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Abstract: In this study, several feature combinations are studied to analyse their relevance for online signature verification.
Different time functions associated with the signing process are analysed in order to provide some insight on their actual
discriminative power. This analysis could also help forensic handwriting experts (FHEs) to further understand the signatures
and the writer’s behaviour. Among the different feature combinations analysed, a set of features which seems to be relevant
for signature analysis by FHEs is particularly considered. The feasibility of developing a system which could complement the
FHEs work is evaluated. Two different approximations of the analysed time functions are proposed, one based on the
Legendre polynomials and another based on the wavelet decomposition. The coefficients in these orthogonal series
expansions of the time functions are used as features to model them. Two different signature styles are considered, namely,
Western and Chinese, of one of the most recent publicly available signature databases. The experimental results are
promising, in particular for the features that seem to be relevant for the FHEs, since the obtained verification error rates are
comparable with the ones reported in the state-of-the-art over the same datasets.
1 Introduction

Automatic signature verification has long been considered an
important research area in the field of biometrics [1–5].
Signature verification is the most popular method for
identity verification. Signatures are recognised as a legal
means of verifying an individual’s identity by financial and
administrative institutions. In addition, it is a non-invasive
biometric technique, and people are familiar with the use of
signatures for identity verification in their everyday life.
Two categories of signature verification systems can be

distinguished taking into account the acquisition device,
namely, offline and online systems. For offline verification
systems, only the image of the signature is available,
whereas for online systems, dynamic information acquired
during the signing process, such as x and y pen coordinates,
pen pressure and pen inclination angles: azimuth and
altitude, is available. The interest in the online approach for
signature verification has increased in recent years because
of the widespread use of electronic pen-input devices, such
as digitiser tablets and personal digital assistants (PDAs). In
addition, it would be reasonable to expect that the
incorporation of dynamic information acquired during the
signing process would make signatures more difficult to
forge and, in this way, the online verification systems more
reliable than the offline ones. Nevertheless, there are certain
applications that demand the use of the offline approach.
forensic handwriting experts (FHEs) often only have the
offline data available in their daily casework. To perform a
forensic signature comparison, it is necessary to work with
offline data, while online data can be used to perform
biometric person verification/identification. Furthermore in
the future, it might occur that FHEs will also have to deal
with online signatures.
There are several aspects to evaluate when designing a

signature verification system. The First International
Signature Verification Competition (SVC2004) [6]
addressed the researchers’ need for benchmark databases
and benchmarking rules for comparing different signature
verification systems. Two online datasets were presented,
one containing only the signatures’ pen coordinates and the
other one containing also the pen pressure and inclination
angles. Researchers have long argued about the
effectiveness of these different time functions for
verification purposes. During SVC2004, the results were
better when using only pen coordinates than when adding
the pen pressure and inclination angles. Since then, several
works have been presented concerning the best set of
features to model the signatures. In [7], the authors state
that using only pen coordinates lead to better results than
incorporating the pen pressure. In [8], the authors compute
the consistency of different features, resulting the pen
coordinates more consistent than the pen pressure. On the
other hand, some works showed improvements when
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combining pen coordinates with pen pressure and inclination
angles [9]. The results in [10, 11] and a preliminary work by
the present authors [12], among others, are also in line with
the idea that combining pen coordinates with the pen
pressure lead to a verification performance improvement.
The BioSecure Signature Evaluation Campaign (BSEC
2009) [13] presented two large online databases, which
allowed the participants to evaluate the impact of mobility
acquisition conditions, time variability and quality of the
signatures in the verification performance. The time
variability impact was also evaluated in [14], where the
authors concluded that pen pressure is the most unreliable
feature, pen inclination angles are too unstable, and pen
coordinates are the most robust time functions in the
presence of a long-term time variability. An analysis of the
quality of online signatures based on the sigma–lognormal
model is carried out in [15], where the experiments show a
high potential of certain kinematic features for signature
quality assessment. The ICDAR2009 Signature Verification
Competition [16] and the Signature Verification
Competition for Online and Offline Skilled Forgeries
(SigComp2011) [17] introduced new forensic-like online
and offline datasets, in order to make a step towards
bridging the gap between automated performances and
FHEs’ comparisons. Further, in SigComp2011, methods
used by FHEs to assess the value of the evidence were
applied. In addition, the influence of the cultural origin of
the signatures in the systems’ performance, was also taken
into account in SigComp2011, by providing two different
datasets, containing Dutch and Chinese signatures,
respectively. This is an important aspect that deserves more
investigation. To the best of the authors’ knowledge, there
are not many works in the literature that consider
non-Western signatures such as Chinese, Japanese, Arabic
etc. In [18], an updated survey of non-English and
non-Latin signature verification systems can be found.
Non-Western signatures do have different shapes and the
writing style is different to the Western one. For instance,
the Chinese handwriting style consists of one or more
multi-trace characters, most of them being phono-semantic
compounds, composed by two parts: the radical, which is
often a simplified pictograph and suggests the character’s
general meaning and a phonetic indicator. Originally,
Chinese pictographs conveyed their meaning through
pictorial resemblance to a physical object. Although in
modern Chinese this resemblance is no longer clear,
Chinese characters are still pictorial symbols. Among the
literature of non-Western signature verification, more
attention has been given to Chinese signatures than to
Japanese, Arabic, Persian or Hindi ones. Offline [19, 20]
and online [21] verification systems have been presented in
the literature for Chinese signature verification. Further, the
Chinese dataset presented in [22] encouraged researches to
work on this type of data. In [23, 24], Japanese offline
signature verification systems are presented. A new
competition is going to be held within ICDAR 2013,
providing a new Japanese signature database. In [25], an
offline verification system for Arabic signatures is
presented, whereas in [26] such a system is presented for
Hindi signatures.
As mentioned above, several aspects can be studied for an

