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Concatenated fibre-wireless channel identification in
a multiuser CDMA environment

S.Z. Pinter and X.N. Fernando

Abstract: Radio-over-fibre (ROF) has received increasing attention for its ability to enable broad-
band wireless access. This fibre-based wireless access scheme meets the demand for broadband
service by integrating the high capacity of optical networks with the flexibility of radio networks
(the optical and wireless channels are concatenated with one another). There are, however, impair-
ments that come with this appealing technology. The nonlinear distortion of the optical link and the
multipath dispersion of the wireless channel are two of the major factors. In order to limit
the effects of these distortions, estimation, and subsequently equalisation, of the concatenated fibre-
wireless channel needs to be done. An estimation algorithm for the fibre-wireless uplink in a mul-
tiuser code division multiple access (CDMA) environment is presented using pseudonoise training
sequences. It has already been shown by Fernando et al. (2001) that identification of the fibre-
wireless uplink is possible in a single user CDMA environment. However, the more difficult
task of identification in a multiuser spread spectrum environment, which is more realistic, is
shown. In the multiuser case, the cumulative effect of multiuser interference, multipath dispersion,
nonlinear distortion and noise should all be handled together which makes it more challenging.
Numerical evaluations of the developed algorithm show that a good estimation of both the
linear and nonlinear systems is possible in the presence of 16 independent users and an signal-
to-noise ratio (SNR) of 22 dB. The estimation accuracy increases with the length of the PN
sequence.
1 Introduction

The increasing demand for high-capacity multimedia ser-
vices challenges current personal communication systems
(PCS) to retain wideband access. New wireless subscribers
are signing up at an increasing rate demanding more
capacity whereas the radio spectrum is limited. One
scheme that has become increasingly popular to alleviate
this demand is radio-over-fibre (ROF). ROF, where an
optical signal is modulated at radio frequencies and trans-
mitted via an optical fibre [1], provides for an excellent
link allowing for high bandwidth communication of
several channels.
The fibre-wireless architecture for cellular networks is

shown in Fig. 1. In this scenario, there is an intermediate
stage between the central base station and the mobile
units. This intermediate stage is the optical fibre and the
radio access point (RAP in Fig. 1). The RAPs provide wire-
less access instead of the conventional base station, and are
connected to the central base station via the ROF links.
Using the RAPs as an intermediate base station allows for
a mirco/pico cell scenario. It is important to keep the
RAPs complexity, cost and power at a minimum in order
to allow for large-scale deployment. By doing so, a large
cell can easily be split into smaller cells by dispersing
RAPs throughout. This increases frequency reuse and
enables broadband access.
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This technology does not come without its drawbacks.
When the wireless link is in series with the ROF link –
especially in a multiuser environment – nonlinear distortion
of the ROF link, mainly because of the laser diode (and
partly to the high-gain radio frequency (RF) amplifier at
the optical receiver), becomes the primary concern [2].
Also, the dynamic range of the input signal is adversely
affected in the fibre-wireless uplink where the received
signal first travels through the wireless channel (resulting
in path losses, fading, shadowing) before entering the
optical (ROF) link. Because of the mutually coupled
nature of these impairments, it is important to jointly esti-
mate the two concatenated systems so that proper equalisa-
tion techniques can be applied. The objective is estimation
of both the wireless and optical channels independently.
Estimation of the fibre-wireless uplink is considered and

