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Abstract—In this paper, we have extensively investigated the unconstrained ear recognition problem. We have first
shown the importance of domain adaptation, when deep convolutional neural network models are used for ear
recognition. To enable domain adaptation, we have collected a new ear dataset using the Multi-PIE face dataset, which
we named as Multi-PIE ear dataset. To improve the performance further, we have combined different deep convolutional
neural network models. We have analyzed in depth the effect of ear image quality, for example illumination and aspect
ratio, on the classification performance. Finally, we have addressed the problem of dataset bias in the ear recognition
field. Experiments on the UERC dataset have shown that domain adaptation leads to a significant performance
improvement. For example, when VGG-16 model is used and the domain adaptation is applied, an absolute increase of
around 10% has been achieved. Combining different deep convolutional neural network models has further improved
the accuracy by 4%. It has also been observed that image quality has an influence on the results. In the experiments
that we have conducted to examine the dataset bias, given an ear image, we were able to classify the dataset that it has
come from with 99.71% accuracy, which indicates a strong bias among the ear recognition datasets.

Index Terms—Ear recognition, deep learning, domain adaptation

1 INTRODUCTION

Human identification through biometrics has been
both an important and popular research field.
Among the biometric traits, ear is a unique part of
the human body in terms of different features such
as shape, appearance, posture, and there is usually
not much change in the ear structure except that
the ear length is prolonged over time [1]. Various
studies have been conducted and many different
approaches have been proposed on ear recognition,
however, it still remains as an open challenge, es-
pecially when the ear images are collected under
uncontrolled conditions as in the Unconstrained Ear
Recognition Challenge (UERC) [2].

Ear recognition approaches are mainly catego-
rized into four groups, holistic, local, geometric, and
hybrid processing [1]]. In the earlier studies, the most
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popular feature extraction methods for ear recog-
nition were SIFT [11], SURF [12], and LBP [13].
Due to the popularity of deep learning in recent
years and its significant impact on the computer
vision field [4], [5], [6], [20], [23], deep convolutional
neural networks (CNN) based approaches have also
been adopted for ear recognition [2], [3], [23]]. CNNs
mainly require a large amount of data for training.
However, the amount of samples in the datasets
available for ear recognition are rather limited [1],
121, 171, 181, 191, [10]. Due to this limitation, CNN-
based ear recognition approaches mainly utilize an
already trained object classification model, so called
a pretrained deep CNN model, from one of the well-
known, high performing CNN architectures, for
example [4], [5], [6]. These pretrained models were
trained on the ImageNet dataset [19] for generic
object classification purposes, therefore, they are re-
quired to be adapted to the ear recognition problem.
This adaptation is done mainly with a fine-tuning
process, where the output classes are updated with
subject identities and the employed pretrained deep
CNN model is further trained using the training



Fig. 1. Sample ear images from the UERC dataset [2]. The
dataset contains many appearance variations in terms of ear di-
rection (left or right), accessories, view angle, image resolution,
and illumination.

part of an ear dataset.

In the field of ear recognition, most of the used
datasets have been collected under controlled con-
ditions, and therefore, very high recognition per-
formance has been achieved on them [1]]. But the
proximity of these accuracies to the real world is a
topic of debate. Because of this, in-the-wild datasets
have been collected in order to imitate real-world
challenges confronted in ear recognition better [1].
These datasets, since they contain images collected
from the web, have a large variety, for example,
in terms of resolution, illumination, and use of
accessories. Sample ear images shown in Fig. [I| are
from the UERC dataset. It can be seen from Fig.
that there are accessories, partial occlusions due
to hair, and also pose and illumination variations.
Because of these significant appearance variations,
the performance of the ear recognition systems on
the wild datasets, such as on the UERC, is not as
high as the ones obtained on the datasets collected
under controlled conditions.

In this paper, we present a comprehensive
study on ear recognition in the wild. We have em-
ployed well-known, high performing deep CNN
models, namely, AlexNet [4], VGG-16 [5], and
GoogLeNet [6] and proposed a domain adaptation
strategy for deep CNN-based ear recognition. We
have also provided an in depth analysis of several
aspects of ear recognition. Our contributions are
summarized as follows:

o We have proposed a two-stage fine-tuning

strategy for domain adaptation.

o We have prepared an ear image dataset from
Multi-PIE face dataset, which we named as
Multi-PIE ear dataset. As can be seen in Table
this database contains a larger number
of ear images compared to the other ear
datasets.

o We have analyzed the effect of data augmen-
tation and alignment on the ear recognition
performance.

o We have performed deep CNN model com-
bination to improve accuracy.

o We have examined varying aspect ratios of
ear images and the illumination conditions
they contain, and assess their influence on
the performance.

o We have investigated the dataset bias prob-
lem for ear recognition.

