Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

100-Phase, dual-loop delay-locked loop for impulse radio ultra-wideband coherent receiver synchronisation

100-Phase, dual-loop delay-locked loop for impulse radio ultra-wideband coherent receiver synchronisation

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Circuits, Devices & Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Receiver timing synchronisation is a significant challenge for impulse radio ultra-wideband (IR-UWB) systems due to the low received power and narrow pulse width. In a coherent receiver, the local template pulses need to be synchronised with the received pulses with a precision of tens of picoseconds. Because of the periodic reduction in received correlated power, the traditional two-stage synchronisation method (acquisition and tracking) is not suitable for a single-path IR-UWB receiver. A tracking only, dual-loop delay-locked loop (DLL) with a 100 ps minimum phase shift is proposed to overcome this issue. This dual-loop DLL, employing a higher frequency fine loop, exhibits a better jitter transfer characteristic compared with a conventional dual-loop DLL. Measurement results of a 130 nm CMOS prototype indicate a locking frequency range of 30–120 MHz, and a best output jitter of 5.9 ps-rms (input reference jitter is 2.9 ps-rms). The total power consumption is 1.8 mW with a 1.2 V supply voltage.

References

    1. 1)
    2. 2)
      • Zheng, Y., Tong, Y., Ang, C.W.: `A CMOS carrier-less UWB transceiver for WPAN applications', IEEE Int. Solid-State Circuits Conf., 2006, p. 116–117.
    3. 3)
      • A. Jha , F. Zhang , T. Hsieh , R. Gharpurey , P.R. Kinget . A discrete-time, digital-IF, interference-robust ultra-wideband pulse-radio transceiver architecture. IEEE Trans. Circuits Syst. I , 2 , 481 - 494
    4. 4)
      • Nejad, M.B., Zheng, L.: `An innovative receiver architecture for autonomous detection of ultra-wideband signals', IEEE Int. Symp. Circuits and Systems, 2006, p. 2589–2592.
    5. 5)
      • Terada, T., Yoshizumi, S., Sanada, Y., Kuroda, T.: `Transceiver circuits for pulse-based ultra-wideband', IEEE Int. Symp. Circuits and Systems, 2004, p. 349–352.
    6. 6)
      • N.V. Helleputte , M. Verhelst , W. Dehaene , G. Gielen . A reconfigurable, 130 nm CMOS 108 pJ/pulse, fully integrated IR-UWB receiver for communication and precision ranging. IEEE J. Solid-State Circuits , 1 , 69 - 83
    7. 7)
      • S. Kim , K. Lee , Y. Moon . A 960-MB/s/pin interface for skew-tolerant bus using low jitter PLL. IEEE J. Solid-State Circuits , 5 , 691 - 700
    8. 8)
    9. 9)
      • Bhoraskar, P., Chiu, Y.: `A 6.1-mW dual-loop digital DLL with 4.6-ps RMS jitter using window-based phase detector', IEEE Asian Solid-State Circuits Conf., 2007, p. 79–82.
    10. 10)
    11. 11)
      • Lin, S., Lee, T.: `An 833-MHz 132-phase multiphase clock generator with self-calibration circuits', IEEE Asian Solid-State Circuits Conf., 2008, p. 437–440.
    12. 12)
      • J. Hu , Y. Zhu , S. Wang , H. Wu . 0.17-nJ/pulse IR-UWB receiver based on distributed pulse correlator in 0.18-µm digital CMOS. IEEE Radio Frequency Integrated Circuits Symp. , 543 - 546
    13. 13)
    14. 14)
    15. 15)
      • http://www.ieee802.org: ‘DS-UWB Physical Layer Submission to 802.15 Task Group 3a’, January 2005.
    16. 16)
      • C. Lu , H. Hsieh , L. Lu . A 0.6 V low-power wide-range delay-locked loop in 0.18 µm CMOS. IEEE Microw. Wirel. Compon. Lett. , 10 , 662 - 664
    17. 17)
      • C. Chuang , S. Liu . A 20-MHz to 3-GHz wide-range multiphase delay-locked loop. IEEE Trans. Circuits Syst. II , 11 , 850 - 854
    18. 18)
      • Y. Jung , S. Lee , D. Shim . A dual-loop delay-locked loop using multiple voltage-controlled delay lines. IEEE J. Solid-State Circuits , 5 , 784 - 791
    19. 19)
      • Zheng, Y., Rui, C., Yong, L.: `A new synchronization algorithm for UWB impulse radio communication systems', IEEE Int. Conf. Communications Systems, 2004, p. 25–29.
    20. 20)
      • M. Lee , W.J. Dally , T. Greer . Jitter transfer characteristics of delay-locked loops – theories and design techniques. IEEE J. Solid-State Circuits , 4 , 614 - 621
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2011.0112
Loading

Related content

content/journals/10.1049/iet-cds.2011.0112
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address