so the system of interest consists of a linear part (wireless
channel) followed by a mildly nonlinear part (ROF link),
in that particular order. (We do not assume an AWGN wire-
less channel (as in [2]), but instead consider a multipath
wireless channel. This is more realistic with wideband
access [3]. Clipping distortion is not considered, it is left
for future work.) Fortunately, extensive work has been
done with similar classes of systems that have shown
linear/nonlinear systems modelled as a Wiener system
[4–6]. In the aforementioned papers, the Wiener model
was analysed in a single control signal (or single user)
continuous-time baseband environment. Correlation analy-
sis was used to decouple the identification of the linear
and nonlinear component subsystems by using maximal-
length pseudonoise (PN) sequence inputs (i.e. white noise-
like inputs) [6]. Other estimation methods have also been
established in the literature. Fang and Chow [7] used an
orthogonal wavelet-based neural network (OWNN) to
937
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identify a Wiener-type cascade model. Prakriya and
Hatzinakos [8] showed blind identification of linear subsys-
tems of Wiener-Hammerstein models with cyclostationary
inputs. Tan and Godfrey [9] identified a Wiener-
Hammerstein model in the frequency domain.
The work in [10] (where identification of a Wiener

system is done using single PN sequences) is extended
such that a Wiener system is identified in a discrete-time
passband communication system with multiple maximal-
length PN sequence inputs. The extension to multiple
users is clear since real world systems do not operate with
single users. In addition, the use of PN sequences in the esti-
mation is attractive because these spreading codes are
already widely used in spread spectrum communications
[11]. In a multiple PN sequence environment, it is essential
that the correlation properties of PN sequences be well
understood. Fortunately, PN sequences have well-defined
correlation properties [12–14]. One of the most important
properties of a bipolar PN sequence is its excellent periodic
autocorrelation. It is important to have this optimal autocor-
relation otherwise there will be multiple identifications
(further discussed in Section 3.3).
This paper is organised as follows. Section 2 discusses

the issue of passband and baseband systems in a linear
and nonlinear environment and how they relate to our
paper. Section 3 provides estimation theory for the wireless
channel. The correlation between the output and compound
input and the correlation in the presence of multiple PN

Fig. 1 Fibre-wireless cell architecture
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sequences are used to aid the discussion. The fibre
channel estimation is performed in Section 4 using the
least mean squares criteria. Simulation results and discus-
sion as well as the performance of our identification in a
hostile environment are presented in Section 5. In our simu-
lations both the wireless channel and fibre link are identified
in the presence of Gaussian noise (SNR of 22 dB). Section 6
is our conclusion.

2 Passband complex consideration

Communication signals and systems are passband. In order
to use baseband signal processing, communication signals
in the passband (i.e. real-valued signals [15]), must be
appropriately translated from the passband to the baseband.
Generally, this translation results in complex-valued base-
band signals [15]. Therefore in a fibre-wireless passband
system, the signals, as well as the channel impulse response
and nonlinear component are complex-valued. We now
show how these complex-valued quantities can be split
into real-valued quadrature components.
When an RF signal undergoes a nonlinear transformation

one of the major concerns is the amplitude-to-amplitude
modulation (AM-AM) and amplitude-to-phase modulation
(AM-PM) distortions. The complex-valued nonlinear fibre
link in Fig. 2a introduces both of these distortions [2]. It
has been shown in [16] and [17] that these nonlinear distor-
tions can be expressed by inphase and quadrature phase
components. Let the input signal in Fig. 2a be given as

q(t) ¼ A(t) cos[vct þ u(t)] (1)

Then the output r(t) is

r(t) ¼ R[A(t)] cos {vct þ u(t)þ f[A(t)]} (2)

where R is the AM-AM distortion and f is the AM-PM
distortion. The output r(t) can also be expressed as

r(t) ¼ R[A(t)] cos(f[A(t)]) cos(vct þ u(t))

� R[A(t)] sin(f[A(t)]) sin(vct þ u(t))
(3)

using the trigonometric identity cos(Aþ B) ¼ cos(A)
cos(B)2 sin(A)sin(B). Equation (3) can then be written as

r(t) ¼ rp[A(t)] cos(vct þ u(t))� rq[A(t)] sin(vct þ u(t))

(4)

where

rp[A(t)] ¼ R[A(t)] cos(f[A(t)]) (5)

rq[A(t)] ¼ R[A(t)] sin(f[A(t)]) (6)

