Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Efficient power-consumption-based load-sharing topology control protocol for harsh environments in wireless sensor networks

Efficient power-consumption-based load-sharing topology control protocol for harsh environments in wireless sensor networks

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Communications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Energy conservation and network performance are critical issues in wireless sensor networks. The authors present a novel efficient communication topology control protocol, called quorum-based load-sharing control protocol (QLSCP). QLSCP is a quorum-based communication protocol, which chooses appropriate communication nodes, adjusts the service loads of critical nodes and performs adaptive sleep management. QLSCP is suitable for harsh environments without a central control server calculating the locations of sensors, using the factor of the remaining power to build the system topology. The proposed protocol divides the topology operation into topology formation, adjustment and execution phases. The topology formation phase builds the backbone of an enhanced tree. In the topology adjustment phase, the enhanced tree is adjusted by an optimal balance of critical nodes in the backbone. In the topology execution phase, the efficient surplus-energy consuming (ESC) mechanism is proposed to efficiently exhaust the energy of each node. The ESC mechanism is designed to efficiently exhaust the latest remaining electronic power of sensor nodes. Simulation results of QLSCP demonstrate that it efficiently achieves to prolong system lifetime in harsh environments.

References

    1. 1)
      • C.M. Chao , J.P. Sheu , I.C. Chou . An adaptive quorum-based energy conserving protocol for IEEE 802.11 ad hoc networks. IEEE Trans. Mobile Comput. , 5 , 560 - 570
    2. 2)
      • Subramanian, R., Fekri, F.: `Sleep scheduling and lifetime maximization in sensor networks: fundamental limits and optimal solutions', Proc. Fifth Int. Conf. Information Processing Sensor Networks (IPSN 2006), 2006, p. 218–225.
    3. 3)
      • T. Wark , P. Corke , P. Sikka . Transforming agriculture through pervasive wireless sensor networks. IEEE Pervasive Comput. , 2 , 50 - 57
    4. 4)
      • J. Ma , M. Gao , Q. Zhang , L.M. Ni . Energy-efficient localized topology control algorithms in IEEE 802.15.4-based sensor networks. IEEE Trans. Parallel Distributed Syst. , 5 , 711 - 720
    5. 5)
      • J.R. Jiang , Y.C. Tseng , C.S. Hsu , T.H. Lai . Quorum-based asynchronous power-saving protocols for IEEE 802.11 ad hoc networks. Mobile Netw. Appl. , 169 - 181
    6. 6)
      • D. Trossen , D. Pavel . Sensor networks, wearable computing, and healthcare applications. IEEE Pervasive Comput. , 2 , 58 - 61
    7. 7)
      • G. Xing , C. Lu , Y. Zhang , Q. Huang , R. Pless . Minimum power configuration for wireless communication in sensor networks. ACM Trans. Sensor Networks , 2 , 1 - 33
    8. 8)
      • Hong, S., Choi, Y.J., Kim, S.J.: `An energy efficient topology control protocol in wireless sensor networks', Proc. 9th Int. Conf. Advanced Communication Technology, 2007, 1, p. 537–541.
    9. 9)
      • G. Werner-Allen , K. Lorincz , M. Ruiz . Deploying a wireless sensor network on an active volcano. IEEE Internet Comput. , 2 , 18 - 25
    10. 10)
      • X.Y. Li , W.Z. Song , Y. Wang . Localized topology control for heterogeneous wireless sensor networks. ACM Trans. Sensor Networks (TOSN) , 1 , 129 - 153
    11. 11)
      • Y. Ma , J.H. Aylor . System lifetime optimization for heterogeneous sensor networks with a hub-spoke topology. IEEE Trans. Mobile Comput. , 3 , 286 - 294
    12. 12)
      • Guerraoui, R., VukoliĆ, M.: `Refined quorum systems', Proc. of the Twenty-Sixth Annual ACM Symposium on Principles of Distributed Computing (PODC’07), 2007, p. 119–128.
    13. 13)
      • F. Hu , Y. Wang , H. Wu . Mobile telemedicine sensor networks with low-energy data query and network lifetime considerations. IEEE Trans. Mobile Comput. , 4 , 401 - 417
    14. 14)
      • Younis, M., Munshi, P., Gupta, G., Elsharkawy, S.M.: `On efficient clustering of wireless sensor networks', Proc. Second IEEE Workshop Dependability and Security Sensor Networks and Systems (DSSNS'06), 2006, p. 10.
    15. 15)
      • Chen, T.S., Tsai, H.W., Chu, C.P.: `Gathering-load-balanced tree protocol for wireless sensor networks', Proc. IEEE Int. Conf. Sensor Networks, Ubiquitous, and Trustworthy Computing (SUTC'06), 2006, 2, p. 8–13.
    16. 16)
      • Dong, S.L., Xing, T.: `Cluster-based power efficient time synchronization in wireless sensor networks', Proc. IEEE Int. Conf. Electro/Information Technology, 2006, p. 147–151.
    17. 17)
      • Saha, I., Sambasivan, L.K., Ghosh, S.K., Patro, R.K.: `Distributed fault tolerant topology control in wireless ad-hoc sensor networks', Proc. 2006 IFIP Int. Conf. Wireless and Optical Communications Networks, 2006, p. 5.
    18. 18)
      • Liliana, M., Arboleda, C.: `Comparison of clustering algorithms and protocols for wireless sensor networks', Proc. IEEE Canadian Conf. Electrical and Computer Engineering, 2006, p. 1787–1792.
    19. 19)
      • Thatte, G., Mitra, U.: `Power allocation in linear and tree WSN topologies', Proc. Fortieth Asilomar Conf. Signals, Systems and Computers (ACSSC’06), 2006, p. 1342–1346.
    20. 20)
      • N. Pogkas , G.E. Karastergios , C.P. Antonopoulos , S. Koubias , G. Papadopoulos . Architecture design and implementation of an ad-hoc network for disaster relief operations. IEEE Trans. Ind. Informatics , 1 , 63 - 72
    21. 21)
      • Thallner, B., Moser, H.: `Topology control for fault-tolerant communication in highly dynamic wireless networks', Proc. Third Int. Workshop Intelligent Solutions Embedded Systems, 2005, p. 89–100.
    22. 22)
      • L. Song , D. Hatzinakos . A cross-layer architecture of wireless sensor networks for target tracking. IEEE/ACM Trans. Networking , 1 , 145 - 158
    23. 23)
      • D. England , B. Veeravalli , J.B. Weissman . A robust spanning tree topology for data collection and dissemination in distributed environments. IEEE Trans. Parall. Distrib. Syst. , 5 , 608 - 620
    24. 24)
      • Kim, H., Kim, D., Yoo, S.: `Cluster-based hierarchical time synchronization for multi-hop wireless sensor networks', Proc. 20th Int. Conf. Advanced Information Networking and Applications (AINA'06), 2006, 2, p. 5.
    25. 25)
      • Munir, S.A., Ren, B., Jiao, W., Wang, B., Xie, D., Ma, J.: `Mobile wireless sensor network: architecture and enabling technologies for ubiquitous computing', Proc. 21st Int. Conf. Advanced Information Networking and Applications Workshops (AINAW ‘07), 2007, 2, p. 113–120.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2008.0217
Loading

Related content

content/journals/10.1049/iet-com.2008.0217
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address