop(push(2,push(1,emptystack)))
are distinguishable because top (push(0,))=0 (as foo=4) and
top(push(0,u))=2 (as foo=1). Nevertheless the contexts top(pop’(_)) are un-
able to distinguish ¢ from u (as foo is never equal to 1 for those contexts),
leading to an oracle which never detects that t#u.

So, we get the depressing result that the only credible alternative is to consider the set of
all observable contexts... which is infinite (consequently impracticable).

A first idea is to follow a similar approach as for test selection: we may add ora-
cle hypotheses in order to reduce this infinite set of contexts to a finite one, SC, with
informally:

Oracle hypotheses and success(SC) = success of the original elementary test

Remark: let us consider the following oracle hypothesis:

“for all stacks t and wu, if height(t)=height(u) and top(pop'(t)) = top(pop'(u))
for i=0..height(t)-1 then t=u"

This hypothesis makes it posssible to reduce the infinite set of all contexts to
the finite usual one: height(_) and top(pop*(_)).

The advantage of our approach is that the oracle hypothesis is explicitly men-
tioned. Moreover, for “big” stacks, a more powerful hypothesis can allow to
select only a subset of all these tops. In such cases, the counter-example given
above does not meet the oracle hypothesis and our black-box approach does
not reveal the bug. Notice that any complementary white-box testing would
find it (see the introduction).

The idea of adding oracle hypotheses works when deciding equalities which appear in
the conclusion of the tested conditional axioms. If the program under test does not meet
the oracle hypothesis then the oracle may accept wrong results, but this permissivity is
just expressed by the hypothesis. Thus the validity of the testing context is not lost.
Unfortunately, if the equality appears in the precondition, for instance

t=u = concl,

then one get a biased oracle! This is due to the fact that t=u may be successful according
to the oracle hypotheses, but not valid. In that case one would require for concl to be
true, in spite of the fact that concl is not required according to the formal validation
predicate.

Fortunately a solution exists when the preconditions of all the axioms of SP belong to
observable sorts only (which is the case for most specifications). Let us recall (Section 2.1)
that there is a subset Spps € S with implemented built-in correct equality predicates,
denoted by {eqs}sesy,. -

13

We first define the “minimal hypothesis” which formalizes the properties of the observable
sorts, then we define the exhaustive observable test data set Obsgp. Finally, we show that
this data set allows to produce valid and unbiased oracles, in a similar way as Exhaustgp
does for test data set without oracle.

Definition: the “minimal hypothesis”, Mini(Ap), is the conjunction of
Adequats;(Ap) and the following:
for any ground equality t=u, if the sort s of ¢ and u belongs to Spps then

Ap Et=u <= Ap E eqs(t,u) <= SPF t=u

(where “I” stands for equational reasoning and structural induction®) else
Ap E t=u <= Ap = eq(C(t),C(u)) for all observable contexts C'

This minimal hypothesis reflects the classical notion of correctness up to behavioural
equivalence (as defined in [20, 31] or [18] for instance).

In the rest of this paper we assume that SP contains only axioms of the form (L = R)
where L is observable (or empty). Thus, the exhaustive test data set Ezhaustsp contains
elementary tests of the form (L = ¢ = u) where L contains only ground equalities of
observable sorts. Of course, the problem of bias mentioned before does not remain since
the built-in observable equality predicates are correct (from Mini).

Definition: the ezhaustive observable test data set is the set Obsgp whose
elements are the ground formulas [= C(t) = C(u)] such that (L =
t = u) is element of Exhaustsp and C'is any observable context over the sort
of t=u.

The following definition and results show that one can reach practicability by selecting a
finite subset of Obsgp. This gives a solution to our problem.

Definition: Successops is the oracle defined as follows: Successops coin-
cides with the implemented built-in predicates eqs for all ground equalities
of observable sort s € Spps; Successpops uses the truth tables of A and —
in a straightforward manner for conditional axioms involving only observable
ground equalities; and Successops is undefined otherwise.

Lemma: for any testing context of the form (H, T, Successops) such that
H — Mini, the oracle Successops is valid and unbiased.

This results from the facts that the truth tables of = and A are correct and complete
with respect to the validation predicate and that the hypothesis Mini implies that each
eqs is valid, unbiased and defined for all observable ground equalities.

Lemma:
(Adequaty,, Exhaustsp, undef) < (Mini, Obsgp,undef)

In particular Obsgp is a valid test data set under the hypothesis Mini.

5Note that equational reasoning and structural induction is correct and complete for ground equations

14

(The proof results directly from the definitions)
Fact: if (H,T,Success) is a testing context such that:

e (H,T,Success) > (Mini, Obsgp, Successops)
e T C Obsgp and T is finite

e Success = Successops ,

then (H,T,Success) is practicable.

Proof: from the last fact of Section 1.2 it is sufficient to show that (H,T,Success) has an
oracle, T and Success are unbiased, T and Success are valid.

Since Obs involves only observable ground conditional equalities and Min: implies that
eqs is defined on every observable ground equality, the fact that H is stronger than Min:
implies that the definition domain of Successpps contains Obsgp. Consequently since T
is a finite subset of Obsgp, (H,T, Successops) has an oracle.

Since Exhaustsp is unbiased and Obsgp is built from Ezhaustsp by adding contexts,
Obssp remain unbiased.

The validity of T results from the inequality given in the previous fact and from the first
fact of Section 1.3.

Moreover Successops is unbiased and valid from the previous fact. This ends the proof.

From the theoretical point of view, the previous fact is fundamental because it gives
useful sufficient conditions to solve the test selection and oracle problems. From now
on, one can consider only elementary tests of the form [L = R] where all the equal-
ities occurring in L and R are observable (consequently decidable). Our last theoretical
improvement is to show that one can skip the elementary tests such that L is not satisfied.

2.4 Reducing test to equalities

Let us consider a test of the form [L = R] such that L contains only observable ground
equalities and R is a ground equality. Let us assume that L is not satisfied by the program
under test. From the truth table of =, [false = R)] is always true. It follows that
the elementary test [= R] has no chance to reveal any error of the program; thus
it is (at least intuitively) useless (see Section 1.1). Consequently it is of first interest to
select only elementary tests of the form [L = R] such that L is true. This means that,
given a conditional axiom of ASP

(v =wi A . Ay =wg) — v=w,

one should select instances of the variables which satisfy the precondition (v; = w; A
.. N = wg). It is the reason why an equational resolution procedure a la PROLOG is
needed for automatizing test selection (see sections 4 and 5).

Now, let us assume that the precondition L is true. From the truth table of =, [true —
R] is always equivalent to R alone. It follows that submitting [L == R] is useless, it
is sufficient to submit R to the program under test. Consequently, assuming that the
specification allows to decide whether the precondition is true or false, our system can
select only instances of

(v =w Ao Ay =wg) — v=w,

15

satisfying (v; = wy A ... A vy = wy) and produce only the related instances of v=w .

The only difficulty is that “L is true with respect to the specification” is a priori not
equivalent to “L is true with respect to the program.” Indeed, the following definition
and results prove that there is no problem.

Definition: the exhaustive equational test data set is the set EqExhgp whose
elements are the ground equalities [t=u/ such that:

(t1 = uy A ... ANt = upy, = t = u) is element of Ezxhaustsp and each
equality t; = u; is provable from the specification (using equational reasoning
and structural induction).

Fact: let (H,T,Success) be a testing context. If T C EqExhgp then T is
unbiased.

Proof: let us remind that if 7 only contains theorems of SP then it is unbiased (Section
1.2). By definition, FqFExhgp only contains theorems of the axioms of SP (because
equational reasoning and structural induction is correct), which implies the fact.