online signature verification system. The conflicting results
observed in the literature regarding which is the best set of
time functions to model the signatures, make this discussion
an open and interesting issue. In addition, to bridge the gap
between the pattern recognition (PR) and the FHEs
138
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communities is also an important task, being crucial for the
automatic signature verification approach to be useful to
FHEs. It would then be interesting to address these two
aspects, by investigating different online feature
combinations to determine their actual discriminative
power, focusing the study, specially, in a feature set
containing features which are relevant to FHEs. This
analysis could help FHEs to further understand the
signatures and the writer’s behaviour. FHEs work with the
offline specimens of the signature, so it is not possible for
them to look at online features. Nevertheless, they have
plenty of experience in the interpretation of some dynamic
information that can be inferred from the offline signature
[27–29]. FHEs try to understand the forgery process from
the forgers’ point of view. To make a good simulation of a
signature, there will be a tradeoff between accuracy and
velocity [30]. If the forger wants to produce an accurate
copy of the specimen signature, it will likely be written
slowly. This will result in bad line fluency and hesitations,
artefacts that will be visible for the FHE. On the other
hand, if the forger focusses on the writing velocity to make
the forgery more fluent, he will aim at a variation that fits
within the writer’s variability. The curvature is hard to
copy, and the forger will likely use slightly different curves
at specific spots. Pen pressure is strongly dependent on the
writing surface, then it is very difficult to be inferred from
the offline specimen of the signature. A monotonous
pressure over all the signature or the presence of more
pressure in unusual places can also be signs of forged
signatures. Earlier literature has been presented regarding
the use of features motivated by FH examination [31, 32].
Nevertheless, much work needs still to be done in order to
bridge the gap between the FHEs needs and the automatic
signature verification developments.
The main aim of this paper is to study different online

feature sets selected based on different criteria. Among
them, a set of features that are relevant for signature
analysis by FHEs is considered with particular attention.
This analysis could help FHEs to further understand the
signatures and the writer’s behaviour, and could make the
developed automatic signature verification system useful to
them. Two different approximation schemes of the time
functions are proposed, one based on the Legendre
polynomials expansions and the other on wavelet
decomposition. The coefficients in these orthogonal
expansions of the time functions are used as features to
model them. For evaluation purposes, in line with the
intention of bridging the gap between PR and FHEs
communities, a forensic-like publicly available signature
database is used. Furthermore, to quantify the verification
performance, in addition of computing the equal error rate
(EER), the cost of the log-likelihood ratios Ĉllr are
computed, which allow FHEs to give an opinion on the
strength of the evidence. Finally, the used signature
database contains two different signature styles, namely,
Western and Chinese, making it possible to analyse the
influence of the cultural origin of the signatures in the
performance of the verification system.
The main contributions of this paper are as follows:

† Several online feature sets selected based on different
criteria are studied to give an insight on their actual
discriminative power. This study is intended to also be
interesting for FHEs.
† A set of automatically selected features is compared with a
set of features which are meaningful for FHEs.
IET Biom., 2013, Vol. 2, Iss. 4, pp. 137–150
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† A new feature extraction approach based on orthogonal
series expansions of the time functions associated with the
signatures is proposed. To the best of the authors’
knowledge, this is the first time that the approach based on
the Legendre polynomials is used in the context of
signature verification.
† The experiments are performed on one of the most recent
forensic-like publicly available signature datasets,
containing Western and Chinese signatures, which have
been used in one of the latest signature verification
competitions. The FHEs needs regarding the performance
evaluation of the systems are taken into account by
computing the cost of the log-likelihood ratios Ĉllr, which
allow FHEs to give an opinion on the strength of the
evidence.

The paper is organised as follows. The time functions and
preprocessing tasks are described in Section 2. The feature
extraction approach is described in Section 3, in particular,
Subsections 3.1 and 3.2 focus on the Legendre polynomials
based approximations and on wavelet-based approximations
of the time functions, respectively. In Section 4, the
database is described. Section 5 describes the different
feature combinations proposed, whereas Section 6 is
devoted to the description of the experiments. In Section 7,
the experimental results are presented and discussed.
Finally, some concluding remarks are given in Section 8.

2 Time functions and preprocessing

2.1 Basic functions

Typically, the measured data consists of three discrete-time
functions: pen coordinates x and y, and pen pressure p.
Depending on the acquisition device, the pen altitude and
azimuth angles could also be available. In addition to the
raw data, some other dynamic functions, such as, x and y
velocities and accelerations and log curvature radius can
also be computed from them.

2.2 Normalisation

Depending on the given space to sign, signatures can be
written in different sizes, writers can place them anywhere
they want in the sheet of paper and many times they would
sign in a rotated angle with respect to the one they usually
sign. This makes size, translation and rotation normalisation
fundamental preprocessing tasks. A width normalisation is
performed on the x and y pen coordinates of the signature.
The width of the signature is previously fixed while the
height is left to take the corresponding value in order to
keep the original height-to-width ratio. The signatures are
centred with respect to the origin of coordinates, by
subtracting the corresponding mean values from the original
x and y pen coordinates. Regarding rotation normalisation,
conflicting views can be found in the literature. Some
authors perform a correction in the main direction of the
signature, rotating it until it has the direction of a
predetermined baseline [33]. However, it has been argued
that the main direction of the signature is a distinctive
feature and so compensating it would result in loss of
useful discriminative information. Since there exists a
significant variability in the main direction of the signature
for a given author, rotation compensation would make the
system less robust. In line with these ideas, no rotation
compensation is performed in this paper.
IET Biom., 2013, Vol. 2, Iss. 4, pp. 137–150
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Another widely used preprocessing technique is
resampling. Owing to the acquisition process, the measured
data may contain noise or gaps introduced during the
signing process. Resampling is used to correct these
acquisition artefacts and, in addition, to obtain a
fixed-length resampled time function. Several works in the
literature use resampling to remove redundant points from
the measured signals [34, 35]. In [35], the effect of different
resampling techniques on the verification performance is
studied. The authors state that resampling has several
advantages such as reducing the storage requirements and
simplifying the computation, without compromising and
even improving the system performance. On the other hand,
many other works in the literature do not use resampling as
a preprocessing step [7, 8, 33, 36]. Moreover in [7, 36], the
authors observed that using resampling leads to worst
verification performances, since it implies a significant loss
of information. They conclude that it is convenient not to
use resampling and that the disadvantage of not having a
fixed-length signal is not that important. In the present
paper, the proposed feature extraction techniques are based
on approximations of the time functions associated with the
signing process by the Legendre polynomials and wavelets.
The former delivers a fixed-length feature vector, so that no
resampling of the original time functions is required, while
for the latter the obtained feature vector length would
depend on the length of the original time function. Then in
the case of the approximation using wavelets, resampling of
the original time functions is required.
2.3 Extended functions

Several extended functions that can be computed from the
acquired functions have been used in the literature. In [7],
the incremental variations of the x and y pen coordinates are
proposed. In [11], several time functions, such as, the x and
y velocities and accelerations and the log curvature radius,
among others, are used as well as their first and
second-order time derivatives. In this paper, the path
velocity magnitude vT, the path-tangent angle θ, the total
acceleration aT and the log curvature radius ρ [33] are
computed from the basic function set composed of x and y
pen coordinates and pen pressure p. Let n = 1, …, Lsign be
the discrete-time index of the measured functions and Lsign
be the time duration of the signature in sampling units, then
the above-mentioned extended functions are computed as:

† Path velocity magnitude: vT (n) =
��������������
ẋ2(n)+ ẏ2(n)

√
.

