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Abstract 
Identifying criminals from CCTV footage is often a difficult 
task for crime investigations. The quality of CCTV is often 
low and criminals can cover their face and wear gloves (to 
withhold fingerprints) when committing a crime. Gait is the 
optimal choice in this circumstance since people can be 
recognised by their walking style, even at a distance with low 
resolution imagery. The location of the frame when the heel 
strikes the floor is essential for some gait analyses. We 
propose a new method to detect heel strikes: by radial 
acceleration which can also generalise to crime analysis. The 
frame and position of the heel strikes can be estimated by the 
quantity and the circle centres of radial acceleration, derived 
from the optical flow (using DeepFlow). Experimental results 
show high detection rate on two different gait databases and 
good robustness under different kinds of noise. We analyse 
detection of heel strikes to show robustness then we analyse 
crime scenes to show generalisation capability since violent 
crime often involves much acceleration. As such, we provide 
a new basis to a baseline technique in crime scene analysis. 

1 Introduction 
Identifying criminals from surveillance videos is often 
difficult for police because the quality of images is severely 
affected by illumination and insufficient image resolution.  
Criminals also cover their faces to avoid recognition which 
compounds the investigation difficulties. In this case, gait is 
the optimal biometric technique to recognise criminals.  
Gait is a behavioural biometric obtained at a distance from the 
camera, which is hard to hide or disguise. Since it is not 
affected by the low quality of images, gait is the most reliable 
biometric in the criminal investigation when other biometrics 
are not available. It has been demonstrated previously that 
gait can be used in criminal investigations either as body 
measurements [1] or gait measurements [2]. Figure 1 is a 
CCTV footage of an Australian jewellery shop murder: the 
target covered his face during the crime and he was 
recognised by his gait after it was found in the surveillance 
video that he had come to the jewellery shop earlier that day. 
In gait analysis, heel strikes are an important and preliminary 
cue for gait analysis because gait period, step and stride 
length can be derived accurately by the moment and position 
of heel strike. It refers to the heel first makes contact with the 
ground during the stance phase of the walking cycle [3]. 
We introduce a new method to use acceleration detect the 
time when a heel strikes the floor and likely crime events. 

When the foot is approaching heel strike, its motion status 
changes from moving forward to making circular motion 
centred at the heel. The amount of acceleration on the leading 
foot will dramatically increase when the heel strikes the floor. 
According to this clue, we can determine the key frame and 
position of the heel strike precisely. Previous approaches to 
heel strike detection have used more of the image sequence 
and have determined the frame which has the most corners [4] 
and by detection based on the sinusoidal movement of the 
head and a silhouette accumulator map [5]. In contrast, the 
new approach uses only three consecutive frames to detect 
acceleration and thence heel strikes, and further can be 
generalised to detect crime events which invariably involve 
acceleration rather than smooth movement. 

 
Figure 1: Murderer who was recognised by his gait.1 

This paper is the first to use acceleration to analyse gait and 
crime scenes, and we show that this new basis provides a 
robust and accurate method to automatically describe these 
basic events. The paper is arranged as follows: Section 2 
presents the new algorithm for disambiguating acceleration 
from optical flow. Section 3 describes each stage of our heel 
strike detection approach. Experimental results and the 
robustness of our algorithm are illustrated in Sections 4 and 5, 
followed by the suggestion for future avenues of research. 

2 Detecting acceleration in computer images 
In past research in motion analysis in computer vision, 
researchers have only considered the relative movement of 
objects between consecutive frames. According to the 
sampling rate of video, the detected displacement can be 
formed as the ‘velocity' of moving objects. There are actually 
many different types of motion in the real world. There has 

                                                             
1 Image is taken from: https://www.youtube.com/watch?v=F1b_apXjjV0&feature=youtu.be 



been no prior study on acceleration, only on velocity or 
motion. 
Acceleration is a vector of describing the magnitude and 
direction of the change of velocity. The average acceleration 
is the average rate of change of velocity with respect to the 
time interval. As with velocity, when the time period 
approaches zero, it is termed instantaneous acceleration a: 

! = lim∆!→!
∆!
∆! =

!!
!"                               (1) 

Few objects have linear motion in real-world image 
sequences so decomposing the resultant acceleration into 
tangential and radial acceleration is necessary. In a curved 
motion, the tangential component changes the magnitude of 
velocity and the direction is located in the tangent line of the 
trajectory (increasing or decreasing the speed). The radial 
component (also called centripetal acceleration in a circular 
motion) changes the direction of velocity and it points to the 
centre of the curved path (normal to the direction of velocity) 
[6], as shown in Figure 2. We show how it is possible to 
decompose acceleration into terms of direction and magnitude. 