Fact: let (H,T,Success) be a testing context. Let us assume that ASP con-
tains only axioms whose preconditions are observable.
If (H,T, Success) > (Mini, EqExhgp,undef) then T is valid.

Proof: from the validity fact of Section 2.2 and by transitivity of “>”, it is sufficient to
prove that:

(Mini, EqExhsp,undef) > (Adequats, Exhaustsp,undef)
Thus it is sufficient to prove:
VAp € Mod(Mzm) , Ap): Equhgp — Ap ’: Ezxhaustgp

Let us assume that Ap validates Mini and that Ap | EqExhgp. Let (t; = ug A ... Aty =
ur = t = u) be an elementary test 7 of Exhaustsp; one has to prove that Ap = 7.
Since Ap validates Mini and t; = u; is observable for every ¢« = 1..k, two cases are possible:

o Ap | eqs,(ti,u;) for every ¢ = 1..k. In that case, [t = u| belongs to EqExhgp
because SP F t; = u; from the Mini hypothesis. Consequently, since Ap =
EqExhsp, Ap | t = u, which implies that Ap | 7.

e there exists i such that Ap does not validate eqs, (¢;,u;). In that case, Ap does
not validate ¢; = w; (from the Mini hypothesis). Consequently, Ap |= 7 (as the
precondition of 7 is not true).

The two previous facts prove that it is sufficient to submit equational elementary test
instead of conditional ones. In fact it is possible to select only equational observable
elementary tests, as stated below:

Definition: the exhaustive observable equational test data set is the set
EqObsgp whose elements are the ground equalities [t=u/ such that:

(ti =uy N ... ANty = up —> t = u) is element of Obsgp and each equal-
ity t; = u; is a theorem of the specification (using equational reasoning and
structural induction).

16

Fact: let us assume that ASP contains only axioms whose preconditions are
observable. If (H,T,Success) is a testing context such that:

e (H,T, Success) > (Mini, EqObssp,{eqs}sesoy.)
o ' C EqObsgp and T is finite

o Success = {eqs}sesy,.
then (H,T,Success) is practicable.
Proof: FEqObssp can be also obtained from FEqFExhgp as follows: the elements of

EqObsgp are the ground equations of the form C(t) = C(u) such that t = u is ele-
ment of EqExhgp.

Exhaustgp » Obsgp
adding contexts
equations equations
with with
provable provable
preconditions preconditions
Y Y
Equ‘hsp > EqObSSP

adding contexts

The previous fact can be proved in a similar way as the fact of Section 2.3 above (by
replacing Exhaustsp and Obsgp by EqExhsp and EqObsgp respectively).

These results provide some guidelines for the selection of test data sets for a specifi-
cation module ASP: the problem is to select a finite subset of FqObsgp. As we already
said, the reduction of EqObsgp to a finite subset is obtained by stating regularity (or Q-
regularity) hypotheses on the defined sorts, uniformity hypotheses on the imported sorts
and oracle hypotheses for the observable contexts. The previous fact proves that the
resulting testing contexts are practicable. However, we have seen that the composition of
these hypotheses must be done carefully: we gave an example with a conditional axiom
in Section 2.2. Indeed, we are faced to a more general problem which is discussed below.

17

3 Choice of regularity and uniformity hypotheses

3.1 The problem

Putting together uniformity hypotheses and regularity hypotheses is not straightforward.
Brute uniformity hypotheses turn out to be too strong, in some cases for equations and
in most the cases for conditional axioms. By too strong, we mean that some obviously
relevant cases are not tested under these hypotheses.

An instance of the problem for a conditional axiom has been given in section 2.2:
applying uniformity hypotheses on some sorts consists of assigning arbitrary values to the
variables of these sorts ; this can result in an instance of the axiom where the precondition
is false ; thus testing this instance is meaningless. In this case, the uniformity hypotheses
must not be made on the whole domains of the variables, but on a subdomain which is
the validity domain of the precondition.

The notion of uniformity subdomain is not only useful for conditional axioms, but
also, even if it is less obvious, for equations. Let us consider the following equation of the
specification of lists of natural numbers :

sorted(cons(N1,cons(N2,L))) = and(<(N1, N2), sorted(cons(N2, L)))
Q-regularity hypothesis of level 2 on lists yields the following set of instances:

1. sorted(cons(N1,cons(N2,empty)))
= and(<(N1, N2), sorted(cons(N2,empty)))

2. sorted(cons(N1, cons(N2,cons(N3,empty))))
= and(<(N1, N2), sorted(cons(N2, cons(N3,empty))))

A uniformity hypothesis on natural numbers would result in two ground equations (the
remaining Nat variables are replaced by some ground terms). It has good chance to result
in a test data set where some interesting cases in the definition are not covered. For
instance:

(5,3), sorted(cons(3, empty)))
(4,2), sorted(cons(2, cons(6,empty))))

sorted(cons(5, cons(3, empty))) = and(
sorted(cons(4, cons(2, cons(6, empty)))) = and(

Indeed, a better coverage should at least reach the following cases:

o <(N1,N2) =true N sorted(N2,L) = true

e <(N1,N2) =true A sorted(N2,L) = false
o <(N1,N2) = false N sorted(N2,L) = true
e <(N1,N2) = false N sorted(N2,L) = false

(In the test data set above, only the third case is covered). These four cases define four
subdomains for the tested axiom. These subdomains come from the decomposition of
the definition of sorted and from the properties of and. Uniformity hypotheses on these
subdomains can be made; in that case, they are called uniformity subdomains. However,
the decompositions could be continued using the axioms of < or the defining axioms of
sorted (including the one under test).

18

3.2 Decomposition of subdomains by unfolding defined
operations

What we have done above is a decomposition of the domain of sorted. In this subsection
we describe how to decompose defined operations in a systematic way, in order to get

relevant uniformity subdomains for the axioms where they occur®.

As usual in testing methods, this decomposition is based on case analysis: the precon-

ditions which occur during the decomposition are composed by conjunction. This is done
until a satisfactory coverage of the cases mentioned in the specification is obtained.
Of course, the level of case coverage is strongly correlated to the size of the data set. It
is not always possible or realistic to push the decomposition too far. At the end of this
section, we give some hints on how to stop the decomposition with relevant associated
uniformity hypotheses.

In order to describe the decomposition of defined operations in a legible way, we assume
that the specification has the following form: for each defined operation f there is a set
of defining axioms where f is the top symbol of the left hand side of the conclusion. Thus
a defining axiom looks like:

precondition = f(t1,...,t,) =1

where precondition may be either empty or a conjunction of equations. We assume that
the left hand-side of the conclusion is defined by the right hand-side. Thus, axioms are
implicitly oriented from left to right.

Let us assume that we want to find subdomains for a defining axiom of f.
Let ¢y = (precond; = concly) be this axiom. Suppose that there is an occurrence u of
a defined operation g in ¢, (which is not the top of the left hand-side of concly). Let
¢y = (precond, = g(t1,...,t,) = t) be one of the axioms defining g. Let g(ay,...,an)
be the subterm at the occurrence u in ¢¢. The unfolding of ¢ via ¢, at the occurrence
u can be described in two steps:

e we first replace g(ay,...,a,) by tin ¢ at the occurrence wu.
Let (precond’ = concl’) be the resulting formula.

e then we add into precond the equalities between the related arguments of g and
the precondition of ¢,. Thus, the unfolded axiom is the following one:

(precond” N ty =a; N...N\ ty =a, N precond, = concl’)

This unfolding is done at occurrence u with all axioms defining ¢, giving as many unfolded
axioms as there are axioms defining g.

It appears that for testing ¢; we have the choice between:

e replacing directly its variables by ground terms which satisfy precond; (without
unfolding), then the corresponding hypothesis is uniformity on the validity domain
of precondy

6The result of these decompositions is a partition of the domain of the axiom where the operations
occur into subdomains. The original axiom, which is unchanged, will be tested once for each subdomain.