† Path-tangent angle: u(n) = arctan (ẏ(n)/ẋ(n)).

† Total acceleration: aT(n) =
���������������
v̇2T (n)+ c2(n)

√
, where

c(n) = vT (n)u̇(n).
† Log curvature radius: r(n) = log[vT (n)/u̇(n)].

In all cases, the first-order time derivatives are computed
as [33]

ḟ (n) ≃ Df (n) =
∑2

t=1 t f (n+ t)− f (n− t)
( )
2
∑2

t=1 t
2

(1)

In this paper, the initial set of features will be composed by
the x and y pen coordinates, the pressure p, the
above-mentioned extended functions, namely, vT, θ, aT and
ρ, their first-order time derivatives (these are the features
proposed in [33]), and their second-order time derivatives
139
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computed as in (1) from the corresponding first-order time
derivatives.

3 Feature extraction

Several methods have been proposed in the literature for
online signature verification. They differ basically in the
way they perform the feature extraction and in the
classification approach they employ. The different features
can be classified into local features, calculated for each
point in the time sequence, and global features, calculated
from the whole signature. Many researchers accept that
approaches based on local features achieve better
performance than the ones based on global features, but still
there are others who favour the use of global features
[11, 37]. When using global features, feature vectors have a
fixed amount of components regardless the signature length.
This represents an advantage since it makes the comparison
between two signatures easier with respect to the case of
having different feature vector lengths. Several works in the
literature have proposed a fixed-length representation of the
signatures, among them, [36] where the authors employ the
fast Fourier transform, can be mentioned. Further, a
fixed-length model of the signatures can be required for
certain biometric applications [38, 39].
In this paper, two different fixed-length representations of

the signatures are proposed. One is based on the
approximation of the different time functions by the
Legendre orthogonal polynomials, introduced by the present
authors in [12], and the other on their representation using
wavelets.

3.1 Time function approximation via the Legendre
polynomials

In this subsection, models of the time functions associated
with the signing process, based on the Legendre series
approximations, are presented. The coefficients of the
Legendre series are computed resorting to least squares
techniques. A similar approach for the representation of
handwritten mathematical symbols has been proposed in
[40]. The authors state that Legendre polynomials have the
benefit that the coefficients can be computed in a small
fixed number of arithmetic operations. In addition, the
coefficients could be computed resorting to function
moments at the end of each stroke so that the feature
extraction could be performed in real time. In that work, the
coefficients in the Legendre polynomials series expansions
of the time functions were computed resorting to the
function moments.
3.1.1 Orthogonal polynomials series expansions: A
family of functions {gi} in (in general) an infinite dimensional
functional spaceH([a, b]), defined in the domain [a, b], is said
to be orthonormal with respect to an inner product k· , ·l in H
([a, b]) if 〈gi, gj〉 = δij, where δij is the Kronecker delta.
Provided the inner product space H([a, b]) is complete with

respect to the metric induced by the inner product, a set of
orthonormal basis functions hi

{ }1
i=1 can be defined. In this

case, any function f∈H([a, b]) can be uniquely represented
by a series expansion in the orthonormal basis, that is

f =
∑1
i=1

aihi (2)
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where

ai = kf , hil (3)

It is not difficult to prove that the best (in the sense of
the metric induced by the inner product) approximation of
f∈H([a, b]) in the N-dimensional subspace spanned by
the first N basis functions hi is given by

f ≃
∑N
i=1

aihi (4)

3.1.2 Coefficient estimation: The idea here is to
approximate the time functions measured during the
signature acquisition stage by a finite series expansion in
orthonormal polynomials in the interval [0, 1], and to use
the series expansion coefficients as features. Particularly,
Legendre polynomials are considered in this paper. In this
case, the approximation (4) becomes

f (t) ≃
∑N
i=1

aiLi(t) (5)

where Li(t) are the orthonormal (with respect to the standard
inner product khi(t), hj(t)l =


1
0 hi(t)hj(t)dt ) Legendre

polynomials normalised to the interval [0, 1]. Typically, the
Legendre polynomials are defined in the interval [–1,1].
Since the time functions f(t) are unknown, the coefficients

in the truncated series expansions (5) cannot be computed as
in (3), but rather they have to be estimated from a set of M
(usually larger than N ) samples of the function at the time
instants {t1, t2, …, tM}.
In matrix form, (5) at the time instants {t1, t2,…, tM} can be

written as

f (t1)
f (t2)

..

.

f (tM )

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦

︸����︷︷����︸
f

=

L1(t1) L2(t1) · · · LN (t1)
L1(t2) L2(t2) · · · LN (t2)

..

. ..
. . .

. ..
.

L1(tM ) L2(tM ) · · · LN (tM )

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦

︸��������������������︷︷��������������������︸
L

a1

a2

..

