Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Improved regular and semi-random rate-compatible low-density parity-check codes with short block lengths

Improved regular and semi-random rate-compatible low-density parity-check codes with short block lengths

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Communications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Powerful rate-compatible codes are essential for achieving high throughput in hybrid automatic repeat request (ARQ) systems for networks utilising packet data transmission. The paper focuses on the construction of efficient rate-compatible low-density parity-check (RC-LDPC) codes over a wide range of rates. Two LDPC code families are considered; namely, regular LDPC codes which are known for good performance and low error floor, and semi-random LDPC codes which offer performance similar to regular LDPC codes with the additional property of linear-time encoding. An algorithm for the design of punctured regular RC-LDPC codes that have low error floor is presented. Furthermore, systematic algorithms for the construction of semi-random RC-LDPC codes are proposed based on puncturing and extending. The performance of a type-II hybrid ARQ system employing the proposed RC-LDPC codes is investigated. Compared with existing hybrid ARQ systems based on regular LDPC codes, the proposed ARQ system based on semi-random LDPC codes offers the advantages of linear-time encoding and higher throughput.

References

    1. 1)
      • R.H. Morelos-Zaragoza . (2002) The art of error correcting coding.
    2. 2)
      • Li, J., Narayanan, K.: `Rate-compatible low-density parity-check codes for capacity-approaching ARQ scheme in packet data communications', Int. Conf. Comm., Internet, and Info. Tech. (CIIT), November 2002.
    3. 3)
      • D. Bi , L. Perez . Rate-compatible low-density parity-check codes with rate-compatible degree profiles. IEE Electron. Lett. , 1 , 41 - 43
    4. 4)
      • Zaheer, S.F.: `Improved rate-compatbile low-density parity-check codes with applications to wireless channels', 2006, MS, King Fahd University of Petroleum and Minerals, Dhahran, KSA.
    5. 5)
      • S. Johnson , S. Weller . A Family of irregular LDPC codes with low encoding complexity. IEEE Commun. Lett. , 79 - 81
    6. 6)
      • T.J. Richardson , R. Urbanke . Design of capacity approaching irregular low-density parity-check codes. IEEE Trans. Inf. Theory , 2 , 619 - 637
    7. 7)
      • G.C. Clark , J.B. Cain . (1981) Error-correcting coding for digital communications.
    8. 8)
      • M.H. Alsuwaiyel . (1999) Algorithms: Design Techniques and Analysis.
    9. 9)
      • T.J. Richardson , R. Urbanke . Efficient encoding of low-density parity-check codes. IEEE Trans. Inf. Theory , 638 - 656
    10. 10)
      • R.G. Gallager . Low-density parity-check codes,. IRE Trans. Inf. Theory , 21 - 28
    11. 11)
      • M.G. Luby , M. Mitzenmacher , M.A. Shokrollahi , D.A.A. Spielman . Improved low-density parity-check codes using irregular graphs. IEEE Trans. Inf. Theory , 2 , 585 - 598
    12. 12)
      • E.A. Lee , D.G. Messerschmitt . (1998) Digital communication.
    13. 13)
      • J. Ha , J. Kim , S.W. McLaughlin . Rate-compatible puncturing of low-density parity-check codes. IEEE Trans. Inf. Theory , 11 , 2824 - 2836
    14. 14)
      • J. Hagenauer . Rate-compatible punctured convolutional codes (RCPC codes) and their applications,. IEEE Trans. Inf. Theory , 389 - 400
    15. 15)
      • S. Lin , D. Costello . (2004) Error Control Coding.
    16. 16)
      • Mao, Y., Banihashemi, A.H.: `A heuristic search for good low- density parity-check codes at short block lengths', IEEE Int. Conf. Communications, June 2001.
    17. 17)
      • X.-Y. Hu , E. Eleftheriou , D.-M. Arnold . Regular and irregular progressive edge-growth tanner graphs. IEEE Trans. Inf. Theory , 386 - 398
    18. 18)
      • MacKay, D.J.C., Neal, R.M.: `Good error-correcting codes based on very sparse matrices', Cryptography and Coding. 5th IMA Conf., 1995, Berlin, 1025, Springer, p. 100–111, LNCS.
    19. 19)
      • J. Ha , J. Kim , D. Klinc , S. McLaughlin . Rate-compatible punctured low-density parity-check codes with short block lengths. IEEE Trans. Inf. Theory , 2 , 728 - 738
    20. 20)
      • McGowan, J., Williamson, R.: `Loop removal from LDPC codes', Information Theory Workshop, 31 March–4 April 2003, Paris, France.
    21. 21)
      • L. Ping , W.K. Leung , N. Phamdo . Low-density parity-check codes with semi-random parity check matrix. IEE Electron. Lett. , 1 , 38 - 39
    22. 22)
      • M. Yazdani , A. Banihashemi . On construction of rate-compatible low-density parity-check codes. IEEE Commun. Lett. , 3 , 159 - 161
    23. 23)
      • S. Chung , G.D. Forney , T.J. Richardson , R. Urbanke . On the design of low-density parity-check codes within 0.0045 dB of the Shannon limit. IEEE Commun. Lett. , 58 - 60
    24. 24)
      • T. Etzion , A. Trachtenberg , A. Vardy . Which codes have cycle- free tanner graphs?. IEEE Trans. Inf. Theory , 2173 - 2181
    25. 25)
      • V.K. Balakrishnan . (1997) Schaum's outline of graph theory.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com_20060513
Loading

Related content

content/journals/10.1049/iet-com_20060513
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address