19

e performing a similar replacement for each of the unfolded axioms. Of course, the
test data set is larger. We get more, but weaker, uniformity hypotheses.

e if there is still some occurrence of a defined operation in one of the unfolded axioms,
continuing the subdomains decomposition by unfolding (before replacing).

When g is f itself (recursive definition of f), this transformation is similar to the classical
Burstall and Darlington’s unfolding of recursive definitions.

It is clear that in most the cases, such a decomposition is infinite. However, assuming
some regularity and uniformity hypotheses (on subdomains), it is possible to make these
decompositions finite, as seen in the example below.

Let us come back to our axiom on sorted (section 2.1), and assume that the defining
axioms of and and < are:

and(true, true) = true <(N1,N1) = true
and(true, false) = false <(N1,N2) =true = <(N1,N2) = true
and(false, true) = false <(N2,N1) =true = <(N1,N2) = false
(

and(false, false) = false

where < is inductively defined on the natural numbers generated, as usual, by zero and
successor. For legibility purpose, these defining axioms explicitly reflects the cases that
we want to cover in the decompositions.

As seen above, a regularity hypothesis of level 2 gives the two following instances:

1. sorted(cons(N1,cons(N2,empty)))
= and(<(N1, N2), sorted(cons(N2, empty)))

2. sorted(cons(N1, cons(N2,cons(N3,empty))))
= and(<(N1, N2), sorted(cons(N2, cons(N3, empty))))
Let us consider the first equation.

1. From the first axiom of <, it comes:

N1=N2=
sorted(cons(N1, cons(N2,empty))) = and(true, sorted(cons(N2,empty)))

From the definition of and, we get two cases:

e the recursive call of sorted is true

N1 = N2 A sorted(cons(N2,empty)) = true —>
sorted(cons(N1, cons(N2,empty))) = true

and from the axioms of sorted we get true = true in the precondition, which
can be suppressed (indeed, there are more cases, but each of them lead to an
unsatisfiability in the precondition).

A uniformity hypothesis on the domain of N1 = N2 seems sensible, thus we
stop the decomposition.

20

e if the recursive call of sorted is false, we get true = false in the precondition,
thus we ignore this irrelevant case.

2. From the second axiom of <, it comes:

<(N1,N2) = true =
sorted(cons(N1, cons(N2,empty))) = and(true, sorted(cons(N2, empty)))

From the axioms of and, we get only one case (following the same method as in 1).

<(N1,N2) =true A sorted(cons(N2,empty)) = true =
sorted(cons(N1, cons(N2,empty))) = true

and from the axioms of sorted we can eliminate sorted(cons(N2,empty)) = true. A
uniformity hypothesis on the domain of <(N1, N2) = true seems sensible, thus we
can stop the decomposition.

3. From the last axiom of <, it comes:

<(N2,N1) = true =
sorted(cons(N1, cons(N2,empty))) = and(false, sorted(cons(N2,empty)))

From the axioms of and, we get two cases:

e the recursive call of sorted is true

<(N2,N1) =true A sorted(cons(N2,empty)) = true =
sorted(cons(N1,cons(N2,empty))) = false

and from the axioms of sorted we can eliminate the second equality of the pre-
condition.

As in the previous case, a uniformity hypothesis on the domain of the precon-
dition seems sensible, thus we stop the decomposition.

e if the recursive call of sorted is false, we get a contradiction with the axioms
defining sorted, thus we ignore this case.

All the preconditions of these cases define the coverage we want for the first instance
of the axiom. They define the uniformity subdomains of the domain of the axiom under
test (in this case, the natural numbers; since the axiom is not conditional) as follows:

e N1 = N2
o <(N1,N2) = true
o <(N2,N1) = true

Thus, for the first instance of the axiom generated by regularity, we select three instances
(one for each uniformity subdomain).

For the second instance of the axiom generated by regularity, we follow the same way
and get nine decomposition subdomains defined by:

e N1=N2 AN N2=N3
e N1=N2 A <(N2,N3) = true

21

e N1=N2 A <(N3,N2) = true

o <(N1,N2) =true N N2= N3
o <(N1,N2) =true N <(N2,N3) = true
o <(N1,N2) =true N <(N3,N2) = true
e <(N2,N1) =true N N2= N3
o <(N2,N1) =true N <(N2,N3) = true
o <(N2,N1) =true N <(N3,N2) = true

Clearly, the selected uniformity subdomains depends both of the axioms of the speci-
fication and of the criteria we choose to stop the decompositions. This is not surprising
since any black-box testing method depends on the specification. We present in the next
section a tool which enables us to stop such decompositions using some control specifi-
cations. This tool provides a mean to automatically compute uniformity subdomains for
each axiom.

22

4 Basic tools for automatizing test data selection

This part presents in a detailed way the principles and internal mechanisms of a system
which makes it possible to automatize the approach presented in parts 2 and 3. This sys-
tem takes as input an algebraic specification and some indications on regularity hypotheses
and halting of unfolding. It provides uniformity subdomains and the corresponding test
data. The reader which is not familiar with logic programming techniques can skip this
part and go to part 5 where an example of the use of the system is given. Part 5 refers
to part 4 but is understandable by itself.
Two of the main difficulties in automatizing the selection are:

1. the computation of the elements of a uniformity subdomain
2. the decomposition, using the axioms, of a domain into uniformity subdomains.

we present here a procedure and some control strategies which allow to cope with
these difficulties.

To solve the first point, we need an equational resolution procedure to compute the
solutions of the equations that define a uniformity subdomain, which of course must be
correct (any returned value is a solution) and complete (all the solutions are computed).
In the case of positive conditional axioms, there exist such procedures: the conditional
narrowing presented in [19] for the RAP language; the clausal superposition for equational
Horn clauses presented in [10] for the SLOG language.

In a first step, we performed several experiments for automatizing the test data se-
lection using RAP and SLOG. These experiments allowed us to study and to identify
the specific control mechanisms for the implementation of our selection strategies. The
introduction of these control mechanisms in either RAP or SLOG implied some impor-
tant changes in the interpreters. Thus, we chose to use a general language to simulate
equational resolution and to program the control mechanisms. This language needed to
be efficient enough, since we wanted to get an implementation with acceptable perfor-
mances. We chose Prolog as implementation language, essentially because it includes a
very efficient resolution procedure.

We use an efficient simulation method which avoid to introduce explicitly the axioms
of equality. The principle of this method is well-known, and has been used in numerous
approaches for introducing functions in logic programming [22, 7, 9, 11].

For this simulation, a logic program is built: to each axiom corresponds a Horn clause
without equality. In [7] it is shown that, on the clauses obtained by this transformation,
the standard depth-first control of Prolog provides an efficient simulation of equational
narrowing with leftmost-innermost strategy. This narrowing strategy is comparable to
the SLOG resolution strategy. [11] gives a method for transforming a positive conditional
specification into a logic program. We use the same transformation.

As is section 2.2, some generators are distinguished among the operations of the spec-
ification. A set of generators of s sort is a set of operations €2, C ¥ such that any term
of s sort can be proved equal to a term made of generators only. For all s in S, we note
Waq(X)the term algebra generated from the operations of 2; and the variables of X'. The
operations with results in s which do not belong to €2, are called “defined operations.”
Equational axioms, and conclusions of conditional axioms are implicitly oriented from
left to right: the left-hand-side of an equation (or a conclusion of a conditional axiom) is
considered as defined by the right-hand-side. Some conditions are necessary to ensure the

23

computational equivalence between resolution and narrowing: the top symbol of the left-
hand-side of an equation (or a conclusion) must be a defined operation, and the operands
of this operation must belong to Wq(&X')[7]. These conditions forbid, for instance, axioms
between generators such as idempotence or commutativity.