For the experiments, we have used the Multi-
PIE ear and the UERC datasets [2]. Since Multi-PIE
ear dataset is collected under controlled conditions,
the achieved results were very high. From the ex-
periments on the UERC dataset, we have shown
that the proposed two-stage fine-tuning scheme
is very beneficial for ear recognition. With data
augmentation and without alignment, for AlexNet
[4], the correct classification rate is increased from
52% to 56.46%. For VGG-16 [5] and GoogLeNet
[6], the increase is from 54.2% to 63.62% and from
55.02% to 60.91%, respectively. Combining differ-
ent deep convolutional neural network models has
led to further improvement in performance by 4%
compared to the single best performing model. We
have observed that data augmentation enhances
the accuracy, whereas performing alignment did
not improve the performance. However, this point
requires further investigation, since only a coarse
alignment has been performed by flipping the ear
images to one side. Experimental results show that
the ear recognition system performs better, when
the ear images are cropped from profile faces. Very
dark and very bright illumination causes missing
details and reflections, which results in performance
deteriorations. Experiments to examine the dataset
bias have indicated a strong bias among the ear
recognition datasets.

The remainder of the paper is organised as fol-
lows. A brief review of the related work on ear
recognition is given in Section 2. The employed
methods in this work are explained in Section 3.
In Section 4, experimental results are presented and
discussed. Finally, Section 5 provides conclusions



and future research directions.

2 RELATED WORK

Many studies have been conducted in the field of
ear recognition. In the following paragraphs, we
give a brief overview. A comprehensive analysis of
the existing studies in the area of ear recognition has
been presented in [1]]. Please refer to this paper for
an extensive survey.

In [1], an in-the-wild ear recognition dataset AWE
and an ear recognition toolbox for MATLAB are
introduced. The AWE dataset has become a useful
dataset for the ear recognition field, which has pre-
viously employed ear datasets that have been col-
lected under controlled conditions. The presented
toolbox enables feature extraction from images with
traditional, hand-crafted feature extraction meth-
ods. The toolbox also provides use of different
distance metrics and tools for classification and
performance assessment.

Recently, a competition, unconstrained ear recog-
nition challenge (UERC), was organized [2]. The
UERC dataset is introduced for this competition.
For the benchmark, training and testing sets from
this dataset are specified. In the competition, mainly
hand-crafted feature extraction methods, such as
LBP [13] and POEM [30], and CNN-based feature
extraction methods are used. One of the proposed
methods in this challenge eliminates earrings, hair,
other obstacles, and background from the ear image
with a binary ear mask. Recognition is performed
using the hand-crafted features. In another pro-
posed approach, the score matrices calculated from
the CNN-based features and hand-crafted features
are fused. The remaining approaches participating
to the competition employ only CNN-based fea-
tures.

In [21], a new feature extraction method named
Local Similarity Binary Pattern (LSBP) is intro-
duced. This new method, which is used in conjunc-
tion with the Local Binary Pattern (LBP) features,
is found to have superior ear recognition perfor-
mance [21]]. The proposed feature extraction method
provides information both about connectivity and
similarity.

In a recent study [23], a brief review of deep
learning based ear recognition approaches is given.
When performed on the ear datasets that contain ear
images collected under controlled conditions, deep
learning-based approaches provide satisfactory re-
sults. However, it has been emphasized that the
detection of an ear in the image is a difficult task.
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Another study that employed deep CNN mod-
els is presented in [3]. In this work, AlexNet [4],
VGG-16 [5], and SqueezeNet [20] architectures are
used. Two different training approaches are applied,
namely training of the whole model, called full
model learning and training of the last layers by us-
ing a pretrained deep CNN model, called selective
model learning. The best results are obtained with
the SqueezeNet. Data augmentation has been ap-
plied to increase the amount of data for deep CNN
model training. So called selective model learning,
using the pretrained models that were trained on
the ImageNet dataset, was found to perform better
than using so called full model learning in terms of
ear recognition performance.

3 METHODOLOGY

In this section, we present the employed deep con-
volutional neural network models, data augmenta-
tion and transfer learning approaches, and provide
information about the datasets, data alignment, and
fusion techniques.