Equation (4) shows that the bandpass nonlinearity can be
separated into an inphase component and a quadrature phase
component with only AM-AM distortion. Therefore instead
Fig. 2 Quadrature model of a nonlinear system
IET Commun., Vol. 1, No. 5, October 2007

t 11:25 from IEEE Xplore.  Restrictions apply.



of dealing with the complex-valued system in Fig. 2a we
can deal with two real-valued systems as shown by the
quadrature model in Fig. 2b. Similarly, the bandpass
impulse response h(n) can also be separated into its
inphase and quadrature phase components [15].
Therefore by using the quadrature model for both the

linear and nonlinear systems, it can be stated that we esti-
mate the real-valued inphase and quadrature phase com-
ponents individually. Hence, all the variables introduced
hereafter are real quantities unless otherwise specified.

3 Wireless channel estimation theory

A model of the fibre-wireless uplink is shown in Fig. 3. This
block diagram represents one branch in the architecture of
Fig. 1. This class of system consists of a wireless channel
(linear system with impulse response h(n)) in cascade
with an optical fibre link (nonlinear system with a function
F(.)).
The first step in estimating the wireless channel of the

fibre-wireless uplink is to define the output of the system.
According to the theorem of Weierstrass [5], any function
which is continuous within an interval may be approximated
to any required degree of accuracy by polynomials in this
interval. Therefore the output of the nonlinear system plus
the noise can be represented by a polynomial of the form

r(n) ¼ A1q(n)þ A2q
2(n)þ � � � þ Alq

l(n)þ v(n) (7)

where v(n) is the total noise of both the optical and wireless
channels. The system output r(n) can then be expressed by
the functional (Volterra) series [4]

r(n) ¼ A1

X1
m1¼�1

h(m1)u(n� m1)

þ A2

X1
m1¼�1

X1
m2¼�1

h(m1)h(m2)u(n� m1)u(n� m2)

þ Al

X1
m1¼�1

� � �
X1

ml¼�1

Yl
i¼1

h(mi)u(n� mi)þ � � � þ v(n)

(8)

where u(n) is a compound input that can be written as

u(n) ¼ x1(n)þ x2(n)þ � � � þ xN (n) (9)

where N is the number of PN sequences (or equivalently the
number of users). It is at this point where we are considering
multiple users. In [10], u(n) was simply taken as a single PN
sequence but u(n) is taken as a summation of multiple inde-
pendent PN sequences x(n) of period Nc where

Nc ¼ 2n � 1 n ; degree of the PN polynomial (10)

(details of PN properties will be discussed in Section 3.3).
The output can also be written as a summation of the

Fig. 3 Fibre-wireless uplink modelled as a Wiener system
IET Commun., Vol. 1, No. 5, October 2007
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isolated lth order kernel as

r(n) ¼ w1(n)þ w2(n)þ w3(n)þ � � � þ wl(n)þ v(n) (11)

where

wl(n) ¼ Al

X1
m1¼�1

� � �
X1

ml¼�1

Yl
i¼1

h(mi)u(n� mi) (12)

Therefore the output r(n) consists of a compound input
u(n) that has been dispersed in time because of the
impulse response and then raised to higher order powers
because of the nonlinearity.

3.1 Correlation relationship between the output
and compound input

The next step in the estimation is to further process the
output and input relations, as defined above, by utilising
correlation relationships. The cross covariance between
the output and the compound input is given as

<ur(s) ¼ (r(n)� r(n))(u(n� s)� u(n� s)) (13)

From this point onward let r(n), u(n), q(n) and v(n) refer
to their respective signals with the mean removed. The cross
covariance can then be written as

<ur(s) ¼ r(n)u(n� s) (14)

Substituting (8) into the above equation gives

<ur(s) ¼

"
A1

X1
m1¼�1

h(m1)u(n� m1)

