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Abstract 

Video-based crowd behaviour detection aims at tackling 

challenging problems such as automating and identifying 

changing crowd behaviours under complex real life situations. 

In this paper, real-time crowd anomaly detection algorithms 

have been investigated. Based on the spatio-temporal video 

volume concept, an innovative spatio-temporal texture model 

has been proposed in this research for its rich crowd pattern 

characteristics. Through extracting and integrating those crowd 

textures from surveillance recordings, a redundancy wavelet 

transformation-based feature space can be deployed for 

behavioural template matching. Experiment shows that the 

abnormality appearing in crowd scenes can be identified in a 

real-time fashion by the devised method. This new approach is 

envisaged to facilitate a wide spectrum of crowd analysis 

applications through automating current Closed-Circuit 

Television (CCTV)-based surveillance systems. 

1 Introduction 

Automated crowd anomaly detection has become one of the 

most popular research topics in computer vision and video 

analysis. Real world demands from public event monitoring, 

such as football matches, open air concerts and busy high 

streets, have rendered the real-time performance of any 

technical solutions ever more important. However, precisely 

defining and detecting crowd “abnormalities” have been an ill-

defined theoretical concept and limited (lab-bound) practical 

study, especially concerning legacy early-warning strategies 

due to their excessive requests on accurate frame-by-frame 

image processing level feature detection and analysis outputs. 

 Crowd scenes often contain severe occlusion problems on 

elementary subjects, and might also suffer from uncertainties 

such as changes on target densities over time. Conventional 

top-down crowd analysis approaches aimed at accurately 

detecting and tracking individual entity before interpreting 

their “aggregated” actions, which have been proven ineffective 

when dealing with real-life scenarios [1]. Recent studies [2-5] 

have indicated potentials through modelling crowd anomaly 

directly using their fundamental group-level characteristics, 

the so-called bottom-up approach, to yield more effective 

detection results. 

 Many recent works have focused on describing a crowd 

scene as a dynamic flow field. Early studies, such as the “crowd 

motion model” [6] and “density texture model” [7] , have 

integrated information like crowd density, moving direction 

and dynamic boundaries within a unified optical flow field [8]. 

For example, Ali et al. introduced a “finite time Lyapunov 

exponent field” [9] - an extended optical flow model - for 

analysing extremely dense crowd-based events. This work has 

been further explored to construct a “floor field model” [10] 

for tracking individuals [11] from crowds. 

 Although the flow field-based approaches are useful tools 

for representing crowd behaviour in a “global” sense, the 

methods in general is lacking of sensitivity when describing 

localised crowd abnormalities, where the region of “changes” 

only occupies a small portion of the entire crowd area. It is 

widely acknowledged that potentially hazardous situations 

often arise from those localized crowd variations. Therefore, a 

more generic and robust crowd abnormality detection 

framework should integrate both the local and global crowd 

features in a seamless and timely manner. 

 In addition, the “normal” and “abnormal” crowd 

behaviours are intrinsically ambiguous on semantic level. For 

example, crowds running in a marathon can be classified as 

“normal”, while people suddenly start running in an open 

concert may trigger the alarm as an emergency scenario. Based 

on the nature of surveillance applications, the occurrence of 

anomaly events usually counts a very small percentage of the 

entire surveillance cycle and demands immediate verification 

and response. For detecting anomaly crowd events, it is 

reasonable to define normal crowd behaviours as dominate 

pattern. Instead of composing complex event models for 

semantic interpretation, a normality crowd model in this 

research can be learnt and self-updated by abstracting the 

visual features along its timeline. 

 In this paper, a combination of flow filed signatures and 

statistic spatio-temporal information have been used for 

describing crowd events. A brand-new spatio-temporal texture 

(STT) model has been proven as an effective crowd event 

descriptor which both sensitive to global and local anomalies. 

