Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Connecting fabrication defects to fault models and SPICE simulations for DNA self-assembled nanoelectronics

Connecting fabrication defects to fault models and SPICE simulations for DNA self-assembled nanoelectronics

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Computers & Digital Techniques — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The self-assembly of nanoelectronic devices provide an opportunity to achieve unprecedented density and manufacturing scale in the post-Moore's Law era. Bottom-up DNA self-assembly has emerged as a promising technique towards achieving this vision and it has been used to demonstrate precise patterning and functionalisation at resolutions below 20 nm. However, a lack of understanding of fabrication defects and their impact on circuit behaviour are major obstacles to the eventual application of these substrates to circuit design. The authors present a classification of defects observed in our experimental work on self-assembled nanostructures. Atomic force microscope (AFM) images are used to study these defects and determine their relative frequencies. The authors connect these defects to fault models and predict their likely impact on the behaviour of logic gates. Based on simulation program with integrated circuit emphasis simulation data for proposed layouts, the authors conclude that there is a predictive connection between faulty logic behaviour and physical defects for future DNA self-assembled nanoelectronics. This work will be useful in predicting the potential success of defect-tolerance techniques for DNA self-assembled nanoelectronic substrates.

References

    1. 1)
      • C. Pistol , C. Dwyer . Scalable, low-cost, hierarchical assembly of programmable DNA nanostructures. Nanotechnology , 125305 - 9
    2. 2)
    3. 3)
      • C. Dwyer , S.H. Park , T.H. LaBean , A.R. Lebeck . The Design and fabrication of a fully addressable 8-tile DNA lattice. Foundations of Nanoscience , 187 - 191
    4. 4)
      • M.S. Fuhrer , J. Nygard , L. Shih . Crossed nanotube junctions. Science , 494 - 497
    5. 5)
      • P.W.K. Rothemund . Folding DNA to create nanoscale shapes and patterns. Nature , 297 - 302
    6. 6)
    7. 7)
      • E. Winfree , R. Bekbolatov . Proofreading tile sets: error correction for algorithmic self-assembly. DNA Comput. , 126 - 144
    8. 8)
      • H. Yan , S.H. Park , G. Finkelstein , J.H. Reif , T.H. LaBean . DNA-templated self-assembly of protein arrays and highly conductive nanowires. Science , 1882 - 1884
    9. 9)
      • J.P. Patwardhan , C. Dwyer , A.R. Lebeck , D.J. Sorin . NANA: a nano-scale active network architecture. J. Emerg. Technol. Comput. Syst. , 1 - 30
    10. 10)
      • A.S. Xiong , Q.H. Yao , R.H. Peng . PCR-based accurate synthesis of long DNA sequences. Nat. Protocols , 791 - 797
    11. 11)
      • Kiehl, R.A., Le, J.D., Musier-Forsyth, K., Pinto, Y.Y., Seeman, N.C., Taton, T.A.: `DNA assembly of component arrays for nanoscale electronics', Fifth IEEE Conf. Nanotechnology, 2005, p. 738–741.
    12. 12)
    13. 13)
      • R.M. Hernandez , L. Richter , S. Semancik , S. Stranick , T.E. Mallouk . Template fabrication of protein-functionalized gold-polypyrrole-gold segmented nanowires. Chem. Mater. , 3431 - 3438
    14. 14)
      • S.H. Park , C. Pistol , S.J. Ahn . Finite-size, fully addressable DNA tile lattices formed by hierarchical assembly procedures. Angew. Chem.-Int. Ed. , 735 - 739
    15. 15)
      • Q. Gu , C.D. Cheng , R. Gonela . DNA nanowire fabrication. Nanotechnology , R14 - R25
    16. 16)
      • X.J. Ma , F. Lombardi . Synthesis of tile sets for DNA self-assembly. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. , 963 - 967
    17. 17)
      • X.G. Han , Y.L. Li , Z.X. Deng . DNA-wrapped single-walled carbon nanotubes as rigid templates for assembling linear gold nanoparticle arrays. Adv. Mater. , 1518 - 1522
    18. 18)
      • Fakushi, M., Horiguchi, S., Demoracski, L., Lombardi, F.A.L.F.: `A scalable framework for defect isolation of DNA self-assembled networks', Defect and fault-tolerance in VLSI systems, 2007. DFT '07. 22nd IEEE Int. Symp., 2007, p. 391–399.
    19. 19)
      • G.A. Burley , J. Gierlich , M.R. Mofid . Directed DNA metallization. J. Am. Chem. Soc. , 1398 - 1399
    20. 20)
      • Pistol, C., Lebeck, A.R., Dwyer, C.: `Design automation for DNA self-assembled nanostructures', 43rdDesign Automation Conf. (DAC), 2006, p. 919–924.
    21. 21)
      • C. Kshirsagar , H. Li , T.E. Kopley , K. Banerjee . Accurate intrinsic gate capacitance model for carbon nanotube-array based FETs considering screening effect. IEEE Electr. Device Lett. , 1408 - 1411
    22. 22)
    23. 23)
      • Patwardhan, J.P., Johri, V., Dwyer, C., Lebeck, A.R.: `A Defect tolerant self-organizing nanoscale SIMD architecture', 12thInt. Conf. Architectural Support for Programming Languages and Operating Systems, 2006, p. 241–251.
    24. 24)
      • Dwyer, C., Cheung, M., Sorin, D.J.: `Semi-empirical SPICE models for carbon nanotube FET logic', Nanotechnology, 2004. Fourth IEEE Conf., 2004, p. 386–388.
    25. 25)
      • N.C. Seeman . DNA engineering and its application to nanotechnology. Trends Biotechnol. , 437 - 443
    26. 26)
      • C. Dwyer , V. Johri , J.P. Patwardhan , A.R. Lebeck , D.J. Sorin . Design tools for self-assembling nanoscale technology. Nanotechnology , 1240 - 1245
    27. 27)
      • H. Al-Asaad , J.P. Hayes . Logic design validation via simulation and automatic test pattern generation. J. Electron. Test.-Theory Appl. , 575 - 589
    28. 28)
      • C. Dwyer , V. Johri , J.P. Patwardhan , A.R. Lebeck , D.J. Sorin . Design tools for a DNA-guided self-assembling carbon nanotube technology. Nanotechnology , 1240 - 1245
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cdt.2008.0136
Loading

Related content

content/journals/10.1049/iet-cdt.2008.0136
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address