Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

A novel approach to generating long low-density parity-check codes using two configurations

A novel approach to generating long low-density parity-check codes using two configurations

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Communications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A new low-complexity generating method is given for the construction of long low-density parity-check (LDPC) codes. The method is based on performing a combinatorial operation between two given configurations. Combinatorial structures such as lattices, affine and projective planes are considered as the constituent configurations. Using this method, we present several classes of well-structured four-cycle free LDPC codes of high rates most of which are quasi-cyclic. From among the main advantages of this approach, we may refer to its low-complexity property and the fact that from performance perspective the constructed codes compete with the pseudorandom LDPC codes.

References

    1. 1)
      • H. Tang , J. Xu , Y. Kou , S. Lin , K. Abdel-Ghaffar . On algebraic construction of Gallager and circulant low-density parity-check codes. IEEE Trans. Inf. Theory , 6 , 1269 - 1279
    2. 2)
      • J. Xu , L. Chen , L.Q. Zeng , L. Lan , S. Lin . Construction of low-density parity-check codes by superposition. IEEE Trans. Commun. , 2 , 243 - 251
    3. 3)
      • R.G. Gallager . Low-density parity-check codes. IRE Trans. Inf. Theory , 21 - 28
    4. 4)
      • Z. Li , L. Chen , L. Zeng , S. Lin , W.H. Fong . Efficient encoding of QC-LDPC codes. IEEE Trans. Commun. , 1 , 71 - 81
    5. 5)
      • Fan, J.L.: `Array codes as low-density parity-check codes', Proc. 2nd Int. Symp. Turbo Codes, September 2000, Brest, France, p. 543–546.
    6. 6)
      • http://www.cs.toronto.edu/~Radford/ldpc.software.html.
    7. 7)
      • Sridhara, D., Fuja, T., Tanner, R.M.: `Low-density parity-check codes from permutation matrices', Proc. Conf. Information Sciences and Systems, March 2001, Baltimore, MD.
    8. 8)
      • R.M. Tanner , D. Sridhara , A. Sridharan , T.E. Fuja , D.J. Costello . LDPC block and convolutional codes based on circulant matrices. IEEE Trans. Inf. Theory , 12 , 2966 - 2984
    9. 9)
      • D.J.C. Mackay , R.M. Neal . Near Shannon limit performance of low-density parity-check codes. Electron. Lett. , 18 , 1645 - 1646
    10. 10)
      • M.E. O'sullivan . Algebraic construction of sparse matrices with large girth. IEEE Trans. Inf. Theory , 2 , 718 - 727
    11. 11)
      • Tanner, R.M., Sridhara, D., Fuja, T.: `A class of group-structured LDPC codes', Proc. Int. Symp. Communication Theory and Applications, July 2001, Ambleside, UK.
    12. 12)
      • T. Richardson , M. Shokrollahi , R. Urbanke . Design of capacity-approaching irregular low-density parity-check codes. IEEE Trans. Inf. Theory , 2 , 619 - 637
    13. 13)
      • C.J. Colbourn , J.H. Dinitz . (1996) The handbook of combinatorial designs.
    14. 14)
      • L. Chen , J. Xu , I. Djurdjevic , S. Lin . Near-Shannon-limit quasi-cyclic low-density parity-check codes. IEEE Trans. Commun. , 7 , 1038 - 1042
    15. 15)
      • Hocevar, D.E.: `Efficient encoding for a family of quasi-cyclic LDPC codes', Proc. IEEE Global Telecommunications Conf., 1–5 December 2003, 7, p. 3996–4000.
    16. 16)
      • H. Tang , J. Xu , S. Lin , K. Abdel-Ghaffar . Codes on finite geometries. IEEE Trans. Inf. Theory , 2 , 572 - 596
    17. 17)
      • W.W. Peterson , E.J. Weldon . (1972) Error-correcting codes.
    18. 18)
      • S. Lin , D.J. Costello . (1983) Error control coding: fundamentals and applications.
    19. 19)