3.1 Convolutional Neural Networks

In our study, we have employed convolutional neu-
ral networks for ear image representation and clas-
sification. CNN contains several layers that perform
convolution, feature representation, and classifica-
tion. Convolutional part of the CNNs includes lay-
ers that perform many operations, such as convo-
lution, pooling, batch normalization [16], and these
layers are sequentially placed to learn the discrim-
inative features from the image. Then, in the later
layers, these features are utilized for classification.
In this work, for the final layer, we have used the
softmax loss in the employed deep CNN models.
The first deep convolutional neural network ar-
chitecture used in this study is AlexNet [4], which
is the winner model of ILSVRC 2012 challenge [17].
In AlexNet [4], there are five convolutional layers
and three fully connected layers. Dropout method
[18] has been used to prevent overfitting. Besides,
we have also utilized VGG [5] and GoogLeNet [6]
architectures. GoogLeNet [6] has 22 layers, how-
ever, has about twelve times fewer parameters than
AlexNet [4], and it is based on a new paradigm,
which is named as inception. In inception layers,
input image is filtered by different filters separately.
Results of all different filters are utilized, which
is very beneficial in terms of extracting multiple
features from the same input data. VGG architecture
has two versions. One of them contains 16 layers



Fig. 2. Selected view angles from the Multi-PIE face dataset [14],

Fig. 3. lllustration of ear detection and cropping on the Multi-PIE
face dataset [14], [15]: (a) Input image, (b) Ear detected image,
(c) Cropped ear image

and is named as VGG-16, whereas the other one has
19 layers and is named as VGG-19. VGG-16 has two
fully connected layers and softmax classifier after
convolutional layers as in AlexNet [4]. VGG-16
is a deeper network than AlexNet and uses a
large number of filters of small size, i.e. 3 x 3.

3.2 Transfer Learning, Domain Adaptation and
Alignment

Transfer learning has been applied mainly in two
different ways in convolutional neural networks
and depends on the size and similarity between
the pretraining dataset and the target dataset. The
first common approach is to utilize a pretrained
deep CNN model directly to extract features from
the input images. These extracted features are then
fed into, for example, a support vector machine
classifier, to learn to discriminate different classes
from each other. This scheme is employed when the
target dataset contains a small amount of samples.
The second approach is fine-tuning the pretrained
deep CNN models on the target dataset. That is, to
initialize the network weights with the pretrained
model and to further train and fine-tune the weights
on the target dataset. This method is useful when
the target dataset has sufficient amount of train-
ing samples, since performing fine-tuning on a tar-
get dataset with few training samples can lead to
overfitting [25]. Depending on the task similarity
between the two datasets and amount of available
training samples in the target dataset, one can de-
cide between these two approaches [26].

In our work, by using the pretrained models
of AlexNet [4], VGG-16 [5], and GoogLeNet [6]
architectures, which were trained on the ImageNet
dataset [19], we have fine-tuned them on the ear
datasets. The ear recognition datasets contain a lim-
ited amount of training samples, for example the
ones used in this study contain around a thousand
to ten thousand ear images. This amount of training
data is sufficient for fine-tuning, although it would
not be enough to train a deep CNN model from
scratch. In our previous work on age and gender
classification , we have shown that transferring
a pretrained deep CNN model can provide better
classification performance than training a task spe-
cific CNN model from scratch, when only a limited
amount of data is available for the task at hand,
as in the case for ear recognition. We have further
shown that transferring a CNN model from a closer
domain, that is for age and gender classification
transferring a pretrained model that were trained on
face images, instead of one trained on generic object
images, provides better performance. By utilizing
this information, we have performed a two-stage
fine-tuning of the pretrained deep CNN models for
ear recognition. For this approach, we have first
constructed an ear dataset from the Multi-PIE face
dataset [14], [15]. Then, we have fine-tuned the
pretrained deep CNN models on this dataset. This
way, we first provide a domain adaptation for the
pretrained deep CNN models. In the second stage,
we perform the final fine-tuning operation by using
the target dataset, which is the UERC dataset,
in this work. This final fine-tuning stage provides
a more specific domain and/or task adaptation.
In our case, it is the adaptation required for the
wild, uncontrolled conditions. This step is indeed also
very important, since as we have shown in the
experiments, there exists a dataset bias among
the ear recognition datasets.