A “redundancy” feature space has been built based on the STT 

structure through wavelet-based texture representations, which 

allows a flexible multi-criteria binary decision making 

mechanism to be constructed for detecting the crowd scene 

anomalies. 

 This paper is structured as follows: STT-based crowd 

anomaly modelling approach has been introduced in Section 2. 

Section 3 focuses on defining and extracting visual features 

from STT through wavelet transformation. In Section 4, a real-

time anomaly detection algorithm is introduced based on the 

above feature analysis outputs. The system evaluations against 

benchmarking approaches have been highlighted in Section 5. 



Section 6 discusses the progress-to-date and potential 

improvements in the future. 

2 Spatio-temporal Texture formulation 

Spatio-temporal Texture (STT) model is a statistical model 

developed in this research. STT is sensitive to the changes of 

crowd motion and can be used for monitoring crowd activates 

in real-time. STT is composed by using spatio-temporal 

volume and its slices located at highly dynamic crowd area. 

2.1 Spatio-temporal Volume slices 

As illustrated in Figure 1, a Spatio-temporal Volume (STV) is 

defined in a 3D Cartesian space denoted by X, Y, and T (time) 

axes. In this structure, the concept of an individual frame is 

replaced by a continuous 3D volume section, in which its 

density, envelop and slices are all factors to the final 

interpretation of the model. 

 
Figure 1. Defining STV slices from crowd video scene 

 The STV data structure transforms the video event 

detection process from a conventional 2D frame-based 

mechanism into a 3D model analysis operation. Through this 

transformation, dynamic information of a crowd’s movement 

can be represented by the variation of 3D shapes, flows or point 

clouds. Various pattern recognition, shape analysis and 

matching algorithms can be applied to the volumetric natured 

crowd events. 

 As shown in the Figure 1, a slice is generated by inserting 

a clipping plane at chosen position (dash-line marked region) 

and going through the STV along the T axis. In this research, 

the position and direction of each STV slice are controlled by 

the local crowd region (shaded segments on the clipping 

plane), which is explained below. 

2.2 Average flow-based crowd region detection  

The video footages contain not just rich dynamic data, but also 

signal noises and unwanted background information. It is 

essential to rapidly locate the crowded region and filtering out 

the noises. This operation allows more dynamic information 

rather than static background and noises to be recorded on STV 

slices. 

 During the development, so-called “average flow field” has 

been used in the prototype to evaluate the dynamic level of 

image scenes. The average flow field is composed by a group 

of binary calculations on optical flow field. Specifically, given 

a video clip containing 𝑛 frames, the average flow field 

𝑊(𝑥, 𝑦) can be defined by 

 𝑊 = ∑ 𝑤𝑖𝑖     , and (1) 

 𝑤𝑖 = {
1,      |ℎ𝑖|2 ≥ 𝑚𝑒𝑎𝑛(|ℎ𝑖|2)

0,                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   , (2) 

where 𝑚𝑒𝑎𝑛(•) calculate the average magnitude value of each 

flow filed. ℎ𝑖 denotes the Horn-Schunck optical flow field [8] 

calculated between the ith and the i+1th frame.  

  
(a) average flow field (b) XT and YT STV slices 

guided by crowd area 

Figure 2. Crowd boundary detection for locating the STV slices 

 Figure 2(a) shows an example of  𝑊 calculated by using 

video clips from Figure 1. In the average flow field, brighter 

values denote more dynamic changes across the timeline which 

is mainly caused by the crowd movement.  Lower values, on 

the other hand, are usually caused by noise and insignificant 

changes. In the experiment, locations where 𝑊(𝑥, 𝑦) ≤ 5 have 

been ignored based on experience for further processing.  

 The average flow is then used for locating the crowd area 

by using a group of morphological operations such as “open”, 

and “binary boundary detection”. Those boundaries limited the 

width of STV slices along the timeline.  Based on the definition 

of STV slices introduced in Section 2.1, a group of STV slices 

need to be sampled inside the region of 𝑊. For simplification, 

only XT (horizontal) slices and YT (vertical) slices are used. 