 
Figure 2: The relationship between resultant acceleration, 
tangential acceleration and radial acceleration2. 
At each point, according to the geometry shown in Figure 2, 
the radial acceleration !! and tangential acceleration !! 
components can be derived from the resultant acceleration ! 
as: 

!! = sin ! ∗ !,!! = cos ! ∗ !                    (2) 

where ! is the angle between a and !! and equals the angle 
between ! and ! as  the direction of velocity is also along the 
tangent: 

! = cos!! !∙!
! !                                (3) 

According to: 
!! = !! !                                  (4) 

the radius of the circular motion can be determined by: 
! = !! (!"#$ ∗ !)                            (5) 

then the centre of radial acceleration that point (!, !)  
experienced is: 

! = (!, !) − !! , !!                             (6) 

In this work, optical flow is used as the motion detection 
technique. Optical flow refers to the apparent motion between 
the observer and the observed object caused by relative 
motion [7] and it has been steadily developed over 30 years 
since Horn and Schunck presented the first variational 
approach in computer vision [8]. Nowadays optical flow 
estimation methods have achieved a remarkable level of 
reliability and precision [9, 10, 11]. Among them, DeepFlow 
                                                             
2 Image is taken from: http://physics.tutorvista.com/motion/tangential-acceleration.html 

[12] is a recent technique with excellent performance for 
large displacement estimation and non-rigid matching. In this 
paper, the components of resultant acceleration on !-axis !! 
and ! -axis !!  are achieved by differencing consecutive 
estimates of optical flow detected by DeepFlow: 

!! = ! ! + 1 − ! !
!! = ! ! + 1 − ! !                            (7) 

where ! !  and ! !  denote optical flow components 
(velocity) of one point in the image along the horizontal and 
vertical direction at time !.  
The approach to detect acceleration is then to use DeepFlow 
to determine the estimates of velocity and from them derive 
acceleration by Equation 7 and determine radial and 
tangential acceleration by Equation 2 and 3, the centre of 
radial acceleration from Equation 6.  

3 Heel strike detection 

3.1 Key Frame Detection 

At heel strike the acceleration on the front foot increases 
dramatically, due to the disappearance of velocity 
(deceleration). Also, the striking foot's motion is 
approximately circular, centred at the heel for a small period 
of time. Hence, most acceleration on the front foot is radial in 
nature. Heel strikes can be detected by determining when the 
number of radial acceleration of the front foot is the 
maximum. The position of the heel strike is the (circle) centre 
of radial acceleration. 

 
Figure 3: Gait proportions [13] 

In implementation, we only consider the radial acceleration in 
the area we are interested in (the leading foot). The detection 
area is extracted according to a model of a walking human 
[13]. Regarding experiments, the area of detection D is 
defined as a rough area around the leading foot and the size of 
the area is 0.133H×0.177H as illustrated in Figure 3. Only the 
radial acceleration in this area and points to the heel (below 
and posterior to the acceleration starting point) will be 
considered as valid data in our experiments. 

3.2 Heel strike position detection and verification 

When the heel strikes, the front foot is performing circular 
motion centred at the heel. We assume all the radial 



acceleration in the detection region is caused by a heel strike, 
then their centres of acceleration should all located at the 
same position: the heel (ie. the heel strike position).  
The radial acceleration estimation algorithm is repeated for all 
points in the detection region to derive a set of all possible 
heel strike positions. In order to reduce the effect of noise, the 
location of the heel strike in frame t is estimated by a 
weighted sum of radial acceleration circle centres in the 
detection area: 

!""#!,! = !(!) ∗ !!,!(!)!,!∈!                         (8) 
where O is the set of all detected radial acceleration centres in 
detection area D. The weighting factor !(!) is determined by: 

!(!) = ! !                                      (9) 
n is the number of radial acceleration centres that are located 
at the kth position, and s is the number of total detected radial 
acceleration in the detection region D. 