While performing fine-tuning, parameters have
been initialized with the values that came from the
pretrained network models. The learning rate of
last fully connected layer has been increased by
ten times. This is a commonly used strategy in
fine-tuning, since the early layers mainly focus on
low-level feature extraction and the later layers are



mainly responsible for classification. Global learn-
ing rate is selected as 0.0001 for AlexNet [4] and
GoogLeNet [6], and 0.001 for VGG-16 [5] during
fine-tuning on the Multi-PIE ear and UERC datasets
[2]. The learning rate is divided by ten in every 20k
iterations in AlexNet [4] and VGG-16 [5].

Since alignment is a critical factor in visual
recognition tasks, to investigate its impact, we have
performed fine-tuning with two different setups. In
the first one, both right and left side of ear images
have been used directly. In the second approach,
the training data have been aligned to the same
direction and then fine-tuning has been done with
these flipped images. That is, all ear images are
aligned only to the left side ear or to the right side
ear. This setup has been used to reduce the amount
of appearance variations within the classes.

3.3 Data Augmentation

Since the number of images in the UERC dataset
[2] is limited, in order to increase the amount of
data as well as to account for appearance variations
due to image transformations, we have applied data
augmentation. Data augmentation has also been
applied to the Multi-PIE ear dataset. Although the
Multi-PIE ear dataset contains around eight times
more images than the UERC dataset [2], it would
still benefit from data augmentation. In this work,
data augmentation is performed by using the Im-
gaug too]lﬂ

For data augmentation, different transforma-
tions have been used and many images have been
created from a single image. First of all, some im-
ages that are 224 x 224 pixel resolution are randomly
cropped from images of size 256 x 256 pixels. Then,
in the setup used without alignment, the flipped
versions of the images have been produced. Images
have been generated at different brightness levels
by adding or subtracting values to the pixels” in-
tensity values. These values have been prepared
by incrementing by ten in the range of [-55 +55],
e.g. (-55, -45, ... +45, +55). Another way of modify-
ing brightness levels of the images have been per-
formed by multiplying the pixels” intensity values
with a constant. For this, the values are increased
by step size of 0.1 between 0.5 and 1.5. To apply
Gaussian blur, we have used different sigma values,
which are 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, and 2.
Sharpening is applied on each image by selecting
values from 0.5 to 2.0 with increasing by step size

A. http:/ /github.com/aleju/imgaug
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of 0.1 (0.5, 0.6, 0.7 and etc.). This parameter ad-
justs the lightness/brightness of the output image.
With pixel dropout, from images some pixels are
dropped and noisy images are created to increase
the generalization of the deep learning model. With
contrast normalization, images are created in dif-
ferent contrasts. Scale, translate, rotate, and shear
methods have been used to increase image variety.
For rotation, the angle values in the range of -
20 to +20 degrees are used with step size of five
degrees. For shear values, again with step size of
five degrees, values between -15 and +15 degrees
are used. These augmentation parameters are the
ones that we have applied to the UERC dataset [2].
In the augmentation, we have applied to the Multi-
PIE ear dataset, fewer parameters were used. After
these processes, roughly 220.000 training images for
UERC dataset [2] and around 400.000 training im-
ages for Multi-PIE ear dataset have been obtained.

3.4 Datasets
3.4.1 Multi-PIE Ear Dataset

Multi-PIE face dataset contains 337 subjects, whose
images are acquired, as the name implies, under dif-
ferent pose, illumination, and expression conditions
[14], [15]. Due to the large amount of profile and
close-to-profile images available in the Multi-PIE
dataset, we have utilized it to create an ear dataset,
which we named as Multi-PIE ear datasef’l The
view angles that have been selected for ear dataset
creation can be seen from Fig. 2| Ear detection has
been performed using an ear detection implemen-
tation for OpenCV [28]. A sample ear detection
output is shown in Fig. 3l Since we have used a
generic ear detector, the detection accuracy on the
Multi-PIE dataset is not very high, 28.3%, therefore,
the ears have been detected successfully only in a
subset of the images. Consequently, the new ear
dataset that we have obtained from the Multi-PIE
face dataset [14]], [15] contains around 17.000 ear
images of 205 subjects. This ear dataset has been
used for domain adaptation for ear recognition.