As illustrated in the Figure 2(b), each sampled slice has been 

marked by lines across the XY (the frame) field.  For keeping 

the detection accuracy and efficiency, it is not necessary to 

sample each slice per pixel, the distance between each slices is 

set between 10 and 50 depending on the image size and 

resolution. 

2.3 STT visual similarity 

Based on the viewpoint of human intuition, a static crowd 

texture contains spatially homogeneous image regions 

composed of the crowd members in random locations, of 

varied colours, and sizes. While the “appearance” of each 

crowd member is different, but the sub-regions are quite 

similar and even visually indistinguishable. This similarity was 

caused by the pre-attentive decision of the human observer and 

stemmed from human vision biology and psychology. It is 

from this angle that this research set to investigate the spatial 

similarity and of crowded scenes using extracted STV slices as 

pattern textures. 

 Captured by the STV slice shown in Figure 3, STT sub-

regions divided by several lines denote the different time 

sections along the video stream. Because the Marathon 

example used in Figure 3 does not have sudden changes in 

terms of crowd behaviours, although the sub-regions contain 

different individual details, their compositing pattern textures 

are identical. 



 
Figure 3 Similar crowd activities shows visually indistinguishable 

STT patterns 

 In the case of a crowd anomaly as shown in Figure 4 (an 

old movie clip containing a sudden disperse of a group of 

soldiers), one STT deployed along the T axis shows that 

between time t1 and t2, subjects were standing still. After t2 the 

subjects started mingling with each other. The differences of 

the STV slices between segments [t1, t2] and [t2, t3] are obvious 

to human observers intuitively, hence opening up a revenue to 

explore the “visual” features from STV slices to represent 

changes in crowds. 

 
Figure 4. STT visual patterns are sensitive to anomaly crowd 

events 

3 Wavelet-based STT feature space 

Visual similarity is an intuitive concept based on the image 

appearance. Specifically, this visually undistinguished image 

contains both randomness and similarity. One of the classic 

mathematic models for describing this relationship from finite 

lattices is called Homogeneous Random Field (HRF) which 

was first introduced by Julesz [12] and then formalized by Zhu 

et al. [13] in 2000. It had since been widely adopted in nature 

image understanding and texture feature modelling based on 

the statistical principles theories. In this research, HRF has 

been used for composing the STT feature space. The interested 

reader can refer to [14] for further information.  

 Based on the wavelet transform, HRF highlights three 

groups of visual features. The crowd model can be constructed 

based on HRF for texture modelling, which has been 

summarised as: 

 Fundamental low-level features 

The grayscale distributions extracted from each low-pass band 

from HRF and the down-sampled image of the steerable 

pyramid. The measurement is based on calculation of means, 

variance, skewness, kurtosis minimum and maximum values 

of every input STV slice sub-region, variance of the high-pass 

band, and skewness and kurtosis of the every low pass image 

at each scale.  

 Coefficient features 

The coefficient features are the local auto-correlations of the 

wavelet sub-bands. The features have been used for evaluating 

the periodical and long range correlations of the image 

distributions. Coefficient features are schemed based on auto-

correlation at each low-pass band only for creating the scale-

invariant model. Specifically, for measuring the characters of 

the texture frequencies and regularities, raw auto-coefficient 

correlations on each low pass band also need to be measured. 

 Magnitude features 

Magnitude features represents the “edges”, “corners” and 

“bars” in the sub-bands. Using texture analysis techniques, 

such as “second-order” texture features [14], the correlation of 

magnitudes from image sub-bands have been integrated into 

the design. This type of features is calculated by using cross-

correlation of the pairs at adjacent positions, orientations and 

scales. Central samples of the auto-correlation of magnitude of 

each sub-band, cross-correlation of each sub-band magnitudes 

with those of other orientations at the same scale and coarser 

scales are recorded. The edge characters based on cross-

correlation of the real part of coefficients with both the real and 

imaginary part of the phase-doubled coefficients at all 

orientations at the parent’s scales are also calculated. 