4 Experimental results 

4.1 Key Frames Detection 

Figure 4 shows a key frame at the detected moment of heel 
strike. The green square in the silhouette image is the 
detection region. Figure 5 is the histogram of radial 
acceleration within a walking sequence. A threshold has been 
applied to reduce the effect of noise. In the sequence, the 
radial acceleration appears regularly and noticeably during 
the sequence, showing the periodicity of gait. However, in 
frame 64, 78 and 105, some radial acceleration also appears in 
the frames before or after heel strike. This is caused by the 
low frame rate. At these moments, the real heel strike occurs 
between the two consecutive frames. 

  
Figure 4: Detecting the region of interest. 

 
Figure 5: Detected radial acceleration of the leading feet. 

4.2 Heel strike position verification 

The area of interest derived by gait proportions does not 
locate the leading foot precisely because the shape of the 
human body changes during the gait cycle. Also, a part of the 
calf can sometimes be included in the detection region. 
Moreover, there is also radial acceleration on other areas of 
the body because the limbs’ motion is that of several joined 
pendulums [3]. The erroneous radial acceleration vectors 
might also form some invalid heel strike candidates. To 
obtain accurate heel strike position which estimated by 
Equation 6, we use detected key frames to verify the heel 
strike candidates. In other words, the position of the heel 
strike is only considered to be in the frames in which the 
radial acceleration on the front foot peaks. If a heel strike 
occurs between frames, the position is obtained by the 
weighted coordinates sum according to the amount of radial 
acceleration in each frame (Equation 8 and 9). Figure 6(a) 
shows detected candidates of heel strike positions and (b) is 
the result after being filtered by key frames. The periodicity 
of gait is evident in the result.  

 
(a) Candidates for heel strikes 

 
(b) Detected heel strikes (after filtering) 

Figure 6: Heel strike verification process. 

Database Detection rate 
SOTON 95.2% (254/267) 
OU-ISIR 94.8% (369/391) 

Table 1: Heel strike detection rates on different databases. 
The images in Figure 7 illustrate the detection results on two 
different databases. These are the indoor SOTON [14] and 
OU-ISIR [15] gait datasets. Our heel strike detection system 
performs very well in both of them even if the lighting 
condition, the angles of view and walking direction are all 
different. Table 1 shows the outline detection rates of 50 
sequences chosen at random from each database compared 
with the manually labelled ground truth. A distance of 
horizontal coordinates within ±5 pixels is considered as 



successfully detected. We successfully detected 254 out of 
267 heel strikes in the SOTON and 369 out of 391 in OU-
ISIR dataset. Compared with the results of a previous study of 
detecting heel strikes (95.6% on the SOTON gait database) 
[5], the detection rate is similar and our approach only 
requires three consecutive frames. The results in Figure 7(a) 
also show capability to detect heel strikes in outdoor imagery 
where the lighting is uncontrolled. 

  
(a) SOTON outdoor images 

  
(b) OU-ISIR indoor images 

  
(c) SOTON indoor images 

Figure 7: The heel strike detection results of different 
databases. 

4.3 The noise immunity of heel strike detection approach  

Since the performance of a system under interference is an 
important issue, we evaluate the robustness of our heel strike 
detection technique in this section. Three different types of 
noise that might deteriorate the detection results are added to 
the original gait sequences: Gaussian zero-mean white noise, 
occlusion in the detection area and insufficient resolution of 
the object. These noise reflect some of the anticipated 
difficulties when applying this new technique to real 
surveillance videos. Figure 8 illustrates the detection results 
of the noise at different levels. The results are evaluated by F-
score: 

! = 2 ∗ !"#$%&%'(∗!"#$%%
!"#$%&%'(!!"#$%%                         (9) 

First Gaussian distributed zero-mean white noise was added 
to each frame in the sequences. The accuracy of heel strike 
detection result drops dramatically when the variance 
increased to 12 and beyond as shown in Figure 9(a). Figure 

8(a) shows that the image is quite adversely affected by this 
level of noise and it is not inconsistent with poor quality 
surveillance video. 