We now present the transformation of a specification into a logic program. This
transformation works in two steps:

1. The first step yields a set of axioms where any equation (in conclusion or precondi-
tion) only contains one occurrence of a defined operation, and it is the top symbol
of its left-hand-side.

2. The second step translates these axioms into a set of Horn clauses by replacing each
equality by a literal.

4.1 Transforming axioms into Horn clauses

First we give the transformation rules for the first step: they allow to transform positive
conditional axioms such that in the transformed conditional axioms all the equations
(both in preconditions and conclusions) are of the form:

flty, .. ty) =t

where f is a defined operation and t,t;,...t, belong to Wq(X).

Then we describe how to obtain Horn clauses from such axioms. Finally, we recall the
sufficient conditions on the form of the specification which ensure the equivalence between
the equational theory of the initial axioms and SLD resolution on the resulting clauses.

4.1.1 Transformation rules for the first step

Notations: 1 is a conjunction of equations, u is an occurrence in a term, and t[u « t']
means: t’ is the subterm of ¢ at the occurrence u.

rl: Simplification of the right-hand-side of a conclusion

Vv o= l=ru— f(t,...,t,)]
YA flt,.. . th) =X = l=ru— X]

where f is a defined operation and X a new variable.
r2: Elimination of a defined operation at the top of the right hand-side of an equation

N f(ty, .. ty) =gty t0) = 1=r
A ft,. o t) =X A g(th,....t,)=X = l=r

where f, g are some defined operations and X is a new variable.

24

r3: Elimination of an internal occurrence of defined operation

w A t[qu(tlvatn)]:t/ =l=r
OAf(t,.oty) =X ANtu— X =t =1=r

where f is a defined operation, u is a strict occurrence in ¢ (i.e. f is not the top
symbol of t) and X is a new variable. This rule works both on the right hand-side
and on the left-hand-side of an equation.

r4: Elimination of equation between terms of W (X)
Y ANt=t = l=r
ol = l=r)

where ¢ and ¢’ belong to Wq(X)and o is the most general unifier of ¢t and ' (in the
free Y-algebra).

4.1.2 Correctness of the transformation
Rules r1, r2, r3 are just specializations of the following straightforward equivalence:
(W)=Y =) Vo) < o(¢)

where = is a congruence, Y is a variable not occurring in ¢, ¢ is any formula and o is the
substitution {Y « ¢}.

For rule r4, the equivalence between the initial and resulting axioms is only true when
the initial equational theory contains no equation between different generators. One suf-
ficient condition ensuring the non-existence of equation between generators in the initial
theory is that: there is no axiom defining a generator; and, when orienting from left to
right the conclusions of the axioms, the set of axioms is a convergent (confluent and ter-
minating) term rewrite system.

Now let us come back to the rule r4. Under this later condition, if there is no unifier
of t and ¢/, then the axiom is meaningless and can be discarded (in our system, a warning
is issued to the user in this case).

We have the following properties: rules r2, r3, r4 neither remove nor create cases
where rule rl is applicable; rules r3 and r4 neither remove nor create cases where rule r2
is applicable; rule r4 neither removes nor creates cases where rule r3 is applicable. Thus
we choose the following control:

1. apply rl as long as possible,

[\]

. apply r2 as long as possible,
3. apply r3 as long as possible,

4. apply r4 as long as possible,

It is obvious that, with this control, the transformation terminates. We give in appendix
the proof that, up to the symmetry of the equalities occurring in the precondition, the
transformed axioms are of the form:

fl(tl,la ... 7t1,n1) =r A fm(tm,la .. .,tmmm) =T, = f(tl, c.. ,tn> =r

where f, f; are defined operations and ¢, ;, 7 and r belong to Wq(X).

25

4.1.3 Last step of the transformation

From the axioms above, a set of Horn clauses is built by replacing, in each axiom, every
equation f(tq,...,t,) = t by a literal f(tl, .. ty,t). It means that, with each defined
operation f of arity n, is associated a relation name f of arity n+ 1. The last operand of
f corresponds to the result of f. The generators are left unchanged.

4.1.4 Examples

Let us consider the classical axioms for defining the addition operation in natural numbers,
generated by zero and successor:

add(0, N) = N — 15t step — add(0, N) = N
add(s(N), M) = s(add(N, M)) add(N, M) = K = add(s(N), M) = s(K)

where N, M and K are variables of Nat sort. When applying the second step of the
transformation, the Horn clauses obtained for these axioms are:

add(0, N, N).

add(s(N), M, s(K)) —
add(N, M, K).

The binary operation add becomes a ternary relation (by notation abuse we still note add
instead of add). We use the usual clausal notation: < is noted “: —” and A is noted

W

,7. The two clauses above are a Prolog program which defines the addition of natural
numbers.

We are not only interested in the translation of axioms into Prolog. As seen in section
3, the test data selection implies the resolution of equational problems such as:

tlzul/\/\tn:un

Such a problem is transformed into a Prolog goal (negative clause) just as preconditions
of conditional axioms in the transformation above.
For instance, the problem

add(add(0, Y),s(X)) l: s(s(Z)) NY = s(T)
15 step

!
add(0, s(T)) = UN add(U, s(X)) = s(s(Z)) with o : {Y «— s(T')}

where X, Y, Z, T, U are variables of Nat sort. The second step of the transformation
leads to the following goal:

— add(0, s(T), U), add(U, s(X), s(s(Z))).

with the substitution o : {Y « s(T)}.

26

4.1.5 SLD resolution versus equational reasoning

We give here some sufficient conditions on the initial specification which ensure the com-
pleteness of SLD resolution on the resulting Horn clauses with respect to the equational
theory underlying the initial axioms.

These conditions were mentioned initially in [7]. They correspond to the ones given
in [10] for the completeness of SLOG:

1. When orienting the axiom conclusions from left to right, the resulting conditional
rewrite system is terminating (for any term, after a finite number of applications of
the rewrite rules, one obtains a normal form, i.e. a term where it is impossible to
apply one of the rules) and confluent (for any term, the normal form is unique).

2. There is no axiom defining a generator : the top symbol of the left-hand-side of an
equation (or a conclusion of a conditional axiom) must be a defined operation.

3. In the left-hand-side of an equation (or a conclusion of conditional axiom), the
operands are terms of W (X).

4. The specification is complete with respect to the generators: any ground term of
Wy is equal to a term of W (which is unique, from the first condition).

When the specification fulfills these conditions, the SLD resolution on the resulting clauses
provides a unification procedure correct and complete (for the solutions in normal form)
for the equality defined by the initial axioms.

The system we have developed is based on the transformation we have presented,
Prolog resolution and some specific control. Thus the specifications it can process must
satisfy the four conditions above. Moreover, all the variable instances in the resulting test
data sets are in normal form, i.e. belong to Wq. This is not restrictive since, as said in
section 2, the operations in) generate all the values.

4.2 Using a complete search strategy

The standard control strategy in Prolog is depth-first search. It is not satisfactory for
our purpose since, when there is an infinite path in the resolution tree of a problem, the
solutions which are reachable by some other path may never be generated. As we want to
get data sets which are valid with respect to the selection hypotheses discussed in section
3, we need a control strategy which is complete and moreover sufficiently efficient.

A well-known strategy which is complete for our purpose, is the breadth-first search.
However, its implementation requires numerous copies of the problem, and complex mech-
anisms for aliasing of terms, variables, literal, etc.