.

aN

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦

︸���︷︷���︸
a

(6)

It is well known that the solution â, in the least squares sense,
of the overdetermined system of (6) is given by â = L†f ,
where L† = LTL

( )−1
LT stands for the left pseudo-inverse

of L.
To illustrate the above estimation procedure, the x and y

pen coordinates associated with a signature, and the
corresponding approximations using the Legendre
polynomials with orders N = 21, N = 15 and N = 10 are
shown in Fig. 1.
The Best FIT, defined as

Best FIT = 100 1− ‖x− xapprox‖
‖x− xmean‖

( )
(7)

between the measured and the approximated time functions,
for the above-mentioned Legendre polynomial orders, are
given in Table 1. It can be observed that a reasonable FIT
is obtained for N = 21. Experimental results show that
further increasing the polynomial orders does not
substantially improve the approximation accuracy. This is
IET Biom., 2013, Vol. 2, Iss. 4, pp. 137–150
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Fig. 1 Time functions: x and y pen coordinates (solid line) and their corresponding approximations by the Legendre polynomials with orders
N = 21 (dashed line), N = 15 (dash-dotted line) and N = 10 (dotted line)
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an expected result, taking into account the bias-variance
tradeoff inherent to least squares estimation from noisy data.
3.2 Time function approximation via wavelets

An orthonormal wavelet bases in an inner product space can
be generated by dilation and translation of a mother wavelet
[41]. An approximation of a function f similar to the one in
(4) can also be performed using these wavelet bases. This
linear approximation can be improved if one chooses ‘a
posteriori’ the N bases hi, depending on the function f, in
such a way to minimise the approximation error. This is
done by choosing the set of N bases that have the largest
inner product amplitudes |〈f, hi〉|. The approximation would
then be as follows

f ≃
∑
i[IN

aihi (8)

where IN is an index set containing the indices corresponding
to the largest inner products amplitudes.
This results in a non-linear approximation scheme, since

the approximation vectors change with the function f. Since
the amplitude of the inner products in a wavelet bases is
related to the regularity of the signal, the approximation
scheme is equivalent to constructing and adaptive
approximation grid, whose resolution is locally adapted to
the signal regularity. For signals with isolated singularities,
the wavelet-based approximation is more precise than a
linear scheme, which maintains the same resolution over the
whole signal support.
Table 1 Best FIT between the measured and the approximated
time functions using the Legendre polynomials

N 21 15 10

FITx, % 77.7955 68.9708 57.6664
FITy, % 70.7341 62.9579 53.3995

IET Biom., 2013, Vol. 2, Iss. 4, pp. 137–150
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For the case of discrete-time functions, the inner products
are computed resorting to the discrete wavelet transform
(DWT) [41], which decomposes the signal at different
levels of resolutions, splitting it in low-frequency
(‘approximation’) and high-frequency (‘details’) components.
The idea is to perform a multilevel decomposition of the

time functions using the DWT and to use the approximation
coefficients to represent them. As mentioned in Section 2,
resampling of the time functions, previous to the DWT
decomposition, is needed in order to have a fixed-length
feature vector. An approach where the detail coefficients,
instead of the approximation ones, are used to represent the
time functions within the framework of online signature
verification was presented in [42].
Fig. 2 schematically depicts a filter bank representation of

the multilevel (level of resolution ℓ = 2) decomposition (left)
and the approximate reconstruction (right) of the discrete-time
function f (n) using the DWT. Note that only the
approximation coefficients are used for the reconstruction of
the signal in the right side of Fig. 2. In the figure, LP
represents a low-pass filter having the scaling function as its
impulse response, whereas HP represents a high-pass filter
having the mother wavelet as its impulse response. As
mentioned above, the DWT ℓ-level approximation
coefficients aℓ will be used to model the corresponding
time function.
To illustrate the above approximation procedure, the x- and

y pen coordinates associated with the same signature analysed
in the case of the Legendre approximations in Fig. 1, and the
corresponding approximations using the DWT (with the db4
wavelet [41]) with levels of resolutions ℓ = 1, ℓ = 2 and
ℓ = 3 are shown in Fig. 3. The time functions were
resampled so that the resulting length is 256.
The Best FIT between the measured and the approximated

time functions, for the above-mentioned levels of resolution,
are given in Table 2. Also shown are the lengths of the
resulting feature vectors for the different levels of
resolution. It can be observed that reasonable FITs are
obtained for the three levels of resolution considered in the
table. The design parameter will then be the length of the
resulting feature vector, which will determine the level of
resolution to be used.
141
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Fig. 2 Filter bank scheme of the multilevel (ℓ = 2) decomposition (left) and the approximate reconstruction (right)

Fig. 3 Time functions: x and y pen coordinates (solid line) and their corresponding approximations by the DWT (db4) with levels of
resolutions ℓ = 1 (dashed line), ℓ = 2 (dash-dotted line) and ℓ = 3 (dotted line)

Table 2 Best FIT between the measured and the approximated
time functions using the DWT (db4). The lengths of the resulting
feature vectors are shown in the last row

ℓ 1 2 3

FITx, % 94.1014 93.2690 86.9960
FITy, % 94.9623 93.8578 82.9524
length aℓ 131 69 38

www.ietdl.org
The computational load corresponding to the computation
of the wavelet coefficients, is of the order of 0.1 s on a
standard PC, which is a reasonable time in comparison with
the remaining processing stages. A similar comment holds
for the computation of the Legendre coefficients considered
in Section 3.1.

4 Signature database

The publicly available SigComp2011 dataset [17]
presented within ICDAR 2011 is used. It has two
separate datasets, one containing genuine and forged
Western signatures (Dutch ones) and the other containing
genuine and forged Chinese signatures. The available
forgeries are skilled forgeries, which are simulated
142
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signatures, in which forgers (different writers than the
reference one) are allowed to practice the reference
signature for as long as they deem it necessary. The
signatures were acquired using a ballpoint pen on paper
(WACOM Intuos3 A3 Wide universal serial bus (USB)
Pen Tablet), which is the natural writing process. This is
in contrast to the approach of other researchers who
tested signatures produced on a PDA or with a
WACOM-stylus on a glass or plastic surface.
Each of the datasets in the SigComp2011 dataset is divided

into two sets, namely, the training and testing sets. The Dutch
(left) and the Chinese (right) datasets are described in Table 3.
Note that the amount of genuine and forged signature samples
may differ from those in [17] since when making signatures
available for the research community some of them were
missing [43].
The measured data consist of three discrete-time functions:

pen coordinates x and y, and pen pressure p. In addition to this
raw data, the extended functions described in Sction 2.3 are
computed.