3.4.2 UERC Dataset

In the ear recognition field, most of the datasets
have been collected under controlled conditions,
such as in a laboratory environment. Unlike these
datasets, the UERC dataset [2] has been collected
from the wild, that is, it consists of ear images of

and corre-
available at

B.The list of image filenames
sponding ear bounding boxes are
https://github.com/irmdgcn/ear_recognition
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Fig. 5. UERC dataset percentages of ear images with respect to
aspect ratio.

varying quality collected from the web. Because of
this, ear identification problem on the UERC dataset
2] is a more challenging task. The UERC dataset is
divided into two parts as training and testing sets.
In total, there are 11804 ear images of 3706 subjects.
Training part of the UERC dataset contains 2304

images of 166 subjects and testing part has 9500
images of 3540 subjects. Following the experimental
setup in Emersic et. al. [3], just the training part of
this dataset has been used for the experiments. Our
experimental results for the test part of the UERC
dataset can be found in the unconstrained ear recog-
nition challenge summary paper [2]. Briefly, we
have proposed two approaches in [2]. The first one
was a CNN-based approach utilizing the VGG-16
architecture, which attained 6.1% rank-1 recognition
rate. The second one, which achieved the best score
in our experiments with 6.9% rank-1 recognition
rate, was a fusion-based approach combining the
scores from the VGG-16 framework with the ones
from the hand-crafted LBP descriptors. The reason
to follow the experimental setup in , instead of
the one in [2], is the high number of very low reso-
lution images that exist in the test set, which causes
problems to interpret the results and analyze the
impact of the experimented factors. Distributions
of the number of samples with respect to image
resolution —in terms of the total amount of pixels
contained in the image— are given in Fig. d for the
UERC training and testing datasets separately. As
can be seen, most of the ear images in the testing set



TABLE 1
Ear datasets
Dataset # Images | # Subjects
AWE [1] 1000 100
AMI [10] 700 100
WPUT [9] 2071 501
1TD [8] 493 125
CP [7] 102 17
UERC Train [2] 2304 166
Multi-PIE Ear [14],7[15] 17183 205

of the UERC dataset are of low resolution, with the
majority containing less than one thousand pixels.
UERC training set has a more even distribution and
contains more ear images with better resolutions,
i.e. having more than ten thousand pixels. The
training part of the UERC dataset is created by
combining the AWED (1000 images), CVLED (804
images) datasets, and 500 extra images that have
been collected from the web [1], [3]]. In the rest of the
paper, UERC experiments refer to the experiments
conducted on the training part of the UERC dataset
as in [3]. We have also analyzed the aspect ratio vs.
number of images in the training part of the UERC
dataset. As can be seen in Fig. 5, aspect ratio of
the images varies significantly, due to differences
in ear shapes and viewing angles, which makes the
unconstrained ear recognition problem even more
challenging.

3.4.3 Other Ear Datasets

There are many other ear datasets, which have
been collected under controlled conditions, such as
Carreira-Perpinan (CP) [7], Indian Institute of Tech-
nology Delhi (IITD) [8], AMI [10], West Pommera-
nian University of Technology (WPUT) [9], and
AWE [1] datasets as listed in Table[I] The CP dataset
[7] contains 102 images belonging to 17 subjects.
All ear images in this dataset have been captured
from the left side. There exists no accessories or
occlusions. The second dataset IITD [8] contains 493
images of 125 subjects and all images are from the
right side of the ear. Accessories exist in this dataset.
The third one is AMI [10] and contains 700 images
of 100 different subjects. Both sides of the ears are
available in this dataset. However, there are no
accessories. Another ear dataset is WPUT [9] that in-
cludes 501 subjects and 2071 ear images. Accessories
exist in this dataset. The last one is AWE dataset
[1], which is also included in the UERC dataset.
There are 1000 ear images of 100 subjects in this
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dataset. These 100 subjects are the first 100 subjects
of the UERC dataset [2], [3]. Many studies have been
conducted on these datasets in previous studies and
the performance of the proposed approaches on the
ones that are collected under controlled conditions
are very high. However, as shown in the uncon-
strained ear recognition challenge [2], ear recognition
in-the-wild poses several difficulties causing lower
recognition accuracies. In our work, along with
the Multi-PIE ear dataset and the UERC dataset,
we have utilized these other datasets, especially to
investigate whether there exists a dataset bias in
the ear recognition field. Sample images from these
datasets can be seen in Fig.[7]

3.5 Fusion

In order to improve the accuracy further, we have
utilized model fusion. The classification outputs of
different deep CNN models are combined accord-
ing to their confidence scores for each image. We
have employed different confidence score calcula-
tion methods as listed in Table 2| In the table, array
s contains prediction percentages obtained by the
model in a sorted order —large to small—, that
is, it contains raw classification scores. The array
¢ contains confidence scores, which are calculated
by using the formulas listed in the table. The deep
CNN model with the highest confidence score for
an image is accepted as the most reliable model
for that image. In this work, model combination is
applied for the experiments on the UERC dataset
[2]. AlexNet [4], VGG-16 [5], and GoogLeNet [6]
models are combined with each other.