Thus we have chosen a strategy which is a good compromise between the depth-first
search and the breadth-first search: the “iterative depth-first” search consists in stating a
bound k for the depth in the resolution tree. When a resolution path reaches this bound,
the state of the resolution is stored and the search backtracks to try another choice of
clause. Thus the resolution is complete for the solutions which are reachable by a depth
less than k in the resolution. If no solution is reached for this bound, if there exist some
memorized states of resolution, the process is started again from these states with a new
bound k + k' (one can notice that if £ = k' = 1, it is equivalent to breadth-first search, if

27

k = oo it is equivalent to depth-first search). As the choice of k£ and k" strongly depends
on the problem to be solved, we have left them as parameters of our system.

4.3 The termination problem

It is well known that Prolog programs do not always terminate, and the choice of the itera-
tive depth-first control is far from solving this problem. For instance, even if this strategy
is complete, it does not detect the unsatisfiabilities which correspond to contradictions
with the axioms.

Example: Given the logic program defining the addition in natural numbers,
let us consider the equational problem:

add(add(s(X), Y), Z) = 0

This is an unsatisfiable problem: the sum of a natural number greater than
0 with an other natural number cannot be equal to 0. The transformation of
this problem in a Prolog goal returns:

— add(s(X), Y, T), add(T, Z, 0).

The iterative depth-first search does not terminate on this goal: the resolution
of the first literal yields successively for T all the natural numbers, and each
time the resolution of the second literal fails.

However, if the initial problem is rewritten via the axioms which define add,
it becomes:

s(add(add(X, Y), Z)) = 0

In this form, the unsatisfiability is detected at once since there is no equation
between different generators in the theory.

From this example, it appears that rewriting should be used as a simplification tool
before each resolution step. This simplification not only provides a way to detect some
unsatisfiabilities, but it turns out to decrease in a significant way the size of the resolution
tree.

Moreover, as the axioms determine a confluent and terminating rewrite system (cf
section 4.1) this simplification is deterministic, and it preserves the correctness and com-
pleteness properties. Thus we have integrated this simplification in our system, after
adapting it to rewriting of literals, as it is done in [11]. This mechanism was also used in
the conditional narrowing algorithms of RAP and SLOG.

In the system, the command “rewrite(true)” causes a simplification by rewriting before
each resolution step. If the user prefers not to use it, he can use the “rewrite(false)”
command.

4.4 Random choice of clauses

As seen in section 3, a uniformity subdomain is defined by a conjunction of equations.
Thus, selecting some test data under uniformity hypotheses in a given subdomain requires
the resolution of a conjunction of equations. Under uniformity hypotheses, we need only
one solution. But it is clear that always retaining the first solution given by the iterative
depth-first control is much too deterministic for our purpose: we want an arbitrary value
of the subdomain, and very often, the first solution is far from being an arbitrary value.

28

For instance, if an operation is recursively defined with the initial cases first, then the
first returned solutions are the values corresponding to those cases. However, we do not
require actual randomness in the order of the solution : any non determinism in the order
of solutions is quite sufficient.

In order to ensure such a non deterministic order of the solutions, we have implemented
a random choice strategy among the clauses which are applicable for a given literal.

Example: Given the operation < : Nat X Nat — Boolean (less than), and
the logic program (obtained by transformation of its axioms):

<(X,0, false).

<(0, s(X), true).

<(s(X),s(Y),B) :—
<(X,Y,B).

We want to solve the equation <(X,3) = true. With depth-first search we get
the solutions in the following order:

X=0X=1, X =2

with a random-choice strategy for the choice of the clauses, we can get one of
the following sequence:

X=1 X=2; X=0;
X=2,X=1 X=0;
X=0X=1 X=2

However, all the permutations of these three solutions are not possible, since
the back-tracking induces a partial order on solutions.

This is the way we have implemented selection in uniformity subdomain. In our
system, this kind of control is activated and disactivated by the commands “ran-
dom _choice(true)” and “random_choice(false).”

4.5 Decomposition into uniformity subdomains

It remains to provide a tool for the decomposition of the domain of an equational problem
into uniformity subdomains. This tool uses some control specifications in order to stop
the decomposition. As seen in Section 3, one simple way to do this decomposition is
to recursively replace each defined operation occurring in the equational problem (to be
decomposed) by the cases corresponding to the axioms which define it.

The coverage of the cases occurring in the axioms is already provided by the resolution
since all the axioms are tried. Thus, what we need is a mechanism which stops the
resolution of a literal when this literal defines a domain where it seems sensible to apply
a uniformity hypothesis.

Example: We now consider the operation < : Nat x Nat — Boolean, with
the corresponding logic program (cf. Section 3):

Cl: <(X, X, true).

C2: <(X,Y,true) :— <(X,Y, true).

C3: <(X)Y, false) :(— <(Y, X, true).

29

Assume we want to decompose the problem <(N1, N2) = true until we get
equations of the forms N1 = N2, <(N1, N2) = true.

The resolution of this problem builds the following search tree:

<(N1, N2, true) {}

/Cl \CZ
O{N1= N2} <(N1, N2, true) {}

Here, each node of the tree contains a resolvent and a substitution. The edges
are labeled by the clause used to solve the underlined literal in the resolvent of
the origin node. O is the empty resolvent, and {} is the identity substitution.

When continuing the construction of the tree under <(N1, N2, true), one will
get in the leaves of the tree, the possible values for N1 and N2.
On this very simple example, it is easy to see that if the resolution of a literal
of the form < (N1, N2,true) is stopped, the leaves of the tree contain the
decompositions we want (i.e. N1 = N2 and <(N1, N2) = true.)

Several logic programming languages (MU-PROLOG [24], METALOG [8]) allow the pro-
grammer to specify the conditions for performing the resolution of a literal. This induces a
strategy for the choice of the literal to be solved which preserves correctness and complete-
ness. This specification is written via meta-clauses which define specific meta-predicates.
The meta-clause below defines, via the wait meta-predicate, the conditions for delaying
the resolution of its argument:

wait(<(A, B, true)) — var(A),var(B).

This means that, if the resolvent contains a literal of the form <(A, B, true) and if its
operands A and B are variables, then this literal won’t be selected for resolution.

We have implemented this control for the choice of the literal to be solved. Thus, the

answers of the resolution procedure are couples (substitution, constraint). A constraint is
a list of literals waiting for subsequent resolution. Moreover, we have introduced a new
mode which allows one to force the resolution of constraints. This mode is activated by
the command constraints(false). The command constraints(true) forbids the resolution of
the constraints: when a resolvent contains waiting literals only, the resolution is stopped
(for this path of the search tree, of course).
When this command is activated, the system builds (from the specification and the wait
clauses) a set of uniformity subdomains for each axiom. These uniformity subdomains
are defined by a conjunction of constraints and substitutions (where the substitutions are
seen as conjunction of equations).

For efficiency reasons, we have introduced a heuristic for the choice of the literals. It
gives priority to literals which do not unify with any head of clause, and to those which
are unifiable to a unique head of clause.

Summing-up, the selection strategy of the literal to be solved is:

1. choose the first (in sequence) literal of the resolvent which is not unifiable with a
head of clause (thus there will be a local failure),

30

2. then, among the literals of the resolvent which are not affected by a “wait”, choose
the first literal which is unifiable to a minimum of heads of clauses (deterministic
literals have priority)

4.6 Strategies for regularity and uniformity hypotheses

In this subsection, we show how to use this set of tools for implementing some selection
strategies compatible with the hypothesis of regularity on the generators of a sort s (€2,-
regularity) and the uniformity hypothesis.