5 Proposed feature combinations

The idea here is to address the problem of feature selection,
based on their actual discriminative power, for online
IET Biom., 2013, Vol. 2, Iss. 4, pp. 137–150
doi: 10.1049/iet-bmt.2013.0025



Table 3 Online Dutch (left) and Chinese (right) datasets

Dutch dataset Chinese dataset

Training set Training set
authors genuines forgeries authors genuines forgeries
10 240 119 10 230 429

testing set testing set
authors genuines forgeries authors genuines forgeries
54 1296 611 10 219 461

www.ietdl.org
signature verification. The main purpose of the proposed
experiments in Section 6 is to compare different feature
combinations chosen according to different criteria. The
initial set of features, as mentioned in Section 2.3, consists
of: x, y, p, vT, θ, aT and ρ, their first-order time derivatives,
dx, dy, dp, dvT, dθ, daT and dρ, and their second-order time
derivatives d2x, d2y, d2p, d2vT, d

2θ, d2aT and d2ρ. In this
paper, different feature combinations selected based on
different criteria are analysed in an attempt to give some
insight on the actual discriminative power of the features.
The following feature combinations will be considered in
this paper:

† ‘FHE-based features’: as mentioned in Section 1, FHEs
work with the static image of the signature, so it is not
possible for them to look at online features; however, they
can infer some dynamic properties from the signature
image, to some extent. The velocity is a distinctive feature
for FHEs. So is the curvature, since it is hard to copy. On
the other hand, the acceleration, the pen position (it can be
established by striae and inkless starts) and the pressure are
less useful for them. The local pressure by itself is not
valuable for them, because external factors such as surface
and writing material can easily influence it. However,
pressure fluctuations could be interesting for them.

In this paper, the online features that will be considered as
the ones an FHE would look at are: the velocity [vT
(magnitude) and θ (direction)], the curvature (ρ) and the
first-order time derivative of the pressure (dp). These
features were selected based on the above-described criteria
corresponding to FHEs who examine Latin scripts. It is
likely that for FHEs who examine Chinese scripts, the
criteria would be different, but this will not be analysed in
the present paper.

† ‘Automatically selected features’: it would be interesting to
compare the performance obtained when the selection of the
features is based on the FHEs criterion and when it is based
on an automatic feature selection technique. In order to
make this comparison, an automatic feature selection based
on the variable importance provided by the random forest
(RF) algorithm is also used in this paper. As already
mentioned in Section 4, the datasets in the SigComp2011
database are divided into the training and testing sets [see
Table 3 for the Dutch (left) and Chinese (right) data]. The
feature selection is performed over the training sets for both
datasets.
† ‘Features in [33]’: the initial set of features proposed in this
paper is based on a set of widely used online features in the
literature. It is important to analyse the performance of the
proposed verification system on the same features that have
already been used by other authors. For this reason, the
feature combination used in [33] is also considered here.
IET Biom., 2013, Vol. 2, Iss. 4, pp. 137–150
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† ‘Original set of features’: the measured (x, y and p) and the
extended functions (vt, θ, aT and ρ).
† ‘All features’: the whole set of initial features, that is, x, y,
p, vT, θ, aT and ρ, their first-order time derivatives, dx, dy, dp,
dvT, dθ, daT and dρ and their second-order time derivatives
d2x, d2y, d2p, d2vT, d

2θ, d2aT and d2ρ.

6 Evaluation protocol

To assess the verification performance of the different time
function combinations proposed in this paper, a well-known
state-of-the-art classifier, namely, RF [44], is used. In a
previous work by the present authors [12], this classifier
and one based on support vector machines (SVMs) were
analysed on the same datasets considered here. The
preliminary results presented in [12] show that the RF
classifier outperforms the one based on SVMs regarding the
verification error rates, and it is for this reason that only RF
classifiers are considered in the present paper. For each of
the datasets, namely, Dutch and Chinese, the optimisation
of the meta-parameters of the system is performed over the
corresponding training set, while the corresponding testing
set is used for independent testing purposes.
For the case of the Legendre polynomials representations,

the tuning parameter to adjust is the order of the Legendre
polynomials. To select the optimal order, this parameter
was varied from 1 to 25. For the representation based on
DWT approximations, the user has to choose the mother
wavelet, the length of the resampled functions and the level
of resolution for the approximation. The length of the
resulting feature vector is determined by the length of the
resampled functions and the level of resolution. Regarding
the RF classifier, the parameters to adjust are the number of
trees to grow and the number of randomly selected splitting
variables to be considered at each node. In general, the
default values are a good choice for these parameters.
To obtain statistically significant results, a 5-fold

cross-validation (CV) is performed over the testing set to
estimate the testing errors. For each instance of the 5-fold
CV, a signature model is trained for each writer, using only
genuine signatures. To train the signature model for a
particular writer, the genuine class consists in the genuine
signatures of the writer available in the corresponding
training set of the 5-fold CV, whereas the forged class
consists in the genuine signatures of all the remaining
writers in the dataset available in the same training set. The
genuine and forged signatures of the writer under
consideration available in the corresponding testing set of
the 5-fold CV are used for testing. Only skilled forgeries
are considered to calculate the testing errors. Random
signatures, that is, signatures that belong to another writer,
are also commonly used to test the verification systems.
Nevertheless, in the present paper, they are not considered
for testing since they seldom appear in real situations.
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To evaluate the performance, the EER is calculated, using

the Bosaris toolkit [45], from the detection error tradeoff
curve as the point in the curve where the false rejection rate
equals the false acceptance rate. The cost of the
log-likelihood ratios Ĉllr and its minimal possible value
Ĉmin
llr [45] are computed using the toolkit as well. A smaller

value of Ĉmin
llr indicates a better performance of the system.

Using these measurements to evaluate the performance of a
signature verification system is proposed in [17], where the
importance of computing the likelihood ratios was
highlighted since they make FHEs give an opinion on the
strength of the evidence [37], although they are not in the
position to make a leap of faith and judge about guilt or no
guilt.
7 Results and discussion

The verification performance for each combination described
in Section 5 is quantified by the EER, Ĉllr and Ĉmin

llr , over the
Dutch and Chinese testing sets. The experiments were
performed using the well known state-of-the-art
classification technique mentioned in Section 6: RF. For
this classifier, the number of trees was set to 500 and the
number of randomly selected splitting variables was equal
to

��
P

√
, where P is the dimension of the feature vector, for

both datasets. The order of the Legendre polynomials was
set to N = 21 since, as already mentioned, further increase
of the order does not improve the approximation accuracy.
For the case of the approximation based on wavelets, the
time functions were resampled resulting in a normalised
length of 256. The resolution level was set to 3, in order to
Table 4 Verification results for the dutch dataset

Features Legendre polynomials

EER Ĉllr Ĉmin
llr EER

FHEs’ feat. 7.23 0.2624 0.2187 9.59
selec. feat. 5.01 0.1903 0.1594 6.58
selec. feat. (4) 5.53 0.2277 0.1908 9.67
Feat. in [33] 5.18 0.2023 0.1746 6.87
x ypvTθaTρ 6.4 0.2402 0.2077 8.04
all feat. 5 0.1879 0.1537 6.78
system Acc.
commercial 96.27
first non-commercial 93.49

