Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Bridging fault diagnostic tool based on ΔIDDQ probabilistic signatures, circuit layout parasitics and logic errors

Bridging fault diagnostic tool based on ΔIDDQ probabilistic signatures, circuit layout parasitics and logic errors

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Computers & Digital Techniques — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A diagnostic tool for bridging faults combining three different data sources is presented. The first data source is a set of IDDQ measurements used to identify the most probable fault type. The second source is a list of parasitic capacitances extracted from layout and used to create a list of realistic potential bridging fault sites. The third source is logical faults detected at the primary outputs (including scan flip flops), used to limit the number of suspected gates. The combination of these data significantly reduces the number of potential fault sites to consider in the diagnosis process. Simulation results confirm that the number of potential bridging fault sites is reduced from O(N2) to less than O(N), where N is the number of nodes in the circuit. The tool therefore converges quickly towards the solution while using less resources. A new technique is also introduced to estimate the additional delay caused by the diagnosed bridging fault based on the diagnostic results. Performing this estimation allows us to confirm the previous diagnosis results.

References

    1. 1)
      • J. Shen , W. Maly , J. Ferguson . Inductive fault analysis of MOS integrated circuits. IEEE Design Test Comput. , 13 - 26
    2. 2)
      • Chess, B.: `Diagnosis of realistic bridging faults with single stuck-at information', IEEE/ACM Int. Conf. Computer-Aided Design, 1995, p. 185–192.
    3. 3)
      • Xinyue Fan, , Moore, W., Hora, C., Konijnenburg, M., Gronthoud, G.: `A gate-level method for transistor-level bridging fault diagnosis', VLSI Test Symp., May 2006, p. 6.
    4. 4)
    5. 5)
      • Daasch, W.R., McNames, J., Bockelman, D., Cota, K., Madge, R.: `Variance reduction using wafer patterns ', Int. Test Conf., 2000, p. 189–198.
    6. 6)
      • Maxwell, P., Aitken, R., Huismann, L.: `The effect on quality of non- uniform fault coverage and fault probability', IEEE Int. Test Conf., 1994, p. 739–746.
    7. 7)
      • Bhushan, M., Ketchen, M.B., Polonsky, S., Gattiker, A.: `Ring oscillator based technique for measuring variability statistics', IEEE Int. Conf., 6–9 March 2006, p. 87–92.
    8. 8)
      • Stanojevic, Z., Walker, D.: `FedEx – a fast bridging fault extractor', IEEE Int. Test Conf., 2001, p. 696–704.
    9. 9)
      • Lavo, D.B., Chess, B., Larrabee, T., Ferguson, F.J., Saxena, J., Butler, K.M.: `Bridging fault diagnosis in the absence of physical information', Int. Test Conf., 1997, p. 887–893.
    10. 10)
      • C. Thibeault . On the adaptation of viterbi algorithm for diagnosis of multiple bridging faults. IEEE Trans. Comput. , 6 , 575 - 587
    11. 11)
      • Venkataraman, S., Hartanto, I., Fuchs, W.K.: `Dynamic diagnosis of sequential circuits based on stuck-at faults', VLSI Test Symp., April 1996, p. 198–203.
    12. 12)
      • W. Wayne . (2002) Modern VLSI design: system-on-chip design.
    13. 13)
      • Hora, C.: `On diagnosing faults in digital circuits', 2002, PhD, Technique University Eindhoven.
    14. 14)
      • Wu, J., Rudnick, E.M.: `Bridge fault diagnosis using stuck-at fault simulation', IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, April 2000, 19, p. 489–495, no. 4.
    15. 15)
      • A D&T roundtable: deep- submicron test. IEEE Design Test Comput. , 3 , 102 - 108
    16. 16)
      • Hariri, Y., Thibeault, C.: `3DSDM: a 3 data-source diagnostic method', IEEE Symp. on Defect and Fault Tolerance, November 2003, Cambridge, MA, p. 117–123.
    17. 17)
      • Nigh, P., Gattiker, A.: `Test method evaluation experiments and data', Int. Test Conf., 2000, p. 454–463.
    18. 18)
      • James Chien-Mo, L., McCluskey, E.J.: `Diagnosis of resistive-open and stuck-open defects in digital CMOS ICs', IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, November 2005, 24, p. 1748–1759, no. 11.
    19. 19)
      • Bhushan, M., Gattiker, A., Ketchen, M.B., Das, K.K.: `Ring oscillators for CMOS process tuning and variability control', Semiconductor Manufacturing, IEEE Transactions, February 2006, 19, p. 10–18, no. 1.
    20. 20)
      • M. Abramovici , M.A. Breuer . Multiple fault diagnosis in combinational circuits based on an effect-cause analysis. IEEE Trans. Comput. , 6 , 451 - 460
