Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Analysis of the error susceptibility of a field programmable gate array-based image compressor through random event injection simulation

Analysis of the error susceptibility of a field programmable gate array-based image compressor through random event injection simulation

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Computers & Digital Techniques — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The successful use of commercial-off-the-shelf (COTS) devices on board space applications requires the use of fault mitigation methods because of the effects of space radiation in microelectronics devices. This study describes a scheme for the random injection of single event transients/upsets to evaluate the viability of employing COTS field programmable gate array for an onboard, low-complexity, remote-sensing image data compressor. The fault injection features are added to the application to be tested by modifying its hardware description language source code. Then the tests are executed by simulation, with or without the inclusion of fault mitigation methods, so that comparative evaluations can be quickly obtained. The evaluation results (robustness enhancement against area) of different fault mitigation methods are presented, with good estimates of the behaviour of the hardware implementation of the application in a space radiation environment.

References

    1. 1)
    2. 2)
      • Lima, F., Rezgui, S., Carro, L., Velazco, R., Reis, R.: `On the use of VHDL simulation and emulation to derive error rates', Proc. Radiation Effects on Components and Systems Conf. (RADECS), September 2001, Grenoble, France, p. 253–260.
    3. 3)
      • Alderighi, M., Casini, F., D'Angelo, S.: `Robustness analysis of soft error accumulation in SRAM-FPGAs using FLIPPER and STAR/RoRA', Proc. RADECS 2008 Workshop, Sep 2008, Finland, p. 157–161.
    4. 4)
      • Baraza, J.C., Gracia, J., Gil, D., Gil, P.J.: `Improvement of fault injection techniques based on VHDL code modification', Proc. Tenth IEEE Int. High-Level Design Validation and Test Workshop, November/December 2005, Napa Valley, CA, USA, p. 19–26.
    5. 5)
    6. 6)
      • Habinc, S.: `Suitability of reprogrammable FPGAs in space applications', FPGA-002–01, Version 0.4, Gaisler Research Feasibility Report, 2002.
    7. 7)
      • Lopes Filho, A., d'Amore, R.: `A low complexity image compression solution for onboard space applications', Proc. 23rd Symp. on Integrated Circuits and System Design, September 2010, S. Paulo, Brazil, p. 174–179.
    8. 8)
      • Altera Corporation: ‘Enhancing robust SEU mitigation with 28-nm FPGAs’. White Paper, WP-01135–1.0, 2010.
    9. 9)
      • Habinc, S.: `Lessons learned from FPGA developments', FPGA-001–01, Version 0.0, Gaisler Research Technical, 2002.
    10. 10)
      • P. Behrooz . (2000) Fault-tolerant arithmetic, Computer arithmetic: algorithms and hardware designs.
    11. 11)
    12. 12)
    13. 13)
      • M. Santarini . Tools of Xcellence. Xcell J. , 62 - 63
    14. 14)
      • NASA: ‘Space radiation effects on electronic components in low-earth orbit’. NASA Preferred Reliability Practices, PRACTICE NO. PD-ED-1258, 1996.
    15. 15)
      • Foucard, G.: `Taux d'erreurs dues aux radiations pour des applications implémentées dans des FPGAs à base de mémoire SRAM: prédiction versus mesures', 2010, Thesis (Docteur Micro et Nano Electronique), Université de Grenoble délivré par l'Institut polytechnique de Grenoble.
    16. 16)
      • Stettler, M., Caffrey, M., Graham, P., Krone, J.: `Radiation effects and mitigation strategies for modern FPGA', Proc. 10th Workshop on Electronics for LHC Future Experiments, September 2004, Boston, p. 112–116.
    17. 17)
      • Kastensmidt, F.L.: `SEE mitigation strategies for digital circuit design applicable to ASIC and FPGAs', IEEE Nuclear and Space Radiation Effects Conf. Short Course, July 2007, Hawaii.
    18. 18)
    19. 19)
      • Xilinx Inc.: ‘TMRTool’ Product Brief, 2009. Available at http://www.xilinx.com/publications/prod_mktg/XTMRTool_ssht.pdf, accessed September 2010.
    20. 20)
      • Actel Corporation: ‘RTSX-SU RadTolerant FPGAs (UMC)’. Data Sheet, Revision 6, 2010. Available at http://www.actel.com/documents/RTSXSU_DS.pdf, accessed September 2010.
    21. 21)
      • R.H. Maurer , M.E. Fraeman , M.N. Martin , D.R. Roth . Harsh environments: space radiation environment, effects and mitigation. Johns Hopkings APL Tech. Dig. , 1 , 17 - 29
    22. 22)
      • Seward, S.R., Lala, P.K.: `Fault injection for verifying testability at the VHDL level', Proc. Int. Test Conf., 2003, Charlotte, NC, USA, 1, p. 131–137.
    23. 23)
      • Shafik, R., Rosinger, P., Al-Hashimi, B.: `System C-based minimum intrusive fault injection technique with improved fault representation', Proc. Int. On-line Test Symposium (IOLTS), July 2008, Rhodes, Greece, p. 99–104.
    24. 24)
      • ISO/IEC 14495–1:1999: ‘Information technology – lossless and near-lossless coding of continuous tone still images: baseline’. JPEG-LS standard part-1, 1999.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cdt.2011.0056
Loading

Related content

content/journals/10.1049/iet-cdt.2011.0056
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address