4 EXPERIMENTAL RESULTS

We have conducted the ear recognition experiments
on the Multi-PIE ear dataset and the UERC dataset
[2]. The other ear datasets have been used to assess
dataset bias. Multi-PIE ear dataset is divided into
three parts as train, validation, and test set. 80% of

TABLE 2
Confidence score calculation formulas
Name Formula
Basic ¢ = s[0]
d2s ¢ = s[0] — s[1]
d2sr c=1—(s[1]/s[0])
avg-diff | ¢ = ;4 Soir, (s[0] — s[i)
diff1 c= oM (el




TABLE 3
Multi-PIE ear dataset test results
Models Accuracy | Augmentation | Alignment
AlexNet 96.71% + +
AlexNet 99.81% + X
AlexNet 97.64% X X
VGG-16 100% + +
VGG-16 100% + X
VGG-16 98.57% X X
GoogLeNet | 97.80% + +
GoogLeNet | 99.32% + X
GoogLeNet 98.45% X X

the dataset has been used for training, 10% has been
used for validation, and the remaining 10% has been
employed for testing. The experimental setup for
the experiments on the UERC dataset [2] is the same
as the one in Emersic et. al. [3]. 60% of the dataset
has been used for training and the remaining 40%
has been used for testing. Data augmentation and
alignment have been applied on the training part of
the Multi-PIE ear dataset and the UERC dataset [2].

In the experiments, for deep convolutional neu-
ral network model training, images have been re-
sized to 256 x 256 pixels resolution. These 256 x 256

TABLE 4
UERC dataset test results

Models Accuracy | Fine-Tuning | Aug. | Align
AlexNet [3] 49.51% ImageNet + X
VGG-16 [3] 51.25% ImageNet + X

SqueezeNet [3] 62.00% ImageNet + X

AlexNet 49.51% ImageNet X X

AlexNet 52.00% ImageNet + X

AlexNet 53.20% Multi-PIE X X

AlexNet 56.46% Multi-PIE + X

AlexNet 56.02% Multi-PIE + +

VGG-16 51.03% ImageNet X X

VGG-16 54.2% ImageNet + X

VGG-16 58.84% Multi-PIE X X

VGG-16 63.62% Multi-PIE + X

VGG-16 62.64% Multi-PIE + +
GoogLeNet 54.72% ImageNet s X
GoogLeNet 55.02% ImageNet + X
GoogLeNet 55.37% Multi-PIE X X
GoogLeNet 60.91% Multi-PIE + X
GoogLeNet 60.58% Multi-PIE + +
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sized images are cropped into five different images
during the training phase and a single crop is taken
from the center of the image during the test phase.
The crop image size for GoogLeNet [6] and VGG-16
[5] models is 224 x 224, while for AlexNet [4] it is
227 x 227.

4.1 Evaluation on the Multi-PIE Ear Dataset

We have first assessed the performance of the deep
CNN models on the collected Multi-PIE ear dataset.
AlexNet [4], VGG-16 [5], and GoogLeNet [6] archi-
tectures have been employed and fine-tuned using
their pretrained models that were trained on the
ImageNet dataset [19]. The obtained results on the
test set are listed in Table [3 In the table, the first
column contains the name of the model, the second
one contains the corresponding classification accu-
racy, and the third and fourth ones indicate whether
augmentation and alignment have been applied
or not. As can be seen, the achieved classification
rates are quite high due to the controlled nature
of the Multi-PIE ear dataset. VGG-16 model [9] is
found to perform the best. Data augmentation has
contributed around 1% to the accuracy. Alignment
did not lead to an improvement. However, this
point requires further investigation, since no precise
registration of the ear images has been done and
they are only aligned roughly to one side.

4.2 Evaluation on the UERC Dataset

For the UERC dataset experiments, we have fol-
lowed the experimental setup in [3]. As in the
experiments on the Multi-PIE ear dataset, AlexNet
[4], VGG-16 [5], and GoogLeNet [6] architectures
have been employed and fine-tuned using their
pretrained models that were trained on the Ima-
geNet dataset [19]. However, this time we have
also applied a two-stage fine-tuning as described
in Section that is we have first fine-tuned the
pretrained deep CNN model on the Multi-PIE ear
dataset and then fine-tuned the obtained updated
model further on the training part of the UERC
dataset. The experimental results are given in Ta-
ble 4l In the table, the first column contains the
name of the model, the second one contains the
corresponding classification accuracy, the third one
shows whether a single or two stage fine-tuning
is applied, and the fourth and fifth ones indicate
whether augmentation and alignment have been
applied or not. For the third column, if the value
is ImageNet, then in that experiment only one-stage
fine-tuning has been performed and the pretrained
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model, which was trained on the ImageNet, has
been fine-tuned using the training part of the UERC
dataset. If the value is Multi-PIE, then two-stage
fine-tuning has been applied, first on the Multi-PIE
ear dataset, then on the training part of the UERC
dataset.

