Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

SICE: design-dependent statistical interconnect corner extraction under inter/intra-die variations

SICE: design-dependent statistical interconnect corner extraction under inter/intra-die variations

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Circuits, Devices & Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

While traditional worst-case corner analysis is often too pessimistic for nanometer designs, full-blown statistical circuit analysis requires significant modelling infrastructures. In this study, a design-dependent statistical interconnect corner extraction (SICE) methodology is proposed. SICE achieves a good trade-off between complexity and pessimism by extracting more than one process corners in a statistical sense, which are also design dependent. Our new approach removes the pessimism incurred in prior work while being computationally efficient. The efficiency of SICE comes from the use of parameter dimension reduction techniques. The statistical corners are further compacted by an iterative output clustering method. Numerical results show that SICE achieves up to 260X speedups over the Monte Carlo method.

References

    1. 1)
      • M. Stein . Large sample properties of simulations using Latin hypercube sampling. Technometrics , 2 , 143 - 151
    2. 2)
      • Huebbers, F., Dasdan, A., Ismail, Y.I.: `Multi-layer interconnect performance corners for variation-aware timing analysis', Proc. IEEE/ACM ICCAD, 2007, p. 713–718.
    3. 3)
      • H. Chang , S. Sapatnekar . Statistical timing analysis under spatial correlations. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. , 9 , 1467 - 1482
    4. 4)
      • Li, Z., Lu, X., Shi, W.: `Process variation dimension reduction based on SVD', IEEE ISCAS, 2003, p. 672–675.
    5. 5)
      • Li, X., Li, P., Pileggi, L.: `Parameterized interconnect order reduction with explicit-and-implicit multi-parameter moment matching for inter/intra-die variations', Proc. IEEE/ACM ICCAD, 2005, p. 806–812.
    6. 6)
      • Z. Feng , P. Li . Performance-oriented parameter dimension reduction of VLSI circuits. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. , 1 , 137 - 150
    7. 7)
      • Feng, Z., Li, P.: `Performance-oriented statistical parameter reduction of parameterized systems via reduced rank regression', Proc. IEEE/ACM ICCAD, 2006, p. 868–875.
    8. 8)
      • G. Reinsel , R. Velu . (1998) Multivariate reduced-rank regression, theory and applications.
    9. 9)
      • M. Sengupta , S. Saxena , L. Daldoss , G. Kramer , S. Minehane , J. Cheng . Application-specific worst case corners using response surfaces and statistical models. IEEE Trans. Comput.-Aided Des. , 9 , 1372 - 1380
    10. 10)
      • Xu, Y., Hsiung, K., Li, X., Nausieda, I., Boyd, S.P., Pileggi, L.T.: `OPERA: optimization with ellipsoidal uncertainty for robust analog IC design', Proc. IEEE/ACM DAC, 2005, p. 632–637.
    11. 11)
      • Ren, Z., Petranovic, D., Falbo, J.: `Interconnect parasitics sensitivity for modeling and analysis of process variation in nanometer technology', VLSI Multilevel Interconnect Conf. (VMIC), 2007, p. 365–372.
    12. 12)
      • L. Daniel , O. Siong , L. Chay , K. Lee , J. White . A multiparameter moment-matching model-reduction approach for generating geometrically parameterized interconnect performance models. IEEE Trans. Computer-Aided Design , 5 , 678 - 693
    13. 13)
      • Amin, C.S., Kashyap, C.V., Menezes, N., Killpack, K., Chiprout, E.: `A multi-port current source model for multiple-input switching effects in cmos library cells', Proc. IEEE/ACM DAC, 2006, p. 247–252.
    14. 14)
      • Chang, H., Sapatnekar, S.: `Statistical timing analysis considering spatial correlations using a single PERT-like traversal', Proc. IEEE/ACM ICCAD, November 2003, p. 621–625.
    15. 15)
      • Phillips, J.: `Variational interconnect analysis via PMTBR', Proc. IEEE/ACM ICCAD, 2004, p. 872–879.
    16. 16)
      • Nassif, S.R.: `Modeling and analysis of manufacturing variations', IEEE CICC, 2001, p. 223–228.
    17. 17)
      • X. Ye , F. Liu , P. Li . Fast variational interconnect delay and slew computation using quadratic models. IEEE Trans. VLSI Syst. , 8 , 913 - 926
    18. 18)
      • Wang, J., Ghanta, P., Vrudhula, S.: `Stochastic analysis of interconnect performance in the presence of process variations', Proc. IEEE/ACM ICCAD, 2004, p. 880–886.
    19. 19)
      • Huebbers, F., Dasdan, A., Ismail, Y.I.: `Computation of accurate interconnect process parameter values for performance corners under process variations', Proc. IEEE/ACM DAC, 2006, p. 797–800.
    20. 20)
      • Li, X., Le, J., Gopalakrishnan, P., Pileggi, L.T.: `Asymptotic probability extraction for non-normal distributions of circuit performance', Proc. IEEE/ACM ICCAD, 2004, p. 2–9.
    21. 21)
      • Liu, Y., Pileggi, L.T., Strojwas, A.: `Model order-reduction of RC(L) interconnect including variational analysis', Proc. IEEE/ACM DAC, 1999, p. 201–206.
    22. 22)
      • K.K. Low , S.W. Director . An efficient methodology for building macromodels of IC fabrication processes. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. , 12 , 1299 - 1313
    23. 23)
      • S. Wong , T. Lee , D. Ma , C. Chao . An empirical three-dimensional crossover capacitance model for multilevel interconnect VLSI circuits. IEEE Trans. Semiconductor Manuf. , 2 , 219 - 227
    24. 24)
      • R. Myers , D. Montgomery . (2002) Response surface methodology: process and product optimization using designed experiments.
    25. 25)
      • Sheehan, B.N.: `Ticer: realizable reduction of extracted rc circuits', Proc. IEEE/ACM ICCAD, November 1999, p. 200–203.
    26. 26)
      • C.J. Alpert , A. Devgan , C.V. Kashyap . RC delay metrics for performance optimization. IEEE Trans. Comput.-Aided Des. , 5 , 571 - 582
    27. 27)
      • P. Li , Z. Feng , E. Acar . Characterizing multi-stage nonlinear drivers and variability for accurate timing and noise analysis. IEEE Trans. VLSI Syst. , 11 , 1205 - 1214
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2009.0040
Loading

Related content

content/journals/10.1049/iet-cds.2009.0040
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address