      • B. Vasic , K. Pedagani , M. Ivkovic . High-rate girth-eight low-density parity-check codes on rectangular integer lattices. IEEE Trans. Commun. , 8 , 1248 - 1252
    20. 20)
      • B. Vasic , O. Milenkovic . Combinatorial constructions of low-density parity-check codes for iterative decoding. IEEE Trans. Inf. Theory , 6 , 1156 - 1176
    21. 21)
      • B. Vasic , E.M. Kurtas , A.V. Kuzentsov . LDPC codes based on mutually orthogonal Latin rectangles and their application in perpendicular magnetic recording. IEEE Trans. Magn. , 5 , 2346 - 2348
    22. 22)
      • Y. Kou , S. Lin , M. Fossorier . Low-density parity-check codes based on finite geometries: are discovery and new results. IEEE Trans. Inf. Theory , 7 , 2711 - 2736
    23. 23)
      • H. Fujita , K. Sakaniwa . Some classes of quasi-cyclic LDPC codes: properties and efficient encoding method. IEICE Trans. Fundam. , 12 , 3627 - 3635
    24. 24)
      • M.R. Tanner . A recursive approach to low complexity codes. IEEE Trans. Inf. Theory , 5 , 533 - 547
    25. 25)
      • Gabidulin, E., Moinian, A., Honary, B.: `Generalized construction of quasi-cyclic regular LDPC codes based on permutation matrices', Proc. IEEE Int. Symp. Information Theory, July 2006, p. 679–683.
    26. 26)
      • B. Ammar , B. Honary , Y. Kou , J. Xu , S. Lin . Construction of low-density parity-check codes based on balanced incomplete block designs. IEEE Trans. Inf. Theory , 6 , 1257 - 1268
    27. 27)
      • M.P.C. Fossorier . Quasi-cyclic low-density parity-check codes from circulant permutation matrices. IEEE Trans. Inf. Theory , 8 , 1788 - 1793
    28. 28)
      • Lan, L., Zeng, L.-Q., Tai, Y.Y., Lin, S., Abdel-Ghaffar, K.: `Constructions of quasi-cyclic LDPC codes for the AWGN and binary erasure channels based on finite fields and affine mappings', Proc. Int. Symp. Information Theory, 4–9 September 2005, p. 2285–2289.
    29. 29)
      • S.J. Johanson , S.R. Weller . Codes for iterative decoding from partial geometries. IEEE Trans. Commun. , 2 , 236 - 243
    30. 30)
      • Z. Wang , Z. Cui . Low-complexity high-speed decoder design for quasi-cyclic LDPC codes. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. , 1 , 104 - 114
    31. 31)
      • D.J.C. Mackay . Good error-correcting codes based on very sparse matrices. IEEE Trans. Inf. Theory , 2 , 399 - 431
    32. 32)
      • S. Myung , K. Yang , J. Kim . Quasi-cyclic LDPC codes for fast encoding. IEEE Trans. Inf. Theory , 8 , 2894 - 2901
    33. 33)
      • A.P. Street , D.J. Street . (1987) Combinatorics of experimental design.
    34. 34)
      • Chen, L., Djurdjevic, I., Xu, J., Lin, S., Abdel-Ghaffar, K.: `Construction of QC-LDPC codes based on the minimum-weight codewords of RS codes', Proc. IEEE Int. Symp. Information Theory, June–July 2004, Chicago, IL, p. 239.
    35. 35)
      • Mackay, D.J.C., Neal, R.M.: `Good codes based on very sparse matrices', Proc. 5th IMA Conf. Cryptography and Coding (Lecture Notes in Computer Science), 1995, 1025, p. 100–111.
    36. 36)
      • Johanson, S.J., Weller, S.R.: `Regular low-density parity-check codes from combinatorial designs', Proc. IEEE Information Theory Workshop, September 2001, Cairns, Australia, p. 90–92.
    37. 37)
      • Johanson, S.J., Weller, S.R.: `Quasi-cyclic LDPC codes from difference families', 3rdAusCTW, 4–5 February 2002, Canberra, Australia.
    38. 38)
      • I.B. Djordjevic , B. Vasic . MacNeish–Mann theorem based iteratively decodable codes for optical communication systems. IEEE Commun. Lett. , 8 , 538 - 540
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com_20070324
Loading

Related content

content/journals/10.1049/iet-com_20070324
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address