þ A2

X1
m1¼�1

X1
m2¼�1

h(m1)h(m2)u(n� m1)u(n� m2)

þ Al

X1
m1¼�1

� � �
X1

ml¼�1

Yl
i¼1

h(mi)u(n� mi)

þ � � � þ v(n)

#
[u(n� s)] (15)

which simplifies to

<ur(s) ¼
Xl

i¼1

<uwi
(s)þ <uv(s) (16)

where the term<uv(s) becomes zero assuming that the com-
pound input and noise process are statistically independent,
v(n)u(n� s) ¼ 08s. If <ur(s) is evaluated directly as
defined above, the terms

Pl
i¼2 <uwi

(s) give rise to
anomalies associated with multidimensional autocovar-
iances of PN sequences [4]. This problem can be overcome
by isolating <uw1

(s) using multilevel input testing. It should
be noted that if the channel were linear there would be no
need to isolate <uw1

(s) because <uw1
(s) ¼ <ur(s).

3.2 Multilevel testing

Multilevel testing enables the extraction of <uw1
(s) from

<ur(s). This step is crucial for successful estimation of
the wireless channel. Multilevel testing is implemented at
the RAP by using the signal aiu(n) where ai = al8i = l.
939
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With multilevel inputs (16) becomes

<urai
(s) ¼

Xl

j¼1

a
j
i<uwj

(s) i ¼ 1, 2, . . . , Nt (17)

where Nt is the total number of multilevel inputs and hence
the number of equations to solve. Representing (17) in
matrix form gives

<ura1
(s)

<ura2
(s)

�

�

<uraNt
(s)

2
6666664

3
7777775
¼

a1 a2
1 � � al

1

a2 a2
2 � � al

2

� � � � �

� � � � �

aNt
a2
Nt

� � al
Nt

2
6666664

3
7777775

�

<uw1
(s)

<uw2
(s)

�

�

<uwl
(s)

2
666664

3
777775 (18)

For every value of s, (18) has a unique solution for
<uwi

(s), i ¼ 1, 2, . . . , Nt. (Refer to [4] for an explanation
on this property of the matrix.) In order to successfully
identify the linear system, the number of multilevel inputs
Nt had to be equal to or greater than the order of the poly-
nomial. This ensured that the correct linear system could
be identified in the presence of any nonlinear function.
Now that <uw1

(s) can be extracted, the final step in the
identification process is to find how <uw1

(s) relates to the
channel impulse response.

3.3 Correlation relationship in the presence of
multiple PN sequences

In order to accommodate for multiple PN sequences, the
relationship in [4] had to be reworked. Initially, we
derived the cross covariance relationship <x1x2 � � � xNwN

(s);
however, this result was undesirable because of the depen-
dency on higher order kernels wN. Another approach was to
consider the cross covariance between the compound input
u(n) and w1(n), given as

<uw1
(s) ¼ w1(n)u(n� s) (19)

where w1(n) is a zero mean process. Substituting (9) and
w1(n) from (12) into (19) gives the following

<uw1
(s) ¼ A1

X1
m1¼�1

h(m1)

� [x1(n� m1)þ x2(n� m1)þ � � � þ xN (n� m1)]

[x1(n� s)þ x2(n� s)þ � � � þ xN (n� s)]

(20)

As an aside, another possibility for the above covariance
was to consider the cross covariance between w1(n) and
individual users inputs, instead of the compound input
u(n). However, it was found through simulations that
using the compound input gave more accurate results. The
reason being that a compound input gives N terms where
two identical PN sequences are correlated, compared to
only one term when individual inputs are used. Overall,
having N terms results in better covariance properties as
will be shown by the next few equations.
940

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 6, 2008 a
Expanding (20) gives two different types of terms: (1)
where two identical PN sequences are multiplied

xi(n� m1)xj(j¼i)(n� s) (21)

and (2) where two different PN sequences are multiplied

xi(n� m1)xj(j=i)(n� s) (22)

The outcome of the first case is the circular autocovar-
iance which is given in [13] as

<xx(s) ¼
Nc if s ¼ 0

�1 if s = 0

�
(23)

Clearly, the autocovariance properties of maximal-length
PN sequences are very good. As mentioned above, using a
compound input gives the summation of N autocovariance
terms. This yields a large autocovariance value and hence
improves the accuracy of identification. It is important to
have this optimal autocovariance, otherwise there will be
multiple identifications (one at each autocovariance peak).
The outcome of the second case is the cross covariance.