Compared to the results in Table 3] the attained
performance is significantly lower. Although the
number of subjects to classify is less in the UERC
dataset compared to the Multi-PIE ear dataset —166
vs. 205—, due to challenging appearance variations
and low quality images, ear recognition on the
UERC dataset is a far more difficult problem.

The first three rows of the Table [ corresponds
to the experimental results obtained in [3]. For
that study, the authors have employed AlexNet
[4], VGG-16 [5], and SqueezeNet [20], and also
utilized data augmentation. Comparing the accu-
racies obtained with AlexNet [4] and VGG-16
in [3] and in our study under the same setup,
that is with data augmentation and one-stage fine-
tuning, it can be seen that our implementation has
a slight improvement. In [3], 49.51% and 51.25%
correct classification rates have been achieved using
AlexNet [4] and VGG-16 [5], respectively, whereas
in our study we have reached accuracies of 52%



and 54.2%, respectively. This slight increase could
be due to the differences in the parameters used for
data augmentation and fine-tuning procedure.

From Table [4 it can be observed that the pro-
posed two-stage fine-tuning procedure results in
improved performance. For AlexNet [4], with data
augmentation and without alignment, the correct
classification rate is increased from 52% to 56.46%.
For VGG-16 [5] and GoogLeNet [6]], the increase is
from 54.2% to 63.62% and from 55.02% to 60.91%,
respectively. These significant improvements indi-
cate that domain adaptation is indeed necessary
and useful. This finding is in line with the results
obtained in [24], where we have shown that when
limited amount of training data is available for
a task, it is more useful to transfer a pretrained
model, which is trained on the images from the
same domain. Specifically, for example, for age and
gender classification, it is more useful to transfer a
pretrained model, which is trained on face images,
compared to transferring a pretrained model, which
is trained on generic object images. In summary,
compared to the results obtained with the VGG-16
model in [3], we have achieved around 12% ab-
solute increase in performance —51.25% vs. 63.62%.
Similar to the results obtained on the Multi-PIE
ear dataset, alignment did not lead to an improve-
ment. Again, it should be noted that no precise
registration of the ear images has been done and
they are only aligned roughly to one side, therefore,
this point requires further investigation. Among the
employed models, VGG-16 model is found to be the
best performing one.

We then fused the individual models in order to
improve the performance further. For each model
two-stage fine-tuning has been performed. Data
augmentation has been applied and alignment has
been omitted. We utilized the max rule to com-
bine the classification scores. We have employed
five different confidence score calculation schemes
—basic, d2s, d2sr, avg-diff, diffl— as listed in Ta-
ble 2| The results are given in Table [5| The best
performance is obtained when combining the best
two performing models, that is VGG-16 and
GoogLeNet [6], leading to 67.5% correct classifi-
cation, which is around 4% higher than the one
obtained with the single best performing model.
No significant performance difference is observed
between the employed confidence score calculation
methods.
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Fig. 7. Sample ear images from the datasets used for dataset
identification experiments: (a) Multi-PIE Ear Dataset, (b) AWE,
(c) AMI, (d) WPUT, (e) ITD, and (f) CP.

4.3 Effect of Image Quality on the Performance

The effect of aspect ratio and illumination condi-
tions of the image on the recognition performance
has been analyzed. The results are shown in Fig. [6|
As can be seen in Fig. [p(a), different aspect ratios
occur due to varying view angles and ear shapes.
Low aspect ratio, i.e. between 0-1, mainly implies
in-plane rotated ear images, while higher aspect
ratios, i.e. higher than 2, mainly refers to the cases of
out-of-plane view variations. Experimental results
show that the ear recognition system performs bet-
ter, when the ear images are cropped from profile
faces. Rotations of larger degrees and out-of-plane
variations cause a performance drop. Samples of