Table 5 Verification results for the Chinese dataset

Features Legendre polynomials

EER Ĉllr Ĉmin
llr EER

FHEs’ feat. 11.61 0.4158 0.3171 10.27
selec. feat. 7.95 0.3313 0.2651 7.455
selec. feat. (4) 9.28 0.3784 0.2914 9.91
feat. in [33] 9.38 0.3825 0.2764 8.41
x, y, p, vT, θ, aT, ρ 9.23 0.3539 0.3030 9.08
all feat. 8.66 0.3175 0.2647 7.9
system Acc.
commercial 93.17
first non-commercial 84.81
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obtain a feature vector of a reasonable length. Two different
wavelets, namely, db4 and bio6.8, were employed for the
approximations.
The verification error rates for the different feature

combinations listed in Section 5, are shown in Tables 4 and
5, for the Dutch and Chinese data, respectively. For the
purposes of comparison, the verification results for the best
commercial and non-commercial systems in the
SigComp2011 competition (see [17] for a description of
these systems) are also included in the last two rows of
Tables 4 and 5.
From Tables 4 and 5, it can be seen that the combination

using all the features and the combination using the
automatically selected features obtain the best results, for
both datasets. This shows that the feature selection done by
the RF algorithm is a meaningful one. In addition, the
length of the resulting feature vector is smaller than the
corresponding to the set including all the features. Table 6
summarises the sets of automatically selected features for
the three different approximation techniques and for the
Dutch (top section of the table) and Chinese (bottom
section) datasets.
Regarding the verification performance of the features

selected based on the FHEs criterion, it is important to
observe that despite the fact that the combination is not
among the ones that obtain the best performances, it
achieves an acceptable performance for both datasets. This
result is promising since these features have a meaningful
interpretation by the FHEs (see Section 5). This would
suggest that in case the verification system has to be limited
to take into account only FHE-based features, its
performance would not be substantially deteriorated. In fact,
Dutch dataset

db4 wavelets Bio6.8 wavelets

Ĉllr Ĉmin
llr EER Ĉllr Ĉmin

llr

0.3408 0.2966 7.43 0.3221 0.2681
0.2426 0.2049 5.68 0.2295 0.1971
0.3365 0.2948 8.86 0.3433 0.2894
0.2466 0.2144 6.06 0.2553 0.2067
0.2984 0.2485 7.24 0.2714 0.2309
0.2491 0.2055 6.16 0.2320 0.1947

Ĉllr Ĉmin
llr

0.2589 0.1226
0.4928 0.2375

Chinese dataset

db4 wavelets Bio6.8 wavelets

Ĉllr Ĉmin
llr EER Ĉllr Ĉmin

llr

0.3454 0.2760 9.4 0.3772 0.2742
0.2962 0.2483 6.9 0.2874 0.2443
0.3948 0.3265 12.33 0.4655 0.3710
0.3338 0.2621 8.12 0.3271 0.2619
0.3548 0.2945 9.91 0.3727 0.3086
0.3126 0.2476 7.26 0.2974 0.2421

Ĉllr Ĉmin
llr

0.4134 0.2179
0.5651 0.3511
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Table 6 Optimal feature set selected by the automatic feature
selection for each of the feature extraction approaches for the
Dutch (top) and Chinese (bottom) datasets

Dutch

feature
extraction
approach

optimal feature set

Legendre
polynomials

p, dx, dp, x, d2ρ, aT, y, dρ, d
2y, d2x, vT,

d2θ, dy, ρ
wavelets
db4

x, aT, y, vT, p, dp, ρ, dx, θ, dy, d
2x, d2y,

dvT
wavelets
Bio6.8

aT, x, vT, y, p, dy, dx, dp, θ, d
2x, ρ, d2y

Chinese
feature
extraction
approach

optimal feature set

Legendre
polynomials

dx, d2x, dp, p, y, d2p, dy, dvT, dθ

wavelets
db4

yxpvTaTdydxd
2yθρdpd2xdθd2pdvTdρd

2θ

wavelets
Bio6.8

x, y, vT, p, aT, dy, ρ, dx, dp, θ, d
2x, d2y,

dθ, d2p, dvT
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if all the features that FHEs look at could be implemented
(which is hard to do since some features used by FHEs are
not appropriately defined to be computed automatically),
the performance might even be better. Moreover, taking
into account the other results in the state-of-the-art reported
over the same datasets presented in the last two rows of
Tables 4 and 5, it can be concluded that the performance of
the proposed systems using only the FHE-based features
will still be comparable with the ones reported in the
state-of-the-art.
The results obtained when using the features automatically

selected outperform the ones obtained when using the
FHE-based features, for both datasets. This is probably due
to the fact that the automatic feature selection is not limited
with respect to the size of the selected set. Nevertheless, the
automatic feature selection is always (with an exception in
the case of the Legendre approximation for the Chinese
data) keeping the FHE-based features among their selected
ones. This means that the FHE-based features are considered
important by the automatic feature selection algorithm. In
addition, it is shown that the FHE-based features are not
good enough to achieve the best results, but need to be
combined with other important features to achieve that. The
fact that the automatic feature selection technique can keep
the FHEs features can be useful since the selected feature set
will contain features that are fully understandable and have
been thoroughly investigated by FHEs. If a system is
thought to interact with the FHEs, it is important to use a set
of features that are generally accepted by them.
The fact that the results obtained when using the

automatically selected feature sets outperform the ones
obtained when using the FHE-based features is probably
because of, as mentioned above, the larger size of the
selected feature sets. In order to compare feature sets of the
same size, the results using only the four most important
features in the automatically selected feature sets were also
computed. These results were included in Tables 4 and 5
[Feat. select. (4)]. It can be observed that whenever using
the Legendre approach to extract the features, the results
obtained by the first four features in the automatic selection
are better than the ones obtained by the FHE-based
features, while whenever using the DWT approach, the
situation is the opposite. The first four automatically
IET Biom., 2013, Vol. 2, Iss. 4, pp. 137–150
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selected features do not coincide with the FHE-based
features. Only dp is kept among the first four features for
the Legendre approach and vT is kept for the DWT
approach. Owing to the feature selection technique, it is
likely that the first features in the ranking are not the best
features by themselves, but they are good features when
combined with other features.
The discriminative power of the pen pressure has long been