As in section 2, we need a canonical complexity measure on terms of s sort in Wy, that
do not contain defined operations of s sort (i.e. terms of ssort belonging to Waqis,+.5,)-
We note complezity, this measure. Its value is the number of occurrences of a generator
of s

Vs X...xX s, — s € Qs complexitys(f(ty,...,tn)) =1+ Ei<icncomplexitys(t;)

It is not difficult to generate automatically the axioms defining this measure as soon as
the signature is given.
Selecting a test data set corresponding to 2,-regularity of level n for a variable X, is
reduced to the resolution of the equational problem:
<(complezity ,(X),n) = true
which, by transformation becomes:

— complezitys(X, C), <(C,n,true).

It is also possible to use the resolution procedure to select test data sets corresponding
to uniformity on a sort s: given the generators of s, it is possible to construct the axioms
defining a typing function: is_a_s : s — Boolean

Vfisi X...xs, —s¢€l)

is_.a_si(ty) =true N... N is.a_s,(t,) = true = is.a_s(f(ty,...,t,)) = true

The application of a uniformity hypothesis on s for a variable X is done by computing
the first solution of the goal:

— is_a_s(X, true).
with a random strategy for the choice of the clauses.

Example: The generators of the NatList sort are empty :— NatList and
cons : Nat x NatList — NatList. One builds automatically the following
definition of is_a_NatList:

is_a_NatList(empty) = true

is.a_-Nat(X) = true A is_.a_NatList(L) = true
= is.a_NatList(cons(X, L)) = true

Applying a uniformity hypothesis on NatList for a variable L consists in solving
(after transformation of the axioms) the goal:

:— is.a_NatList(L, true).

31

The system will return, for instance:

L = cons(5, cons(0, empty))

In our system, the command make_tests_tools(“spec_name”) causes the automatic con-
struction of a complexity function and of a typing function for each sort defined in the
specification module “spec_name.” The resulting axioms are stored in a specification mod-
ule spec_name_test which uses the modules defining the required sorts and operations. For
instance, the NATLIST specification module defines the NatList sort and uses the Nat
sort. Thus, the module NATLIST test uses the modules: NATLIST, NAT test, NAT,
BOOLFEAN. These two last modules are needed for the complexity function which is of
range Nat , and for the typing function which is of range Boolean.

The next (and last) section of this paper shows how to use our system for selecting

test data sets for axioms of the NATLIST specification. We have chosen these axiom in
order to exercise all the selection strategies presented here.

32

5 An example of test data set selection using our
system

We briefly present the functionalities of our system. Then we show on an example how
to use it for selecting test data sets.

5.1 Overview of the system

Our system accepts as input structured positive conditional specifications as defined in
Section 2.1. The transformation of the axioms of a specification module into Horn clauses
is automatically done when the user asks for compilation of this module. Note that the
user never sees the internal form and he/she always works with his/her original specifica-
tion. In addition, the user can control the resolution strategy defining “wait” expressions
for some operations of the module spec_name in a module called spec_name.ctrl which is
automatically consulted when the module spec_name is loaded.

The main tool of the system is an interpreter. This interpreter can work in two modes:
the command mode, and the request mode.

e In the command mode, it is possible to compile specification modules, to get the
“listing” of a specification or of an operation, to generate a specification module
including the complexity and typing functions seen in section 4, to modify the
various parameters of the resolution procedure via the commands described in the
previous section.

e In the request mode, it is possible to solve equational problems of the form:

— eqq, .-, Eqn.

where the eg; are equations between terms of Wy (X') of the same sort. The solutions
obtained are couples of substitution and constraint. The constraint is empty if the
command constraints(false) has been used: there is no stop on constraints of the
resolution.

The transformation of a problem into a conjunction of literals is done automatically
when parsing the text of the problem.

The user can ask for one solution only with the strategy of random choice of the clauses,
and without stop on constraints (i.e. the selection strategy on a uniformity subdomain)
by putting a question mark as a prefix of the problem. For instance:

— Pleq,....eqn).

This construction can be used anywhere and several times in the same request:

:— pby, 7(pbs), pbs.

First, the system computes a couple (o1, constraint;) by parameterized resolution of
pby. Second, it considers the problem pb, = {constraint;,o;(pbs)}, and computes one
solution (o9, () with the strategy of random choice of the clauses, and without stop
on constraints (constraint; is solved with oy(pbs), giving no constraints as there is no
stop on constraints). Finally, it returns a couple (o3, constraints) which is a solution of

33

pb3' = sigmasy(sigmay (pbs)).

Before starting some test data set selection for the axioms of the spec module, the
user ask for the creation of a module called spec_test which contains the definitions of
the complexity and typing functions for the sorts which are defined in spec. He also can
modify the module spec_test.ctrl by adding some “wait” meta-clauses.

5.2 Examples of test data set selections

We recall the defining axioms of sorted from the specification NATLIST.

sorted(empty) = true
sorted(cons(N1,empty)) = true
sorted(cons(N1,cons(N2,L))) = and(<(N1,N2), sorted(cons(N2,L)))

where N1, N2 belong to Nat and L belongs to NatList. The and and < operations are
defined as in section 3.

We now describe precisely the selection of a test data set for every defining axioms of
sorted. As the elementary tests are equations between Boolean terms, there is no problem
of observability: this sort is trivially observable. In non observable cases, the construction
of observable contexts for the selected elementary tests can be done after this first selection
phase.

We assume that the NATLIST_test specification has been created and loaded
(NATLIST test.ctrl is automatically loaded). All the required specification modules, all
the complexity and typing functions are available.

5.2.1 First defining axiom of sorted

There is no variable occurring in this axiom. Thus, the only selected test is:

sorted(empty) = true

5.2.2 Second defining axiom of sorted

Only one variable occurs in this axiom. It has the imported sort Nat. We apply uniformity
hypothesis on Nat.

For that, we use the typing function is_.a_Nat : Nat — Boolean which was automati-
cally generated in the NAT_test module (c.f. section 4.6).
We request one solution of the problem is_a_Nat(N1) = true with the strategy of random
choice of the clauses:

:— ?(is_a_Nat(N1:Nat) = true).
We get as answer: N1 = 5.
Thus the only test for the second axiom of sorted is:

sorted(cons(5, empty)) = true

34

5.2.3 Third defining axiom of sorted

We now consider the last defining axiom of sorted.
sorted(cons(N1,cons(N2,L))) = and(<(N1,N2), sorted(cons(N2,L)))

The N1 and N2 variables are of the Nat sort, which is imported. The L variable is of
defined sort NatList. Thus we apply a regularity hypothesis (of level 2) to L. For that,
we use the complexity function on NatList in the following request:

— <(complexity yo:(L:NatList),2) = true.
which returns two solutions:

L = empty;
L = cons(X:Nat, empty);

We now have two instances of the axioms, where there is no more variable of NatList sort:

sorted(cons(N1, cons(N2,empty)))
= and(<(N1, N2), sorted(cons(N2, empty)))

sorted(cons(N1, cons(N2, cons(X, empty))))
= and(<(N1, N2), sorted(cons(N2, cons(X, empty))))

The defining axioms of and, < and sorted give the cases which must be covered. Thus
we decompose the right hand sides of the two above instances via these axioms (as in
Section 3).

The < operation is defined in term of the < operation. Let us assume that we want to
cover the corresponding cases and that we want to stop the decomposition at < (i.e. we do
not want to analyze the cases introduced by the definition of <). We get three uniformity
subdomains definitions (see section 3): M = N, <(M,N) = true and < (N, M) = true.

The computation of this decomposition uses the ”stop on constraints” mode. We need
to define a “wait” meta-clause which will stop the decomposition of < .

wait(<(N:Nat, M :Nat) = B:Boolean) —

var(B) —
and(or(var(N),var(M)),N =/=0,M =/=0)
| B = true —
var(M)
| var(N).
The meaning of Condl — Cond2 | Cond3 is if Cond1 is provable then prove Cond?2
else prove Cond3, and =— and = /= are respectively syntactic equality and syntactic
difference.