 During system testing, the total number of feature points is 

710 on a 4-scales and 4-orientations wavelet transforms. In this 

paper, a redundant STT feature space has been designed. It is 

emphasised that the redundancy is caused by overlapped 

calculation of HRF components. For example, the variation of 

low pass image is also included in the autocorrelation. During 

the test, it is discovered that the overlapping actually act as a 

“double check” mechanism which can significantly improve 

robustness of the decision making algorithm. 

4 Real-time crowd anomaly detection 

 
Figure 5. System framework of real-time anomaly crowd event 

detection algorithm 
 

As illustrated in Figure 5, the system starts from building up a 

video buffer only containing certain number of video frames 

before STV construction for real-time purpose. In the 

video stream buffer STV
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experiment, the buffer has been setup less than 90 frames 

allowance because crowd anomaly is usually occurred within 

3 seconds by using 30 frames per second (fps) video settings. 

 In this research, a normality crowd model has been learnt 

by abstracting the normal instances’ STT features. Any crowd 

events different from normality should be alarmed.  

 

4.1 Learning normal crowd behaviours 

The average flow field provides the size, locations and 

directions for a group of STV slices. During the video 

buffering, those slices’ distribution information is set up as 

constants. The slices are renewed 𝐿 = 𝐿𝑣 − 𝐿𝑏 + 1 times for 

the whole learning process, where 𝐿𝑣 is the length of the video 

and  𝐿𝑏 denotes the length of video buffer. 

 Given a group of STV slices for learning, the statistical 

texture features can be abstracted for establishing the model of 

crowd activities. Each STV slice instance has its own STT 

feature space 𝐹𝑖𝑗 = [𝑓𝑖𝑗1, 𝑓𝑖𝑗2, … 𝑓𝑖𝑗𝑁], (𝑖 = 1,2, … , 𝐿; 𝑗 =

1,2, … , 𝑆), where 𝑓𝑖𝑗𝑘 , (𝑘 = 1,2, … , 𝑁) denotes the N elements 

from STT feature space summarised in Section 3 and 𝑆 denotes 

the total number of slices used in the video. Those operations 

generate 𝑆 × 𝐿 STT features in total for calculating the 

statistical distributions for the learning.  

 During the experiment, it has been discovered that with 

fixed 𝑗, 𝑘 values,  𝑓1𝑗𝑘 , 𝑓2𝑗𝑘, … , 𝑓L𝑗𝑘  approximately obey 

Gaussian distribution 𝒩(𝜇, 𝜎2).  This empirical approximation 

works well on many testing videos for anomaly detection (see 

Section 5), and has been used for modelling the normal crowd 

activities in this research. For each learning video, 𝜇𝑗𝑘 , 𝜎𝑗𝑘  is 

defined as 

 𝜇𝑗𝑘 =
1

𝐿
∑ 𝑓𝑖𝑗𝑘𝑖  , (3) 

 𝜎𝑗𝑘 = √
1

𝐿
∑ (𝑓𝑖𝑗𝑘 − 𝜇𝑗𝑘)

2
𝑖   . (4) 

4.2 Anomaly crowd event detection 

Crowd anomaly detection is a binary decision making task that 

the system should label “normality” or “abnormality” to the 

video samples through comparing the detected STT features 

with normality crowd model. For online purpose, the decision 

is made for each buffered video clips during the video playing. 

Same as learning progress, the STT features are extracted from 

STV slices located at 𝑆 positions by average flow field.  