  
(a) Zero-mean Gaussian 

white noise (! =12) 
(b) occlusion 

(40%) 
Figure 8: Different types of noise are incorporated to the 
original sequence. 

 

(a) Testing immunity to Gaussian white noise 

 
(b) Testing immunity to occlusion 

 
(c) Testing immunity to low resolution 

Figure 9: Performance analysis of heel strikes. 
Adding occlusion concerns whether the gait information in 
the real world image sequences is complete or not. In the 
experiment of testing the immunity of heel strike detecting 
system to occlusion, we add addition of a random texture to 
cover the area of interest from toe to heel. The performance 
on occlusion decreases steadily and our approach totally 
failed when the detection area are covered over 40%. It is 
because the pixels on toe travelled the longest when heel 
strikes but most large radial acceleration located in the toe 
area are occluded. 
Reducing resolution concerns whether resolution of the object 
might be insufficient in surveillance footage. The original 
images are downsampled by different window sizes. The F-
score with insufficient resolution decreases below 0.3 when 
the downsampling window’s size increases up to 4×4 patches 



then the detection results fluctuate at similar level 
subsequently. The height of the subject is reduced from 350 
pixels to 87 approximately when the window size is 4×4. The 
most critical issue for evaluating the performance on low 
resolution images is setting the threshold for the magnitude of 
radial acceleration. In the experiments, the thresholds are set 
at the same rate with downsampling but the system still 
misses most heel strikes. It is the main reason that causes the 
low F-score while the window size bigger than 2×2.  
Overall, acceleration algorithm shows good robustness in the 
experiments although there is certain level fluctuation. One of 
the most important reasons of fluctuation is that the number 
of heel strike in one gait sequence is low (5 in one sequence). 
A wrong prediction can make a significant influence on the 
results. As such the technique appears to be able to tolerate 
noise, occlusion and resolution effects that are often found in 
surveillance imagery. 

5 Violent crime analysis using acceleration 
detection 
Acceleration can also be used as an approach to detect crimes 
or violence in videos, for example: fighting. When people 
fight, their body tends to have large acceleration (in many 
places and with large values) on their body because their arms 
swing and their feet are kicking. We compare the detected 
acceleration with the optical flow. Figure 10 shows single 
images from the acceleration detection results of the 
surveillance of two episodes in a prison environment. In the 
left episode there is no fighting and the scene is mundane; in 
the right a prisoner assaults a guard. In the left episode there 
is little acceleration detected revealing only the swinging arm 
of a guard. In comparison there is more optical flow, 
consistent with more leisurely movement as prisoners receive 
their visitors. In contrast for the right episode there is 
considerable detected acceleration in the assault and much 
less optical flow. When the crimers flee after crime, their 
body also tends to make more acceleration. As such 
acceleration appears more suited to the detection of rapid 
change, consistent with scenes of violence. Thus by detecting 
acceleration we might be able to determine an approach 
suited to the detection of violent crime in the future.  
 

  
(a) Detecting optical flow 

  
(b) Detecting acceleration 

Figure 10: Detecting acceleration and optical flow in an act 
of violence and in a more relaxed scene.3 

6 Conclusions 
This paper is the first study of differentiating from velocity 
and acceleration in computer images. To understand the 
motion in the images even more completely, we decomposed 
acceleration along radial and tangential directions because 
radial component changes the direction of velocity and 
tangential component changes the magnitude.  
According to the motion feature of heel strike, we use radial 
acceleration for gait analysis. The change of foot motion 
status at the instant of heel strike leads to large acceleration in 
leading foot area. The amount of acceleration arising at heel 
strike frames give us a conspicuous clue to disambiguating 
the key frames from the others and the position of heel strike 
can be estimated by the circle centre of radial components. 
The leading detection rates are 95.2% in SOTON Large 
Database and 94.8% OU-ISIR Gait Database separately.  
Our method also shows a good robustness in performance 
analysis with respect to noise, occlusion and reduced 
resolution. Our new approach to acceleration detection and 
analysis is actually generic and we show that it might have 
capability to detect acts of violence and we look forward to 
generalising this capability further. 
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