The control of the resolution defined by this meta-clause is: if an equation of the form
<(N, M) = B occurs in a resolvent and if N, M, B are not instancied enough for ensuring
that this equation has a finite number of solutions, then the resolution of this equation is
delayed.

From the form of the defining axioms of <, it it clear that the resolution of an equation
<(M,N) = B will lead to equations <(N, M) = true, <(M,N) = true or M = N (but

35

M = N appears only on the substitution part of the solution). The above control will
block the resolution of the two remaining equations if M and N are not instancied. It is
possible to give a simpler control. The interest of the one given above is that it avoids
efficiently some cases of non termination; thus it makes the resolution more efficient.

Generally, the statement of the “wait” meta-clauses is not easy. These meta-clauses
are not only useful to describe the selection strategy, they also allow one to define efficient
control for resolution. Some work on the automatic definition of meta-clauses, in simpler
cases, is reported in [25].

Given the meta-clause above, the decomposition of the first instance of the axiom is
obtained, using the resolution with stop on constraints, by the request below:

:— and(<(N1:Nat, N2:Nat), sorted(cons(N2, empty))) =B:Boolean.
which returns as solutions:

N1 = N2,B = true;

B = true,
constraint = {<(N1, N2) = true};
B = false,

constraint = {<(N2, N1) = true};

These solutions correspond to the definitions of uniformity subdomains. To get directly
arbitrary solutions in these subdomains, it is possible to use the request:

:— and(<(N1:Nat, N2:Nat), sorted(cons(N2,empty))) = B:Boolean, ?().

The 7() construct must immediately follow some equations. After the resolution of
these equations, which yields some constraints and substitutions, it activates the selection
strategy corresponding to uniformity hypotheses on the subdomains. Thus we get as
solutions:

N1 =2 N2=2,B = true;
N1=0,N2=s(X:Nat), B = true;
N1 = s(s(s(s(X:Nat)))), N2 =3, B = false;

The two last solutions contain a variable of Nat sort. As it is an imported sort, we apply
a uniformity hypothesis on Nat via the request 7(is_a_Nat(N1) = true,is.a_Nat(N2) =
true), which is added in the previous request:

:— and(<(N1:Nat, N2:Nat), sorted(cons(N2,empty))) = B:Boolean, ?(),
?(is.a_Nat(N1) = true,is_.a_Nat(N2) = true).

The ?() part of the request could be omitted. However, for a better efficiency of the
resolution, it is necessary to dissociate the selection in the uniformity subdomains built
by decomposition, from the uniformity hypothesis on Nat. The final ground solutions are:

N1 =5 N2=5,B = true;
N1=1,N2 =3, B = true;
N1=9,N2=17 B = false;

36

Thus we have built the following test data set for the first instance of the axiom (the
instance corresponding to complexityyairist(L) = 1)

sorted(cons(5, cons(b,empty))) = and(<(5,5), sorted(cons(5, empty)))
sorted(cons(1, cons(3,empty))) = and(<(1,3), sorted(cons(3, empty)))
<

sorted(cons(9, cons(7,empty))) = and(<(9,7), sorted(cons(7,empty)))

For the second instance, which corresponds to complexityyairisi(L) = 2, the method is
similar. The request below realize a selection strategy compatible with the hypotheses
used for the first instance:

— and(<(N1:Nat, N2:Nat), sorted(cons(N2, cons(X :Nat, empty)))) =B:Boolean,
?(), 7(isca_Nat(N1) = true,is.a_Nat(N2) = true,is_a_Nat(X) = true).

The resulting test data set for the second instance is:

sorted(cons(2, cons(2, cons(2,empty)))) = and(<(2,2), sorted(cons(2, cons(2, empty))))
sorted(cons(0, cons(0, cons(4, empty)))) = and(<(0,0), sorted(cons(0, cons(4, empty))))
sorted(cons(4, cons(4, cons(2,empty)))) = and(<(4,4), sorted(cons(4, cons(2, empty))))
sorted(cons(0, cons(1, cons(1, empty)))) = and(<(0, 1), sorted(cons(1, cons(1, empty))))
sorted(cons(0, cons(2, cons(3, empty)))) = and(<(0,2), sorted(cons(2, cons(3, empty))))
sorted(cons(1, cons(2, cons(0,empty)))) = and(<(1,2), sorted(cons(2, cons(0, empty))))
sorted(cons(3, cons(0, cons(0, empty)))) = and(<(3,0), sorted(cons(0, cons(0, empty))))
sorted(cons(5, cons(0, cons(5, empty)))) = and(<(5,0), sorted(cons(0, cons(5, empty))))
sorted(cons(6, cons(2, cons(1,empty)))) = and(<(6,2), sorted(cons(2, cons(1, empty))))

The test data set for the third defining axiom of sorted is the union of the two data sets
above.
By construction, the corresponding testing context refinement is the following: the reg-
ularity and uniformity hypotheses mentioned above are added to the hypotheses; in the
test data set, the third defining axiom is replaced by the selected elementary tests above;
and the oracle is the built-in equality on booleans.

When all the axioms of the NATLIST specification module are treated in the same
way, the resulting testing context is practicable, as proved in Section 2.

One can remark that it is possible to ”program” complex selection strategies with
one request only. For instance, in our example, there is no necessity to separate the
selection step which corresponds to regularity, as we have done for explanatory purposes.
The global selection strategy, i.e. regularity of level 2, uniformity on the subdomains
obtained by decomposition, uniformity on the remaining Nat variables can be realized by
the following request:

— <(complexity nopis(L:NatList),2) = true,
and(<(N1:Nat, N2:Nat), sorted(cons(N2, L))) =B:Boolean,
?(), 7(is_a_Nat(N1) = true,is.a_Nat(N2) = true,is_a_NatList(L) = true).

The resolution of the equation is_a_NatList(L) = true makes it possible to apply a
selection strategy corresponding to a uniformity hypothesis on all the subterms of Nat
sort occurring in L. The solutions of this request allow to build a test data set similar to

37

the previous one. Of course the instances selected by uniformity may differ.

The system we have presented here provides a sort of kernel language for programming
test data selection from algebraic specifications. This kernel has been carefully designed,
on sound theoretical bases: we think it is a good starting point for the development of an
integrated, well interfaced environment for designing test data sets from formal specifica-
tions (as a by-product, it would be a very nice prototyping environment).

The example we have presented here is not a toy example: generating relevant test
data sets for sorted lists is difficult, more difficult than most of the practical problems.
At this moment, the system is experienced on a large specification, namely the embedded
software of the automatic pilot system of the Lyon subway [6], and some data sets have
been generated for some modules of the specification. It is too early to state conclusions,
but until now, only simple requests have been necessary for this industrial example.

38

Comparison with previous and related works

The work reported here is the continuation of the works reported in [2, 3, 5, 17, 23] on
the generation of test data sets from algebraic specifications using logic programming.

Even if there is some general agreement that using logic programming for assisting
program testing is a good idea [12, 26], and that deriving test data sets from specification
is interesting [27, 29, 28] , there are few other published works in this area.

A pioneering work on test methods based on algebraic specifications was [16] where
the idea of exercising the axioms, via the procedures of the program under test, was first
presented.

More recently, [13] used the uniformity and regularity hypotheses, as defined in [2] for
testing a Unix-like directory structure against a OBJ-UMIST specification.

In [34], the idea of using constraints, first advocated in [5], is pushed further; Generic
Constraint Logic Programming is experienced with an aim different from ours, which is
to address incompleteness in analysis.