 Denoting the STT feature for crowd anomaly detection as 

�̃�𝑗 = [𝑓𝑗𝑘], (𝑗 = 1,2, … , 𝑆; 𝑘 = 1,2, … , 𝑁). In this research, the 

binary decision for each STT element is simply judged by 

whether the element obeys 3-sigma rule of Gaussian 

distribution, which is  

 𝑑𝑗𝑘 = {
1 (𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒)          𝑓𝑗𝑘 ∈ [𝜇𝑗𝑘 − 3𝜎𝑗𝑘 , 𝜇𝑗𝑘 + 3𝜎𝑗𝑘]

0 (𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒)        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
. (5) 

 This operation has composed 𝑁 sub-decisions for one 

STV slice. For making a “final” decision, 𝐷𝑗 , a “voting ” 

mechanism has been introduced: 

 𝐷𝑗 = {
1            

1

𝑁
∑ 𝑑𝑗𝑘𝑘 > 𝑇

0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
. (6) 

 Equation 6 starts from calculating a positive rate for all sub-

decisions. A threshold, 𝑇, is then compared with the positive 

rate for making a final decision for the STV slice.  In the voting 

mechanism, the threshold can be recognised as a pass-rate for 

the decision. Higher pass-rate means that the final positive 

decision for a slice requires more votes from its positive voters 

(𝑑𝑗𝑘 = 1).  

Since STV slices are independently distributed inside the 

average flow filed, 𝐷𝑗  can be recognised as the local decision 

for a crowd image scene. Each 𝐷𝑗  can mark the normality or 

abnormality crowd event of its local area. 

 The designed prototype is an effective decision making 

system. The time consumption of the algorithm is much lower 

than the time used for video buffering and playing (see details 

in Section 5.1). By using parallel programming strategy, the 

anomaly crowed can be detected before clearing current video 

segment from buffer, which guarantees the real-time 

performance of decision making during the video play. 

5 System evaluation 

In this research, a prototype system has been implemented to 

test the devised anomaly crowd detection model. The prototype 

has been run on a host PC with a 64bit Core i7 CPU 

(2X3.07GHz) and 4GB RAM.  

 During the evaluation, this work has been compared with 

many benchmarking approaches such as Spatio-temporal 

Compositions (STC) [1] and Inference by Composition (IBC) 

[15], The STC highlights its real-time performance and the IBC 

has been considered as one of the most accurate method for 

anomaly detection.  

 A popular online video databases, UCSD [16], have been 

used for the system tests. The UCSD dataset contains two 

video scenes (Ped1 and Ped2) of pedestrians walking along the 

road. The anomaly events have been defined as some cars or 

bicycles quickly go through those pedestrians which could 

build up hazard road situation. 

 During the experiments, the video buffer has been set up 

for holding 3 seconds video clips for all the tests. All the video 

frames have been resized into 320×240 pixels. Only grayscale 

channel have been used. For extracting STT features, 3-scales 

and 4-orientations steerable pyramid wavelet transforms have 

been applied. The size of input STV slices has also been 

normalised into 256×256 pixels through Bicubic interpolation. 

5.1 System efficiency test 

The designed feature extraction and decision making algorithm 

is an effective solution for anomaly crowd detection. This test 

is used for evaluating the time consumption of each step of the 

detection algorithm. 



 As illustrated in Figure 6, the time consumption is 

calculated by measuring and averaging elapsed time of each 

step 50 turns based on different video footages. For a buffered 

video clip, the algorithm takes averagely 1658ms 

(18.4ms/frame based on 30fps video clip) for normal/abnormal 

event detection. The break-down time consumption of anomaly 

detection has also been illustrated in the figure by using 

different colour labels. 

 It is also worth noting that although some time consuming 

steps such as STV construction, wavelet transforms and STT 

construction take 3.3ms/frame to 5.6ms/frame for their 

calculations, the whole time used by detection is still less than 

the video buffering. During the experiment, an optimised 

prototype has been developed by running video buffering and 

anomaly crowd detection as two parallel processes. The video 

can play without any delaying caused by the detection process, 

which is suitable for applications of real-time surveillance 

system. 

