Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Comparison of 24 GHz receiver front-ends using active and passive mixers in CMOS

Comparison of 24 GHz receiver front-ends using active and passive mixers in CMOS

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Circuits, Devices & Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study compares the key parameters of two integrated receiver front-end architectures: low noise amplifier (LNA) with active mixer against LNA with passive mixer. The authors discuss the differences in the performance and their impact on system characteristics for radar applications. A low-IF down-conversion receiver implementation is considered. The results are compared in measurement for two 24 GHz receiver front-end chips realised in a 0.13 µm digital CMOS process. Both circuits have been characterised over automotive temperature range −40 to 125°C. The front-end with an active mixer offers lower LO power dependence and exhibits better temperature stability, whereas the front-end with a passive mixer has the advantage of better input-referred linearity and lower flicker noise.

References

    1. 1)
      • Voltti, M., Koivi, T., Tiiliharju, E.: `Comparison of active and passive mixers', Proc. ECCTD, August 2007, p. 890–893.
    2. 2)
      • Dehlink, B., Wohlmuth, H.-D., Aufinger, K., Meister, T.F., Bock, J., Scholtz, A.L.: `A low-noise amplifier at 77 GHz in SiGe:C bipolar technology', CSICS Symp., November 2005, p. 287–290.
    3. 3)
      • L. Vadasz , A.S. Grove . Temperature dependence of MOS transistor characteristics below saturation. IEEE Trans. Electron Devices , 12 , 863 - 866
    4. 4)
      • H. Darabi , J. Chiu . A noise cancellation technique in active RF-CMOS mixers. IEEE JSSC , 12 , 2628 - 2632
    5. 5)
      • Geffroy, V., De Astis, G., Bergeault, E.: `RF mixers using standard digital CMOS 0.35 um process', MTT Symp., May 2001, p. 83–86.
    6. 6)
      • J. Koh , D. Schmitt-Landsiedel , R. Thewes , R. Brederlow . A complementary switched MOSFET architecture for the 1/f noise reduction in linear analog CMOS ICs. IEEE JSSC , 6 , 1352 - 1361
    7. 7)
      • F. Ellinger . 26.5–30-GHz Resistive Mixer in 90-nm VLSI SOI CMOS technology with high linearity for WLAN. IEEE Trans. Microw. Theor. Tech. , 8 , 2559 - 2565
    8. 8)
      • R.M. Kodkani , L.E. Larson . A 24-GHz CMOS passive subharmonic mixer/downconverter for zero-IF applications. IEEE Trans. Microw. Theor. Tech. , 5 , 1247 - 1256
    9. 9)
      • R.J. Baker , H.W. Li , D.E. Boyce . (1998) CMOS circuit design, layout, and simulation.
    10. 10)
      • W. Egan . (2003) Practical RF system design.
    11. 11)
      • X. Guan , A. Hajimiri . A 24-GHz CMOS front-end. IEEE JSSC , 2 , 368 - 373
    12. 12)
      • Issakov, V., Tiebout, M., Cao, Y., Thiede, A., Simburger, W.: `A low power 24 GHz LNA in 0.13 µm CMOS', Proc. COMCAS, May 2008, Tel-Aviv, p. 1–10.
    13. 13)
      • Issakov, V., Johnsson, D., Cao, Y., Tiebout, M., Mayerhofer, M., Simburger, W., Maurer, L.: `ESD Concept for high-frequency circuits', EOSESD Symp., September 2008, p. 221–227.
    14. 14)
      • K.K. Hung , P.K. Ko , C. Hu , Y.C. Cheng . A unified model for the flicker noise in metal-oxide-semiconductor field-effect transistors. IEEE Trans. Electron. Dev. , 3 , 654 - 665
    15. 15)
      • Issakov, V., Thiede, A., Verweyen, L., Maurer, L.: `Wideband resistive ring mixer for automotive and industrial applications in 0.13 µm CMOS', Proc. GeMIC, March 2009, p. 1–4.
    16. 16)
      • N. Zhang , H. Xu , H.-T. Wu , K.-K. O . W-band active down-conversion mixer in bulk CMOS. IEEE Microw. Wirel. Compon. Lett. , 2 , 98 - 100
    17. 17)
      • K. Chang . (2000) RF and microwave wireless systems.
    18. 18)
      • Šiprak, D., Tiebout, M., Baumgartner, P.: `Reduction of VCO phase noise through forward substrate biasing of switched MOSFETs', Proc. ESSCIRC, September 2008, p. 326–329.
    19. 19)
      • Schiml, T., Biesemans, S., Brase, G.: `A 0.13 µm CMOS platform with Cu/low-k interconnect for system on chip applications', IEEE Symp. VLSI Technology Dig. Tech. Papers, June 2001, p. 101–102.
    20. 20)
      • Issakov, V., Knapp, H., Tiebout, M., Thiede, A., Simburger, W., Maurer, L.: `Comparison of 24 GHz low-noise mixers in CMOS and SiGe:C technologies', Proc. EuMIC, September 2009, Rome, Italy, p. 184–187.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2009.0134
Loading

Related content

content/journals/10.1049/iet-cds.2009.0134
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address