The main advances reported in this paper are:

e the definition of the concept of a testing context as a triple (hypotheses, test data
set, oracle), and of a refinement preorder on such testing contexts;

e the introduction of oracle hypotheses, and more generally of a satisfactory way of
coping with the oracle problem (it was not the case in [3]);

e an attempt to enlarge the class of formal specifications considered. As shown in
section 1, this generalization works well but for the unbias properties and the oracle
problem which are dealt with in the specialized framework of algebraic specifications.
We intend to continue in this direction;

e the replacement of the notion of generation by the notion of selection: it allows a
very nice justification of the way the test data sets are refined;

e the existence of a specialized system which allows to program various selection
strategies, which are justified theoretically.

Acknowledgements

This work has been partially supported by the Meteor Esprit Project and the PRC “Pro-
grammation et Outils pour I'Intelligence Artificielle.” It is a pleasure to thank Laurent
Fribourg for numerous helpful discussions.

39

Appendix: Form of the axioms resulting from the first
step of the transformation

We have to prove that the axioms resulting from the transformation presented in section
4.1 are of the form:

fl(tl,la s atl,nl) =T A fm(tm,la B tm,nm) =Ty = f(tla cee atn) =r
where f, f; are defined operations and ¢, ;, 7 and r belong to Wq(X).

e The form of the left hand-side of the conclusion is a direct consequence of the form
of the initial axiom.

e For the right hand-side of the conclusion, r, if it contains an occurrence of a defined
operation, rl is applicable; this is impossible since the control apply r1 while possible.

e For the equalities of the precondition: let us note s; = s, such an equality.

1. If both s; and sy are Wq(X') terms, r4 is applicable.

2. Else, if either s; or sy contains a strict occurrence of a defined operation, r3 is
applicable.

3. Else, if both the top symbols of s; and ss are defined operations, r2 is applicable.

In these three cases there is a contradiction with the control. Thus either s; or s,
belong to Wq(X). Then, up to the symmetry of these equalities, all the equalities
in the precondition are of the defined form.

40

References

1]

Goguen J. Thatcher J. Wagner E. An initial algebra approach to the specification, correct-
ness, and implementation of abstract data types Current Trends in Programming Method-
ology, Vol.4, Yeh Ed. Prentice Hall, 1978.

Bougé L. Choquet N. Fribourg L. Gaudel M. C. Application of PROLOG to test sets
generation from algebraic specifications Proc. International Joint Conference on Theory
and Practice of Software Development (TAPSOFT), Berlin (R.F.A), Springer-Verlag LNCS
186, pp.246-260, March 1985. Also: Internal report LRI n°176.

Bougé L. Choquet N. Fribourg L. Gaudel M. C. Test sets generation from algebraic speci-
fications using logic programming Journal of Systems and Software Vol 6, n°4, pp.343-360,
November 1986. Also: Internal report LRI n°240.

Bernot G. A formalism for test with oracle based on algebraic specifications LIENS Report
89-4, LIENS/DMI, Ecole Normale Supérieure, Paris, France, May 1989

Choquet N. Test data generation using a PROLOG with constraints Workshop on Software
Testing, Banff Canada, IEEE Catalog Number 86 TH0144-6, pp 132-141, July 1986.

Dauchy P., Marre B. Test data selection from the algebraic specification of a module of an
automatic subway LRI report n® 638, LRI, Université Paris-sud, Orsay, France, january
1991.

Deransart P. An Operational Algebraic Semantics of PROLOG Programs Proc. Program-
mation en Logique, Perros-Guirrec, CNET-Lannion, March 83.

Dincbas M. Le Pape J.P. Metacontrol in logic programs in METALOG 5th Generation
Conf., Tokyo, November 1984.

Van Emden M. H., Yukawa K. Logic Programming with Equations J. Logic Programming
(4), pp. 265-268, 1987.

Fribourg L. SLOG, a Logic Programming Language Interpreter Based on Clausal Super-
position and Rewriting International Symposium on Logic Programming, Boston, July
1985.

Fribourg L. Prolog with Simplification Programming of Future Generation Computers.
Fuchi, Nivat Ed. Elsevier Science Publishers B.V. (North Holland), 1988.

Gerhart S. Software Engineering Perspectives on Prolog Technical report TR-85-13, Wang
Institute of Graduate Studies, July 1985.

Gerrard C. P., Coleman D., Gallimore R. Formal Specification and Design Time Testing
Software Science Itd, technical report, June 1985, IEEE trans. on Software Engineering,
vol. 16, n°1, january 1990.

Goodenough J.B., Gerhart S.L.. Towards a theory of test data selection IEEE trans. soft.
Eng. SE-1, 2, 1975. Also: SIGPLAN Notices 10 (6), 1975.

Geser, Hussmann Ezxperiences with the RAP system — a specification interpreter combining
term rewriting and resolution techniques Proc. ESOP 86 Conf., LNCS 213, pp 339-350,
1986.

41

[16]

[17]

Gannon J. McMullin P. Hamlet R. Data-Abstraction Implementation, Specification, and
Testing ACM transactions on Programming Languages and Systems, Vol 3, n° 3, pp.211-
223, July 1981.

Gaudel M.-C., Marre B. Algebraic specifications and software testing: theory and applica-
tion LRI Report 407, Orsay, February 1988, and extended abstract in Proc. workshop on
Software Testing, Banff, IEEE-ACM, July 1988.

Hennicker R. Observational implementation of algebraic specifications Acta Informatica,
vol.28, n?3, pp.187-230, 1991.

Hussmann Unification in Conditional-Equational Theories Technical Report MIP-8502, U.
passau, January 1985, and short version in Proc. EUROCAL 85 Conf., Linz.

Kamin S. Final Data Types and Their Specification ACM Transactions on Programming
Languages and Systems (5), pp.97-123, 1983.

Kaplan S. Conditional rewrite rules Theoretical Computer Science (33), pp. 175-193,
December 1984.

Kowalski R. Logic Programming Proc. IFIP 1983, pp. 133-145.

Marre B. Génération automatique de jeux de tests, une solution : Spécifications algébriques
et Programmation logique Proc.Programmation en Logique, Tregastel, CNET-Lannion,
pp-213-236, May 1989.

Naish L. An introduction to MU-PROLOG Technical report, 82/2, Dept. of Computer
Science, U. of Melbourne, 1982.

Naish L. Negation and Control in Prolog LNCS 238, (Springer-Verlag), 1985.

Pesch H. Schnupp P. Schaller H. Spirk A.P. Test Case Generation using Prolog ICSE 8,
London, 1985, pp 252-258.

Rigal G. Generating Acceptance Tests from SADT/SPECIF IGL technical report, August
1986.

Rubaux J.P. Rapport final d’étude du poste de generation de test ASA RATP Paris,
Direction des Equipements Electriques, TT-SEL/89-183/JPR.

Scullard G. T. Test Case Selection using VDM VDM’88, Dublin, 1988, LNCS no 328 pp
178-186.

Schoett O. Data abstraction and the correctness of modular programming Ph. D. Thesis,
Univ. of Edinburgh, 1986.

Sannella D., Tarlecki A. On observational equivalence and algebraic specification Journal
of Computer and System Sciences 34, pp.150-178, 1987.

Weyuker E. J. The oracle assumption of program testing Proc. 13th Hawaii Intl. Conf.
Syst. Sciences 1, pp.44-49, 1980.

Weyuker E. J. On testing non testable programs The Computer Journal 25, 4, pp.465-470,
1982.

42

[34] Wild C The use of Generic Constraint Logic Programming for Software Testing and Analy-
sis Comp. Sc. Technical Report Series, no 88-02, Dept of Computer Science, Old Dominion
University, Norfolk, VA, February 1988.

Extended abstract in Proc. 2nd ACM-IEEE Workshop on Software Testing, Verification,
and Analysis, Banff, July 1988.

43