questioned in the literature of online signature verification.
This discussion, as already mentioned in Section 1, has
particularly been intensified since SVC2004 was held [6].
The results obtained in this paper show that the pen
pressure and its first-order time derivative are always among
the best features since the automatic feature selection
always include them into the optimal sets of features. This
holds for the Dutch and Chinese datasets. Moreover, for the
latter, the second-order time derivative of the pen pressure
is also included in the selected feature sets. These results
would suggest that the pen pressure is a useful feature when
combined with other features. This observation agrees with
many other reported results in the literature, such as [9–12],
where it is stated that the pen pressure is a useful feature to
distinguish between writers when used in combination with
other time functions. The best set of features for any of the
feature extraction approaches being used and any of the
datasets being considered contains the pen pressure and its
first-order time derivative. These results show that the pen
pressure is useful regardless of the feature extraction being
used here and, maybe more interesting, regardless of the
dataset being considered in this paper. This could be
suggesting that the reliability of the pen pressure is not
highly influenced by the considered cultural origin of the
signatures, depending mainly on the writer. Since in the
present paper only Dutch (as an example of Western
signatures) and Chinese signatures are considered, it is
mandatory to analyse more data from different cultures in
order to make further conclusions, but this observation
could be a promising starting point.
In [33], the first-order time derivatives are considered into

the initial feature set since it has been shown that they are
highly effective as discriminative parameters regarding
verification with other behavioural traits, such as speech. In
[11], not only the first- but the second-order time
derivatives of an original set of features are analysed. The
results obtained when only the original set of features is
used are clearly outperformed by the ones obtained when
the features proposed in [33] are used, that is, incorporating
the first-order time derivatives to the original set. This
observation, agrees with the ones done in [33], and shows
that the set of first-order time derivatives is useful to reach
better verification results. Nevertheless, to incorporate the
second-order time derivative seems not to be that
significantly helpful, since incorporating them to the
features used in [33] does not improve the verification
results as much as incorporating the first-order time
derivatives to the original feature set. Then, to use the
first-order time derivatives contributes to reach a better
model of the signatures, but to use the second-order time
derivatives does not contribute so much. This contribution
of the first-order time derivatives could be related to the
power of the time derivatives to model the details.
Nevertheless, it is important to note that, in addition to
highlighting the details, the derivatives can also increase
spurious information such as noise and other signal
artefacts. Then, taking into account the first-order time
derivative of a signal may contribute, but the second-order
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time derivative may introduce non-useful information. This is
particularly notable in the cases of the time derivatives of the
extended time functions, namely, vt, θ, aT and ρ that are more
complex signals than the measured ones (x, y and p).
From Tables 4 and 5, it can be seen that the results obtained

when using the automatically selected feature sets outperform
the ones obtained when using the set of features used in [33].
In line with the observations done in the previous paragraph,
it can be observed that the main difference between these
feature combinations is the way in which they incorporate
the time derivatives to the original set of features. The
first-order time derivatives of the measured functions, that
is, dx, dy and dp are included in the optimal feature sets.
On the other hand, dvT and dθ are not always included, dρ
is only included once and daT is not included in any
optimal feature set. Instead of including these first-order
time derivative features, the second-order time derivatives
of the most simple time functions, that is, d2x, d2y and d2p
are included. This shows that it is likely more useful to use
the second-order time derivative of simple features than the
first-order time derivatives of more complex ones. As
mentioned above, the time derivatives are capable to
highlight details, but also useless information. If the features
are not so representative or they are unstable, the first-order
time derivatives of these features will be nothing but noisy
data. On the other hand, the second-order time derivatives
of the simple features will still keep useful information and
will be capable to highlight the details without increasing
drastically the artefacts of the original signal.
The best results for the Dutch data (Table 4) are reached

when using the Legendre polynomials approximation of the
time functions. Dutch signatures are likely to be written in a
Fig. 4 Wrongly classified signatures with FHEs features: original vT (fir
and their corresponding approximations by DWT (db4) (dashed line), for
signature images
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continuous way, so that the time functions associated with
these signatures should be smooth and so polynomials, the
Legendre ones in this paper, can accurately approximate
them. In the case of using the approximation based on
DWT, the results are not as good as in the case of using the
Legendre approximation. The best results for the Chinese
data (Table 5) are obtained when using the DWT
approximations of the time functions. Chinese signature
style is, in most of the cases, close to the Chinese
handwriting style, consisting of one or more separated
multi-trace characters. This causes the time functions
associated with the Chinese signatures to have several
discontinuities. Then, a polynomial approximation, such as
the one based on the Legendre polynomials used here, is
not good enough to model this type of signals.
The best results for the Dutch and Chinese data are

comparable with the recent results reported in the literature
over the same datasets. Taking into account the results for
the best commercial and non-commercial systems in
SigComp2011 (last two rows of Tables 4 and 5), it is worth
to note that even though the best results for the Dutch and
Chinese data are not as good as the corresponding to the
best commercial system [xyzmo (http://www.xyzmo.com)],
they would have ranked first among the non-commercial
systems and second among all the participants. Finally, the
verification results obtained for the Dutch signatures are
better than those for the Chinese ones, confirming the
observations in [17, 12], and indicating that Chinese
signatures are more challenging and that a lot of research
has to be done on this type of data.
The potential, regarding the discriminative capability, of

the FHE-based features has been discussed above.
st row), θ (second row), ρ (third row) and dp (fourth row) (solid line)
the Dutch (left) and Chinese (right) datasets. Bottom row: associated
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Fig. 5 Wrongly classified signatures with FHEs features: original x (top), y (middle) and p (bottom) (solid line) and their corresponding
approximations by DWT (db4) (dashed line), for the Dutch (left) and Chinese (right) datasets