The cross covariance properties of PN sequences are
limited and it is known that m-sequences can have relatively
large cross covariance peaks. However, numerical analysis
showed that the peak cross covariances of the PN sequences
in our simulations had typical peak values as shown in
Table 1. In the simulations, a large number of PN sequences
were used and peak values were recorded.
As mentioned above, the ‘simulated peak cross covari-

ance’ column in Table 1 represents the peak cross covari-
ance encountered for a specific PN sequence found
through our simulations. Note that our simulation values
in Table 1 are close to the cross correlation values of
Table 1, column 8 of [12]. The row showing the peak
cross covariance for n ¼ 10 in Table 1 is most significant
because it shows the maximum cross covariance value
encountered during our simulations. For n ¼ 10, the peak
cross covariance can be presented as being 13.98% of Nc.
Clearly, the cross covariance value is much smaller than
the autocovariance value and below follows a discussion
of why these cross covariance values can be neglected in
the derivation.
There are three reasons why the cross covariance terms

can be omitted in the derivation. The first is that the cross
covariance values are small after removing the most offen-
sive decimations. Since the actual number of users will
always be less than the maximum possible, it will always
be possible to remove the most offensive decimation. For
example, we considered only 16 users with Nc ¼ 1023.
This removal of the most offensive PN sequences phenom-
enon significantly decreases the cross covariance value.
Note that column 8 of [12] (after removal of the decimation

Table 1: Simulated peak cross covariance values of PN
sequences

n Nc Number of

PN sequences

Simulated peak

cross covariance

5 31 6 7

6 63 6 3

7 127 18 15

8 255 16 63

9 511 48 79

10 1023 60 143
IET Commun., Vol. 1, No. 5, October 2007
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leading to the most significant bias) has much smaller cross
correlation values compared to the values without the
removal.
Secondly, because we have multiple users our autocovar-

iance is actually in the order of (N � Nc); this autocovar-
iance is relatively large compared to the cross covariance
terms, thereby making it easy to differentiate between
actual and erroneous impulse response peaks in the final
cross covariance relationship. Thirdly, since cross covari-
ance terms take on both positive and negative values, can-
cellations will be present and therefore the cross
covariance values will not deviate much from the values
listed in Table 1. Although the probability of every single
cross covariance to be at its absolute worst case and all
cross covariance values to have the same sign is very low,
there is still the chance of this scenario occurring, but eval-
uating the probabilities of the occurrences of these rare
cases and compensating for them is left for future work.
As the number of users is increased from 1 to N, there
will be varying effects on the cross covariance terms. For
example, in the worst case scenario the maximum value
of the cross covariance would be in the order of
(N) � (N2 1) � (cross covariance value). When there are
a low number of users, the worst case maximum cross
covariance defined above is still much smaller than the auto-
covariance value, which is given by (N � Nc). However, as
the number of users is significantly increased these cross
covariance terms become a concern. Compensating for
these effects shall be considered in a separate study.
Therefore identification of a multiuser fibre-wireless

channel is possible using maximal-length PN sequences
when typical cross covariance values occur and the most
offensive decimations are removed, and as long as
optimal autocovariance is maintained, as described by
(23), the effect of the cross covariance terms will be
minimal (although they will introduce some uncertainty
into the final estimate). Hence, the cross covariance terms
do not impair the identification significantly and it was
assumed that the cross covariance between independent
PN sequences is negligible when compared to the large
autocovariance value. Applying the aforementioned
assumption to (20) gives

