Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Channel estimation for time-hopping pulse position modulation ultra-wideband communication systems

Channel estimation for time-hopping pulse position modulation ultra-wideband communication systems

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Communications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Ultra-wideband (UWB) communication systems are used in indoor environments with dense multi-path characteristics. Therefore channel estimation has an important role in the receiver of these systems. A new approach for data-aided (DA) and non-data-aided (NDA) channel estimation is proposed, which is called the pulse compression (PC) method. This method is useful for UWB systems employing time-hopping pulse position modulation. The PC method requires only some basic operations such as sampling, overlap-add and finite impulse response filtering. The PC method, in both DA and NDA scenarios, in spite of its low complexity, outperforms the maximum-likelihood (ML) method in channel parameters estimation. The bit error rate (BER) of the DA method, in single-user scenario, performs as well as the ML method, and in multi-user scenario, in the worst case, there is only 0.5 dB loss compared with the ML method. In the case of NDA scenario, the proposed method outperforms the NDA-ML method, that is, in the single-user scenario about 4 dB gain at the BER of 10−3 is observed. In multi-user scenario, it outperforms significantly the NDA-ML method, and its performance loss in comparison with the perfect channel knowledge scenario is about 3 dB at the BER of 10−3.

References

    1. 1)
      • Balakrishnan, R.D., Gyawali, T., Kwon, H.M.: `An inverse problem based approach for channel parameters estimation in UWB systems', Proc. IEEE VTC-04-spring, May 2004, Milan, Italy, 2, p. 1073–1077.
    2. 2)
      • M.Z. Win , R.A. Scholtz . Ultra-wide bandwidth time-hopping spread-spectrum impulse radio for wireless multiple-access communications. IEEE Trans. Commun. , 679 - 689
    3. 3)
      • Carbonelli, C., Mitra, H.V.: `Clustered channel estimation for UWB signals', Proc. IEEE ICC-04, June 2004, Paris, France, 4, p. 2432–2436.
    4. 4)
      • Cassioli, D., Win, M.Z., Vatalaro, F., Molish, A.F.: `Performance of low-complexity Rake reception in a realistic UWB channel', Proc. IEEE ICC-02, May 2002, New York, USA, p. 763–767.
    5. 5)
      • M.Z. Win , R.A. Scholtz . Characterization of ultra-wide bandwidth wireless indoor channels: a communication-theoretic view. IEEE J. Sel. Areas Commun. , 9 , 1613 - 1627
    6. 6)
      • Xu, Z., Liu, P.: `A subspace approach to blind estimation of ultra-wideband channels', 37thAsilomar Conf Signals, Systems & Computers, November 2003, 2, p. 1249–1253.
    7. 7)
      • M.Z. Win , R.A. Scholtz . Impulse radio: how it works. IEEE Commun. Lett. , 2 , 36 - 38
    8. 8)
      • J.G. Proakis , D.G. Manolakis . (1996) Digital signal processing.
    9. 9)
      • Wang, Z., Yang, X.: `Ultra wide-band communications with blind channel estimation based on first-order statistics', Proc. IEEE ICASSP-04, May 2004, 4, p. iv-529–iv-532.
    10. 10)
      • S. Haykin . (1996) Adaptive filter theory.
    11. 11)
      • Tonello, A.M., Rinaldo, R.: `A frequency domain approach to channel estimation, detection, and interference cancellation for impulse radio systems', Proc. IEEE ICASSP-05, 2005, Philadelphia, USA, 3, p. iii/613–iii/616.
    12. 12)
      • Tang, T., Xu, Z., Liu, P.: `Mean and covariance based estimation of multiple access UWB channels', Proc. IEEE Conf. Ultra Wideband Sys. and Tech, November 2003, Reston, Virginia, p. 458–462.
    13. 13)
      • Luo, X., Giannakis, G.B.: `Blind timing and channel estimation for UWB multi-user ad hoc access', 38thAsilomar Conf. Signals, Systems & Computers, November 2004, CA, USA, 1, p. 642–646.
    14. 14)
      • P. Liu , Z. Xu . POR-based channel estimation for UWB communication. IEEE Trans. Wirel. Commun. , 6 , 2968 - 2982
    15. 15)
      • V. Lottici , A.N. D'Andrea , U. Mengali . Channel estimation for ultra-wide bandwidth communications. IEEE J. Sel. Areas Commun. , 1638 - 1645
    16. 16)
      • J.G. Proakis . (1995) Digital communications.
    17. 17)
      • J. Foerster . Channel modeling sub-committee report final. IEEE P802.15 Wirel. Pers. Area Netw.
    18. 18)
      • Alizad, A.R., Alipanahi, B., Ghasemi, A., Shiva, M., Jamali, S.H., Nader-Esfahani, S.: `A new approach for UWB channel estimation', 5thInt. Conf. Information, Commun. and Signal Processing (ICICS-05), December 2005, Bangkok, Thailand, p. 291–295.
    19. 19)
      • Z. Wang , X. Yang . Blind channel estimation for ultra wide-band communications employing pulse position modulation. IEEE Signal Process. Lett. , 7 , 520 - 523
    20. 20)
      • Alizad, A.R., Alipanahi, B., Ghasemi, A., Shiva, M., Jamali, S.H., Nader-Esfahani, S.: `A blind channel estimation technique for TH-PPM UWB systems', Proc. IEEE ICC-06 Istanbul, June 2006, Turkey, 10, p. 4717–4722.
    21. 21)
      • A. Papoulis . (1965) Probability, random variables, and stochastic processes.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com_20070193
Loading

Related content

content/journals/10.1049/iet-com_20070193
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address