Fig. 6 Wrongly classified signatures: original x (top), y (middle) and p (bottom) (solid line), their corresponding approximations by the
Legendre polynomials (dashed line), DWT (db4) (dash-dotted line) and DWT (bio6.8) (dotted line), for the Dutch (left) and Chinese (right)
datasets. Bottom row: associated signature images
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Nevertheless, there are signatures corresponding to certain
authors in the Dutch and Chinese datasets that are wrongly
classified using these features, whereas they are correctly
classified with other feature combinations. In order to
analyse these particular cases, the FHE-based features, that
is, vT, θ, ρ and dp for a sample of the signatures that are
wrongly classified, together with their corresponding
approximations computed with DTW (‘db4’) are shown in
Fig. 4, for a Dutch (left) and a Chinese (right) genuine
signature, respectively. Also shown in the figure are the
associated signature images (bottom row). It can be seen
that these time functions are not smooth, causing that the
approximations proposed in this paper cannot model them
accurately. In the case of using the Legendre
approximations, a possible solution would be to increase
the order of the polynomials, but it has already been
mentioned that further increasing it does not improve the
approximation accuracy. In the case of using the DWT
approximation, an alternative would be to incorporate the
detailed coefficients to the model. Experiments showed that
this actually improves the approximation accuracy. Despite
the fact that this would increase the length of the feature
vector, this would not be a limitation here since the
FHE-based feature sets include only four features.
As mentioned above, these particular signatures are

correctly classified when using another feature combination.
Features such as x, y and p, that are simpler than the
FHE-based ones, are shown for these signatures in Fig. 5,
for the Dutch (left) and Chinese (right) cases, respectively.
Fig. 7 Correctly classified signatures: original x (top), y (middle) and
Legendre polynomials (dashed line), DWT (db4) (dash-dotted line) and
datasets. Bottom row: associated signature images
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These signals are smooth and they can be more accurately
approximated by the techniques proposed here. Then,
incorporating these type of features (those associated with
smooth time functions), would result in better verification
results. This is the case for the signatures analysed here,
since they were only wrongly classified by the FHE-based
features, being correctly classified when using the other
feature combinations proposed in this paper.
Finally, there are signatures corresponding to certain

authors in the Dutch and Chinese datasets that are wrongly
classified by any of the feature combinations proposed here.
In Fig. 6, the x, y and p time functions corresponding to a
sample of the wrongly classified cases are shown together
with their corresponding approximations based on the
Legendre polynomials and DWT, for a Dutch (left) and a
Chinese (right) genuine signature, respectively. In addition,
in Fig. 7, the same time functions corresponding to a
sample of the correctly classified cases are shown together
with their corresponding approximations, for a Dutch (left)
and a Chinese (right) genuine signature, respectively. Also
shown in Figs. 6 and 7 are the associated signature images
(bottom rows).
From Figs. 6 and 7, it can be observed that the

approximations for the time functions in Fig. 6 are
significantly worst than the ones in Fig. 7. This is suggesting
that the bad performance in these cases is because of the
poor quality approximation obtained with the proposed
approximation techniques. If the analysis is focused on the
pressure signal in Figs. 6 and 7, it can be noted that the
p (bottom) (solid line), their corresponding approximations by the
DWT (bio6.8) (dotted line), for the Dutch (left) and Chinese (right)
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approximation is not good in the case of a signal having pulses
with a large amplitude and a short duration. Regarding the
Legendre polynomials approximations, it is well known that
polynomial approximations are not capable to model this
type of signals, while regarding the wavelet approximations,
a good approximation is not achieved since the detail
coefficients (associated with the high-frequency components
of the signal) are being neglected. It is important to note that
such type of signals usually are associated with the p
function and, eventually, to the y function, and the functions
that are derived from them. Note the reader that, despite the
fact that the proposed approximations cannot handle pulses
that have large amplitude and a short duration, they can
handle wider pulses. Fortunately, this is, most of the times,
the case for the pressure signals.
The analysed time functions in Fig. 6 are associated with

the cases, in which the proposed verification system has not
a good performance. It has been observed that the
shortcomings are because of the poor quality approximation
obtained in these cases with the approximation techniques
proposed in this paper. The problem could be solved by
increasing the order of the Legendre polynomials, or
incorporating the detail coefficients in the wavelet approach.
Nevertheless, as already mentioned, further increasing the
order of the polynomials does not improve the results and
incorporating the detail coefficients would increase the
length of the time function model and then would limit the
number of features to be selected to model the signatures.
8 Conclusions

Different feature combinations were analysed, for two
different signature styles, namely, Western and Chinese, in
order to provide some insight on the actual discriminative
power of the features for online signature verification. This
could also help FHEs for further understanding the
signatures and the writer’s behaviour.
The experimental results showed that the proposed

signature verification system could be integrated into
toolkits that could be used by FHEs for helping them to
analyse and understand the signatures. In particular, the
following observations are worth to be done:

† The features that an FHE would look at when doing his
daily work proved to reach good results, comparable with
the ones in the state-of-the-art reported on the same
datasets. This result is promising since these features have a
meaningful interpretation and are generally accepted by the
FHEs.
† The comparison between the verification performance
obtained when using the FHE-based features and the
automatically selected features showed that a better
verification performance is obtained in the latter case.
Despite this fact, the set of automatically selected features
does contain the set of FHE-based features; this is
important since it makes the system capable to interact with
FHEs.

It was shown that the automatic feature selection proposed
in this paper was a meaningful one, since the results obtained
when using the automatically selected features were the best
ones (together with the ones obtained when using all the
features), for both datasets. That is, a valuable set of
features could be selected, from the proposed original
feature set, for the two different signature styles.
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The discriminative power of the pen pressure has
particularly been analysed, and it was shown to be a useful
feature for both datasets. Although in this paper only
Dutch and Chinese signatures are considered, the
independence of the data found here is very important
since this could be suggesting that the reliability of the pen
pressure is not highly influenced by the considered cultural
origin of the signatures, depending mainly on the writer.
Of course, it is mandatory to analyse more data from
different cultures in order to make further conclusions, but
this observation could be a promising starting point.
Finally, it is important to note that the discriminative
power of the pen pressure can easily be influenced by the
signature acquisition process. If this process is done in
carefully controlled conditions, the pressure is likely to be
a very distinctive feature. As a future work, it would be
interesting to study its discriminative power in an FHEs
casework context.
The use of the proposed time function approximations,

namely, the one based on the Legendre polynomials and the
one based on wavelet decomposition, proved to be a good
choice since the obtained error rates using both of them are
comparable with those of other state-of-the-art verification
systems, tested on the same datasets.
The verification results obtained for the Dutch signatures

are better than the ones obtained for the Chinese ones,
indicating that Chinese signatures are more challenging and
that a lot of research has to be done on this type of data.
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