    21. 21)
      • Gattiker, A.E., Maly, W.: `Current signatures', IEEE VLSI Test Symp., 1996, p. 112–117.
    22. 22)
      • Ketchen, M., Bhushan, M., Pearson, D.: `High speed test structures for inline process monitoring and model calibration', ICMTS 2005. Proc. 2005 Int. Conf., 4–7 April 2005, p. 33–38.
    23. 23)
      • Vallett, D.P.: `An overview of CMOS VLSI failure analysis and the importance of test and diagnosis', Test Conf., 1996. Proc., Int., 20–25 October 1996, p. 930.
    24. 24)
      • Stroud, C., Emmert, J., Bailey, J., Chhor, K., Nikolic, D.: `Bridging fault extraction from physical design data for manufacturing test development', Int. Test Conf., 2000, p. 760–769.
    25. 25)
      • D.P. Vallett . IC failure analysis: the importance of test and diagnostics. IEEE Design Test Comput. , 3 , 76 - 82
    26. 26)
      • Xinyue, F., Moore, W., Hora, C., Gronthoud, G.: `Stuck-open fault diagnosis with stuck-at model', Test Symp., May 2005, p. 182–187.
    27. 27)
      • H.Y. Chang , E. Manning , G. Metz . Fault diagnosis of digital systems. Rev. Int. Statist. Inst. , 2
    28. 28)
      • Thibeault, C.: `On the fast detection off small ', IEEE Workshop on Defect Based Testing, April 2003, p. 16–22.
    29. 29)
      • Sematech experiment roundtable. IEEE Design Test Comput. , 1
    30. 30)
      • Hariri, Y., Thibeault, C.: `Improving a 3 data-source diagnostic method', The 4th Int. IEEE-NEWCAS Conf., 18–21 June 2006, Gatineau, Canada, p. 149–152.
    31. 31)
      • Renovell, M., Huc, P., Bertrand, Y.: `MOS bridging fault modeling', IEEE VLSI Test Symp., 1994, p. 392–397.
    32. 32)
      • Maxwell, P., O'Neill, P., Aitken, R., Dudley, R., Jaarsma, N.: `Current ratios: a self-scaling implementation current signatures for production ', Int. Test Conf., 1999, p. 738–764.
    33. 33)
      • Thibeault, C., Boisvert, L.: `On the current behavior of faulty and fault-free ICs and the impact on diagnosis', IEEE International Symposium, 2–4 November 1998, p. 202–210, Defect and Fault Tolerance in VLSI Systems.
    34. 34)
      • Sousa, J.J.T., Goncalves, F.M., Teixeira, J.P.: `IC defects-based testability analysis', Proc. Int. Test Conf., 1991, p. 500–509.
    35. 35)
      • Thibeault, C., Boisvert, L.: `Diagnosis method based on delta ', IEEE Int. Test Conf., 1998, p. 1019–1026.
    36. 36)
      • Ryan, P.G., Fuchs, W.K., Pomeranz, I.: `Fault dictionary compression and equivalence class computation for sequential circuits', Int. Conf. Computer-Aided Design, November 1993, p. 508–511.
    37. 37)
      • Thibeault, C.: `On the test quality evaluation of current testing techniques', IEEE Int. Workshop on Current and Defect Based Testing, 2005, p. 16–22.
    38. 38)
      • E. Isern , J. Figueras . IDDQ test and diagnosis of CMOS circuits. IEEE Design Test Comput. , 4 , 60 - 67
    39. 39)
      • Millman, S.D., McCluskey, E.J., Acken, M.: `Diagnosing CMOS bridging faults with stuck-at fault dictionaries', Int. Test Conf., October 1990, p. 860–870.
    40. 40)
      • Thibeault, C.: `A novel probabilistic approach for IC diagnosis based on differential quiescent current signatures', IEEE VLSI Test Symp., 1997, p. 80–85.
    41. 41)
      • Renovell, M., Huc, P., Bertrand, Y.: `The concept of resistance interval: a new parametric model for realistic resistive bridging fault', IEEE VLSI Test Symp., 1995, p. 184–189.
    42. 42)
      • M. Abramovici , M. Breuer , A. Friedman . (1990) Digital system testing and testable design.
    43. 43)
      • Menon, P., Levendel, Y., Abramovici, M.: `SCRIPT: a critical path tracing algorithm for synchronous sequential circuits', IEEE Trans. Computer-Aided Design, January 1991, CAD-10, p. 738–747.
    44. 44)
      • Soden, J., Anderson, R., Henderson, C.: `IC failure analysis tools and techniques-magic, mystery and science', ITC Lecture Series on IC Diagnosis and Failure Analysis, 22 October 1996, p. 935.
    45. 45)
      • Thibeault, C.: `On the comparison of delta ', IEEE VLSI Test Symp., 1999, Dana Point, CA, p. 143–150.
    46. 46)
      • Semiconductor Industry Association: International Technology Roadmap for Semiconductors, 2005.
    47. 47)
      • Nigh, P., Forlenza, D., Motika, F.: `Application and analysis of ', IEEE Int. Test Conf., 1997, p. 319–327.
    48. 48)
      • Aitken, R.C.: `Fault location with current monitoring', Int. Test Conf, 1991, p. 623–635.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cdt_20060199
Loading

Related content

content/journals/10.1049/iet-cdt_20060199
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address