 
Figure 6. Time consumption of the system prototype 

 The time consumption of this algorithm has also been 

compared with the popular approaches illustrated in Table 1. 
 Table 1. Efficiency tests on different databases (unit: ms/frame)  

 In the table, the STT feature-based approach introduced in 

this research performs faster than all the other three 

benchmarking approaches. During the test, it also takes fewer 

memories for the data processing and storage, which is 

important advantage for many intelligent surveillance systems. 

5.2 Accuracy performance on UCSD dataset 

To test the accuracy and robustness of developed anomaly 

crowd event detection system, receiver operating characteristic 

(ROC) curve is deployed during the test. The points on ROC 

curve are defined by true- and false-positive rate of the 

detection system. Firstly, each video frame has been hand-

marked by labels (i.e. “normality” and “abnormality”) as 

ground truths. The true-positive is then counted when a 

normality ground truth is marked correctly by the detection 

system. Otherwise, the false-positive will be recorded. For 

making a ROC curve, threshold T used as voting pass-rate (see 

Section 4.2) should be increased from 0% to 100% with 10% 

steps, which generates 11 points for a ROC curve. 

 The test results have been represented by the OCR curves 

shown in Figure 8, the proposed STT method shows 

comparable results of STC and IBC, also uses less time and 

system memory resources, which is contributed by the simple 

and effective decision making algorithm introduced in Section 

4.2. 

5.3 STT feasibility test 

The STT features are designed by using STV slices based on 

HRF texture features. Actually, for describing the visually 

undistinguished image, many texture models have been 

developed in recent years. In this test, many other texture 

models such as textons [17], and multivariate image analysis 

(MIA) [18] are compared with proposed STT model. Those 

texture models are used to represent STV slices by using N-

dimensional feature vectors. Same strategies introduced in 

Section 4 have been applied for evaluating their performance. 

 
Figure 9. OCR tests based on different texture models 

 

 As shown in the Figure 9, the detection accuracy 

performance evaluated by using OCR curves on UCSD-Ped1 

video datasets. Compared with other texture model, the devised 

approach and algorithms in this research have shown 

promising characteristics and for detecting crowd anomaly. It 

has been proved that the wavelet-based texture model is a 

superior tool for representing local randomness and global 

similarity. In addition, because the STT features contains 

redundant feature sets, many other texture models can be 

recognised as a subsets of this feature space, which cannot 

comprehensively describe the visual appearance of visually 

undistinguished images. 
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video buffer
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 Dataset 
Method 

STT STC IBC 

UCSD-Ped1 18 19 2100 

UCSD-Ped2 18 22 2900 

  
UCSD-Ped1 UCSD-Ped2 

Figure 8. OCR curves of UCSD dataset 



6 Conclusion and Future Works 

In this paper, a real-time crowd anomaly detection framework 

has been introduced. The new approach starts from locating 

crowd boundaries though averaging the flow fields. The 

boundaries of those highly dynamic crowd regions will then be 

subjecting to the insertion of STT slices for “visual” feature 

extraction. A 2D STT is abstracted from sampling the 3D 

spatio-temporal video volume (XT-slice and YT-slice). A 

“redundancy” feature space is then established based on the 

multiple STTs through wavelet transformation to formulate the 

behavioural texture models. As a system strategy, for detecting 

crowd anomalies in real-time, the feature space has been 

analysed through a multi-binary evaluation algorithm based on 

the Gaussian 3-sigma rule. Experiments in this research have 

shown satisfactory real-time performance during the tests and 

promising potentials for enabling intelligent CCTV 

surveillance applications. 

 Future work will be focused on alleviating impacts from 

sudden crowd density changes, for example, in biological 

studies on behaviours of birds and bees. During the tests, it is 

noticed that STT features are sensitive to high- and medium-

dense crowds, while for low dense crowds, although more 

suitable for individual or small group-based behavioural 

analysis, the system is less well performed under current 

framework settings. Future work will examine crowd density 

estimation mechanisms for adaptive feature selection and 

pattern recognition. 
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