<uw1
(s) ¼ A1

X1
m1¼�1

h(m1)(<x1x1
(m1 � s)

þ <x2x2
(m1 � s)þ � � � þ <xN xN

(m1 � s)) (24)

Using the relationship <xixi(l) ¼ Ncdi(l) and the convo-
lution properties of the impulse function gives

<uw1
(s) ¼ A1Nc

X1
m1¼�1

h(m1)(d1(m1 � s)

þ d2(m1 � s)þ � � � þ dN (m1 � s)) (25)

¼ A1Nc

XN
i¼1

h(s) (26)

Therefore the final cross covariance relationship can be
written as

<uw1
(s) ¼ A1NcNh(s) (27)

where N is the number of PN sequences (or users), Nc is the
PN sequence length and A1 is the linear gain of the nonlinear
system. The estimated channel impulse response can be
found by solving the above expression.
IET Commun., Vol. 1, No. 5, October 2007

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 6, 2008 a
4 Fibre channel estimation theory

As mentioned in Section 1, the linear and nonlinear system
identifications are independent in the presence of PN
sequence inputs. Therefore a least squares polynomial fit
is sufficient to identify the nonlinear system. The least
squares polynomial fit is performed between the input and
output of the nonlinear system. In the fibre-wireless
channel, there is no access to the internal signal q(n) (the
input to the nonlinear system) and therefore it must be esti-
mated. Referring to Fig. 3, this internal signal can be esti-
mated by convolving the final impulse response estimate
~h(n) (obtained from the previous section) with the com-
pound input u(n), giving an estimate of the internal signal,
~q(n). The least squares polynomial fit is then applied to
~q(n) and the measured output r(n). So, let the estimated
polynomial coefficients be given as

Â ¼ [Â0 Â1 Â2 : : : Âl]
T (28)

The estimated signal r̂(n) of the output of the nonlinear
system is then given as

r̂(n) ¼ Â0 þ Â1 ~q(n)þ Â2 ~q
2(n)þ � � � þ Âl ~q

l(n)þ v(n) (29)

Let us define vectors ~q and r of length NL, which are made
upof the signals ~q(n) and r(n), respectively.TheVandermonde
matrixV can then be defined such that each row ofV is a poly-
nomial of the corresponding data point in ~q

V ¼

1 ~q(0) ~q2(0) ~q3(0)

1 ~q(1) ~q2(1) ~q3(1)

� � � �

� � � �

1 ~q(NL � 1) ~q2(NL � 1) ~q3(NL � 1)

2
6666664

� ~ql(0)

: ~ql(1)

� �

� �

� ~ql(NL � 1)

3
7777775

(30)

In matrix notation, the equation for a polynomial fit is
given by

r̂ ¼ VÂ (31)

Premultiplying by the matrix transpose VT and solving for Â
gives

Â ¼ (VTV )�1VTr̂ (32)

The error between the actual data r and the estimated
data r̂ is given by e ¼ r � VÂ. Now, the order of the poly-
nomial l must be selected to minimise the mean square
error.
Once the impulse response has been estimated, the esti-

mation of the nonlinear channel is straightforward.
However, the accuracy of the nonlinear identification is
highly dependent on the impulse response estimates, and
so it is important that the wireless channel estimation algor-
ithm work well.

5 Simulation results and discussion

The SimulinkTM model shown in Fig. 4 was used to perform
the multilevel testing on the fibre-wireless system.
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Fig. 4 Simulink model
The majority of the calculations were performed in
MATLABTM (including all correlations) by sending the
SimulinkTM outputs to the MATLABTM workspace. The
next few sentences describe the individual blocks of the
above SimulinkTM diagram. The ‘multilevel inputs’ block
is a variable gain that changes depending on which multiple
level is being simulated. The ‘linear system’ block simu-
lates the impulse response of the wireless channel. The
‘nonlinear system’ block implements a polynomial
expression on the input. The data recorded from the simu-
lation is ‘system_input’ and ‘system_output’, from which
we perform the identification.

