Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

M-PAM space–time trellis codes for ultra-wideband multiple-input multiple-output communications

M-PAM space–time trellis codes for ultra-wideband multiple-input multiple-output communications

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Communications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Multiple-input multiple-output (MIMO) systems with space–time (ST) coding are desirable in ultra-wideband (UWB) communication systems to improve the error-rate performance of the UWB link. The authors have considered the design of optimal (in error-rate performance) M-ary pulse-amplitude modulated (M-PAM) ST trellis codes (STTC) for a pulse-based UWB MIMO communication system. Following the approach by Vucetic et al. for narrowband systems, the authors carry out a probability of error analysis to derive upper bounds on pairwise symbol error probability for a UWB communication system for slow fading and fast fading at both low and high signal-to-noise ratios (SNRs). The authors deduce the design criteria from the upper bounds. Based on these criteria, an optimal four-state binary-PAM STTC, for two transmit antennas, is designed by hand. Finally, simulation results of the optimal binary-PAM STTC in a UWB communication system confirm significant improvement in bit error-rate performance over previously proposed ST coding scheme for UWB, at higher transmit SNR.

References

    1. 1)
      • V. Tarokh , N. Seshadri , A.R. Calderbank . Space–time codes for high data rate wireless communication: performance criterion and code construction. IEEE Trans. Inf. Theory , 2 , 744 - 765
    2. 2)
      • B. Vucetic , J. Yuan . (2003) Space time coding.
    3. 3)
      • Siriwongpairat, W., Olfat, M., Liu, K.J.R.: `On the performance evaluation of TH and DS UWB MIMO systems', Proc. IEEE WCNC, March 2004, Atlanta, GA, p. 1800–1805.
    4. 4)
      • Win, M.Z., Scholtz, R.A., Barnes, M.A.: `Ultra-wide bandwidth signal propagation for indoor wireless communications', Proc. IEEE ICC 1997, June 1997, Montreal, p. 56–60.
    5. 5)
      • Sibille, A., Bories, S.: `Spatial diversity for UWB communications', Proc. 5th European Personal Mobile Comm. Conf., April 2003, Glasgow, Scotland, p. 367–370.
    6. 6)
      • Heliot, F., Ghavami, M., Nakhai, R., Aghvami, A.H.: `Performance of space–time block coding and space–time trellis coding for impulse radio', Proc. IEEE Globecom 2004, November–December 2004, Dallas, TX, p. 3225–3229.
    7. 7)
      • M.Z. Win , R.A. Scholtz . Ultra-wide bandwidth time hopping spread-spectrum impulse radio for wireless multi-access communications. IEEE Trans. Commun. , 4 , 679 - 689
    8. 8)
      • J. Yuan , Z. Chen , B. Vucetic , W. Firmanto . Performance and design of space–time coding in fading channels. IEEE Trans. Commun. , 12 , 1991 - 1996
    9. 9)
      • L. Yang , G.B. Giannakis . Analog space–time coding for multi-antenna ultra-wideband transmissions. IEEE Trans. Commun. , 3 , 507 - 517
    10. 10)
      • Lee, H., Han, B., Shin, Y., Im, S.: `Multipath characteristics of impulse radio channels', Proc. IEEE 51st VTC Spring 2000, May 2000, Tokyo, Japan, 3, p. 2487–2491.
    11. 11)
      • D. Gesbert , M. Shafi , S. Da-shan , P.J. Smith , A. Naguib . From theory to practice: an overview of MIMO space–time coded wireless systems. IEEE J. Sel. Areas Commun. , 3 , 281 - 302
    12. 12)
      • M.Z. Win , R.A. Scholtz . On the energy capture of ultra-wide bandwidth signals in dense multipath environments. IEEE Commun. Lett. , 9 , 245 - 247
    13. 13)
      • J.G. Proakis . (1995) Digital communications.
    14. 14)
      • R. Horn , C. Johnson . (1985) Matrix analysis.
    15. 15)
      • L. Yang , G.B. Giannakis . Ultra-wideband communications: an idea whose time has come. IEEE Signal Process. Mag. , 6 , 26 - 54
    16. 16)
      • Cassioli, D., Win, M.Z., Vatalaro, F., Molisch, A.F.: `Performance of low-complexity rake reception in realistic UWB channel', Proc. IEEE ICC 2002, April–May 2002, New York, NY, 2, p. 763–767.
    17. 17)
      • Ohtsuki, T.: `Space–time trellis coding for UWB-IR', Proc. IEEE 59th VTC Spring 2004, May 2004, Milan, Italy, 2, p. 1054–1058.
    18. 18)
      • A. Saleh , R. Valenzuela . A statistical model for indoor multipath propagation. IEEE J. Sel. Areas Commun. , 2 , 128 - 137
    19. 19)
      • Tyagi, A., Bose, R.: `-PAM space time trellis codes for multi-antenna ultra-wideband communications', Proc. 2005 IEEE ICPWC, 23–25 January 2005, New Delhi, p. 308–311.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com_20060405
Loading

Related content

content/journals/10.1049/iet-com_20060405
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address