TABLE 5
UERC dataset fusion results

Models Basic d2s d2sr | avg-diff | diffl
AlexNet + VGG-16 63.95% | 64.06% | 63.84% | 63.95% | 64.06%
AlexNet + GoogLeNet | 63.51% | 64.06% | 64.16% | 63.51% | 63.73%
VGG-16 + GoogLeNet | 67.53% | 67.31% | 67.53% | 67.53% | 67.42%
All 66.34% | 66.01% | 65.68% | 66.34% | 66.23%
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illumination variations from the UERC dataset can
be seen in Fig. [(b). Mean values in the x-axis corre-
spond to the average intensities of the ear images.
In the dark images, the details of the ear are not
visible causing a loss of information. On the other
hand, when the image is very bright, reflections
and saturated intensity values are observed. Both
of these conditions deteriorate the performance.

4.4 Dataset Identification

During our ear recognition system development
and training for the UERC challenge [2], we have
tried to utilize the previously proposed ear datasets.
We have combined them and used them for train-
ing. However, we could not have achieved a per-
formance improvement. This outcome led us to
consider the problem of dataset bias. In order to
investigate this, we have designed an experiment,
in which the class labels of the ear images are the
names of the datasets that they belong to. That is,
in this experiment, input to the deep CNN model
is an ear image and the classification output is the
name of the dataset that it belongs to. The goal
was to observe whether the deep CNN model can
distinguish the differences between the datasets. For
this experiment six different ear datasets have been
used, namely the Multi-PIE ear dataset, AWE [1],
AMI [10], WPUT [9], IITD [8], and CP [7] datasets.
Sample images from these six datasets can be seen
in Fig [/} In this experiment, VGG-16 model [5] has
been fine-tuned using the training parts of these
datasets. Obtained training accuracy was 100%. This
fine-tuned model has achieved 99.71% correct clas-
sification on the test set. Clearly, the system can eas-
ily identify ear images from different datasets. This
is a very interesting and important outcome that
requires further investigation in the future studies.

5 CONCLUSION

In this study, we have addressed several aspects of
ear recognition. First, we have proposed a two-stage
fine-tuning strategy for deep convolutional neural

networks in order to perform domain adaptation.
For this approach, we have first constructed an
ear dataset from the Multi-PIE face dataset [14],
[15], which we named as Multi-PIE ear dataset. In
the first stage, we have fine-tuned the pretrained
deep CNN models, which were trained on the
ImageNet, on this newly collected dataset. This
provides domain adaptation for the pretrained deep
CNN models. In the second stage, we perform fine-
tuning operation on the target dataset, which is the
UERC dataset [2], in this work. This second stage
provides a more specific domain and/or dataset
adaptation. This step is also very crucial, since as
we have shown in the experiments, there exists a
dataset bias [27] among the ear recognition datasets.
We have also combined the deep CNN models to
improve the performance further. Besides, we have
analyzed in depth the effect of ear image quality,
intensity level and aspect ratio, on the classification
performance.

We have conducted extensive experiments on
the UERC dataset [2]. We have shown that perform-
ing two-stage fine-tuning is very beneficial for ear
recognition. With data augmentation and without
alignment, for AlexNet [4], the correct classification
rate is increased from 52% to 56.46%. For VGG-16
[5] and GoogLeNet [6], the increase is from 54.2%
to 63.62% and from 55.02% to 60.91%, respectively.
This consistent improvement indicates the impor-
tance of transferring a pretrained CNN model from
a closer domain. It has been observed that com-
bining different deep convolutional neural network
models has led to further improvement in perfor-
mance. We have achieved the best performance by
combining the best two performing models, that is
VGG-16 [5] and GoogLeNet [6], leading to 67.5%
correct classification, which is around 4% higher
than the one obtained with the single best perform-
ing model. We have noticed that performing align-
ment did not improve the performance. However,
this point requires further investigation, since the
ear images have not been precisely registered and
they have been only coarsely aligned by flipping



them to one side. Effect of different aspect ratios,
which have been resulted in due to varying view
angles and ear shapes, and illumination conditions
have also been studied. The ear recognition system
performs better, when the ear images are cropped
from profile faces. Very dark and very bright il-
lumination causes missing details and reflections,
which results in performance deterioration. Finally,
we have conducted experiments to examine the
dataset bias. Given an ear image as input, we
were able to classify the dataset that it has come
from with 99.71% accuracy, which indicates a strong
bias among the ear recognition datasets. For future
work, we plan to address automatic ear detection,
precise ear alignment, and dataset bias, which are
important research problems in the ear recognition
field.
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