5.1 Noise

Before presenting the simulation outcomes, we will briefly
discuss our inclusion of Gaussian noise v(n). It is important
to consider the noise because in a practical environment
noise from both the optical and wireless channels will be
present in the output r(n). Noise was not considered in
[10]; however, we have included noise as well in this
paper. The simulation was performed with varying SNRs
to see how noise affected the accuracy of the polynomial
estimation. Fig. 5 shows the mean square error between
the actual and estimated polynomials (for a third-order
odd polynomial) against the SNR. Using Fig. 5 it was
found that an SNR of 22 dB (i.e. a Gaussian noise variance
of 0.1262) still gave an acceptable identification and was
therefore used in our simulations to show the effect of noise.
The plot of mean square error against SNR using a

fifth-order (odd) polynomial was practically identical to
the one above and therefore the same SNR was used

Fig. 5 Mean square error against SNR using polynomial (35)
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throughout the whole simulation procedure. Although
theoretically the noise is not correlated with the signal,
the mean square error becomes very large for
SNR � 15 dB. This shows the practical limitation of the
scheme.

5.2 Wireless channel identification

The simulations were performed with: (1) 16 PN sequences,
each with a length of 1023 (2102 1), and (2) an SNR of
22 dB (selection of this SNR was discussed above). The
sequence length was chosen based on various trial identifi-
cations. Inaccurate results were obtained at Nc ¼ 31 and 63;
however, better results were obtained starting at Nc ¼ 127.
Only at around Nc ¼ 511 and 1023 was there a significant dis-
tinction between the actual impulse response and the erro-
neous impulse response peaks. From this observation, it can
be stated that the longer the PN sequence, the better the covari-
ance properties and hence the better the identification
becomes. The ideal case is to have zero cross covariance
and perfect autocovariance between all PN sequences. This
would result in a perfect identification of the wireless channel.
The wireless channel was identified in the presence of a

third-order polynomial; therefore the three input levels
chosen were a ¼ 1.0, 1.2, 1.4. The wireless channel identi-
fication could have been performed just as accurately using
any polynomial as long as the proper number of levels (a)
was chosen. Figs. 6 and 7 show the estimated and actual
impulse responses. Fig. 6 shows the identification using
the impulse response

Fig. 6 Estimated (top) and actual (bottom) impulse response
(h1(n)) of the wireless channel using 16 independent PN
sequences, SNR ¼ 22 dB, Nc ¼ 1023
IET Commun., Vol. 1, No. 5, October 2007

t 11:25 from IEEE Xplore.  Restrictions apply.



h1(n) ¼ d(n)� 0:8d(n� 7)þ 0:6d(n� 13)

� 0:4d(n� 17) (33)

Fig. 7 shows the identification using the impulse response

h2(n) ¼ d(n)� 0:8d(n� 5)þ 0:6d(n� 9)

� 0:4d(n� 11)þ 0:3d(n� 14)� 0:5d(n� 17)

þ 0:4d(n� 21)þ 0:1d(n� 25) (34)

It is important to mention that each of the multiple PN
sequences was generated using a separate maximal-length
polynomial. This is in contrast to the common technique
(used in current CDMA systems) of using delayed versions
of a single maximal-length PN sequence to represent separ-
ate users. Using this technique resulted in multiple identifi-
cations at the locations of cross covariance peaks. This
problem was solved by using separate polynomials to gen-
erate the multitude of PN sequences.

5.3 Fibre link identification

The results of the simulation for the fibre channel are shown
in Figs. 8 and 9 for the nonlinear systems

r(n) ¼ �0:35q3(n)þ q(n) (35)

and

r(n) ¼ 0:6q5(n)þ q(n) (36)

Only odd order polynomials are relevant in our identifi-
cation because we are performing the identification in the
passband. Two important observations regarding the
output of a nonlinear system in the passband can be made
from [3, 18], they are

1. only odd order terms contribute to the system output after
the bandpass filter, and
2. even order terms appear out of band and can easily be fil-
tered out.

The accuracy of the nonlinear identification greatly
depends on how much data are available. Specifically, we
would like to have the input data cover a large dynamic
range. In our case, we had the advantage of

Fig. 7 Estimated (top) and actual (bottom) impulse response
(h2(n)) of the wireless channel using 16 independent PN
sequences, SNR ¼ 22 dB, Nc ¼ 1023
IET Commun., Vol. 1, No. 5, October 2007
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1. a PN sequence length of 1023, and
2. a linear channel with multipath conditions,

both of which contributed to a large dynamic range avail-
able for the least squares fit. (Also, once h(n) is known
we can send any signal to identify the nonlinear system,
that is, one that covers a large dynamic range.) The
estimated polynomials were

r(n) ¼ �0:35q3(n)þ 1:005q(n)� 0:0079 (37)

and

r(n) ¼ 0:6q5(n)þ 1:005q(n)� 0:0079 (38)

which are very close to the actual polynomials of (35) and
(36). The mean square error was 0.1217 for both of the
above cases. These estimates are obviously quite good;
however, the accuracy of the identification deteriorates
with decreasing SNR.
It is important to state that the nonlinear system must

have a linear coefficient A1. Otherwise, identification of
neither the linear nor nonlinear channel is possible.

Fig. 8 Nonlinear system identification using polynomial (35),
SNR ¼ 22 dB

Fig. 9 Nonlinear system identification using polynomial (36),
SNR ¼ 22 dB
943
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5.4 Hostile noise environment

In this section, we perform the identification using impulse
response (33) and polynomial (35) in a hostile environment.
We use an SNR of 12 dB to show this effect. Estimations of
both the impulse response and nonlinear channel are
adversely affected by the lower SNR; the nonlinear
channel more so than the linear channel. In this special
case, we make use of the fact that in (16) it is assumed
that the compound input and noise process are statistically
independent. Through simulation it was found that <uv(s)
was much smaller relative to <uw1

(s) and consequently
the impulse response estimation was not affected as much
as the polynomial estimation. In case of the impulse
response, the estimated values become slightly larger than
those shown in Fig. 6, which is not terribly detrimental.
However, in case of the polynomial, the estimated poly-
nomial starts to diverge away from the actual polynomial
as shown in Fig. 10. The mean square error for the poly-
nomial in this case is 1.217 (from Fig. 5) which can be com-
pared to a mean square error of 0.1217 using an SNR of
22 dB.

6 Conclusion

This paper presented a method for fibre-wireless system
identification using the correlation properties of multiple
PN sequences. We improved the single PN identification
performed in [10] to accommodate a compound PN input
and we showed the effect of noise in the output. Our
approach is practical in the sense that multiple PN
sequences are already widely used in existing spread spec-
trum communication systems.
Since we used multiple PN sequences (as opposed to a

single PN sequence [10]), we encountered additional
terms that introduced error into the estimation. These

Fig. 10 Nonlinear system identification using polynomial (35),
SNR ¼ 12 dB
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erroneous terms were the cross covariances in (20), where
two different PN sequences are multiplied. Although we
took these cross covariances to be negligible, they still
introduced some error into the final impulse response esti-
mate, and hence the polynomial estimate. One way our esti-
mation algorithm can overcome this limitation is to increase
the PN sequence length. However, this presents a practical
limitation because this would increase the training time as
well. This is an interesting area for future research.
As shown in the paper, the estimation of the fibre-

wireless system was accurate. Our identification technique
reveals the effects of distortion in an ROF system and
hence provides a good basis for equalisation.
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