Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Analytical models of blocking probability for multi-granularity cross-connect-based optical networks

Analytical models of blocking probability for multi-granularity cross-connect-based optical networks

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Communications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Multi-granularity optical cross-connect (MG-OXC)-based optical network is a promising optical network architecture as it is capable of flexible switching at different granularity levels. In MG-OXC-based optical networks, wavelength conversion (WC) capability and the number of usable add/drop ports of the nodes are two key factors affecting its performance. Two analytical models of blocking probability for MG-OXC-based optical networks both without WC capability and with sparse WC capability are proposed, exploiting Erlang's loss formula and birth–death process. Based on the models and simulation, the impact of WC capability and the number of add/drop ports on the blocking probability are investigated. Three kinds of granularities (i.e. fibre, waveband and wavelength) are considered in MG-OXC nodes to reduce the complexity and size of switch fabric. Both the analytical and simulation results are given on two network topologies under dynamic traffic patterns. Simulation results show that the proposed models are accurate and effective for the analysis of blocking probability in MG-OXC-based optical networks.

References

    1. 1)
      • A. Birman . Computing approximate blocking probabilities for a class of all-optical networks. IEEE J. Sel. Areas Commun. , 5 , 852 - 857
    2. 2)
      • S. Chung , A. Kashper , K.W. Ross . Computing approximate blocking probability for large loss network with state-dependent routing. IEEE/ACM Trans. Netw. , 1 , 105 - 115
    3. 3)
      • R.Y. Wang , J. Zhang , F. Guo . An effective buffering architecture for optical packet switching networks. Photonic Netw. Commun. , 3 , 239 - 243
    4. 4)
      • Harai, H., Murata, M., Miyahara, H.: `Performance of alternate routing methods in all-optical switching networks', Proc. IEEE INFOCOM'97, p. 516–524.
    5. 5)
      • A.G. Fayoumi , A.P. Jayasumana . A surjective-mapping based model for optical shared-buffer cross-connect. IEEE/ACM Trans. Netw. , 1 , 226 - 233
    6. 6)
      • Morsy, M.H.S., Shalaby, H.M.H., Sowailem, M.Y.S.: `An enhanced mathematical model for performance evaluation of optical burst switched networks', GLOBECOM, December 2008, p. 1–5.
    7. 7)
      • Noirie, L., Blaizot, C., Dotaro, E.: `Multi-granularity optical cross-connect', ECOC, October 2000, p. 269–270.
    8. 8)
      • R.A. Barry , P.A. Humblet . Models of blocking probability in all-optical networks with and without wavelength changers. IEEE J. Sel. Areas Commun. , 867 - 878
    9. 9)
      • Chen, C., Kuo, X.-J., Chen, Y.-Y., Lo, T.-Y.: `A new model for optimal routing and wavelength assignment with fixed-length tunnel allocation in multi-granularity cross-connect WDM networks', Military Communications Conf., October 2005, p. 1270–1276.
    10. 10)
      • P.-H. Ho , H.T. Mouftah , J. Wu . A scalable design of multigranularity optical cross-connects for the next-generation optical internet. IEEE J. Sel. Areas Commun. , 7 , 1133 - 1142
    11. 11)
      • Narula-Tam, A., Brady, M.H., Finn, S.G., Lin, P.J.: `Blocking probability of a centralized switch with shared wavelength conversion', OFC, February 2004, paper TuH5.
    12. 12)
      • G. Shen , S.K. Bose , T.H. Cheng , C. Lu , T.Y. Chai . Operation of WDM networks with different wavelength conversion capabilities. IEEE Commun. Lett. , 7 , 239 - 241
    13. 13)
      • Ramaswami, R., Sivarajan, K.: `Optimal routing and wavelength assignment in all-optical networks', Proc. ZEEE INFOCOM'94, June 1994, Toronto, Canada, p. 970–983.
    14. 14)
      • K.-J. Lu , G.-X. Xiao , I. Chlamtac . Blocking analysis of dynamic lightpath establishment in wavelength-routed networks. ICC , 28 , 2912 - 2916
    15. 15)
      • Kuo, X.-J., Chen, C.: `A blocking probability model in multi-granularity cross-connect optical networks', HPSR'07, 2007, p. 1–6.
    16. 16)
      • Rajalakshmi, P., Jhunjhunwala, A.: `An analytical model for wavelength-convertible optical networks', ICC, June 2007, p. 2318–2323.
    17. 17)
      • J.P. Ryan . WDM: North American development trends. IEEE Commun. Mag. , 3 , 40 - 44
    18. 18)
      • G.-X. Shen , S.K. Bose , T.H. Cheng . The impact of the number of add-drop ports in wavelength-routing all optical networks. Opt. Netw. Mag. (SPIE) , 5 , 112 - 122
    19. 19)
      • V. Eramo , A. Germoni , C. Raffaelli . Packet loss analysis of shared-per-wavelength multi-fiber all-optical switch with parallel scheduling. Comput. Netw. , 2 , 202 - 216
    20. 20)
      • A. Sridharan , K.N. Sivarajan . Blocking in all-optical networks. IEEE/ACM Trans. Netw. , 2 , 384 - 397
    21. 21)
      • A. Mokhtar , M. Azizoglu . Adaptive wavelength routing in all-optical networks. IEEE/ACM Trans. Netw. , 2 , 197 - 206
    22. 22)
      • I. Chlamtac , A. Ganz , G. Karmi . Lightpath communications: an approach to high bandwidth optical WANs. IEEE Trans. Commun. , 7 , 1171 - 1182
    23. 23)
      • P. Bergstrom , M. Ingram , A. Vernon , J. Hughes , P. Tetali . A Markov chain model for an optical shared-memory packet switch. IEEE Trans. Commun. , 10 , 1593 - 1603
    24. 24)
      • Jia, W., Yu, S., Zhang, J.: `A testbed for multi-granularity optical switching network', OFC, March 2007, paper JWA70.
    25. 25)
      • G. Castanon . Design-dimensioning model for transparent WDM packet-switched irregular networks. J. Lightwave Technol. , 1 , 1 - 9
    26. 26)
      • A. Girard . Routing and wavelength assignment in all-optical networks. IEEE/ACM Trans. Netw. , 489 - 500
    27. 27)
      • P. Kaminow , C. Doerr . A wideband all-optical WDM network. IEEE J. Sel. Areas Commun. , 5 , 780 - 799
    28. 28)
      • Takada, A., Koga, M.: `Multi-granularity OXC architecture', OFC, March 2007, paper OThR4.
    29. 29)
      • R. Randhawa , J.S. Sohal . Blocking probability analysis of survivable routing in WDM optical networks with/without sparse-wavelength conversion. Opt. Int. J. Light Electron Opt.
    30. 30)
      • Zhang, Z., Acampora, A.: `A heuristic wavelength assignment algorithm for multihop WDM networks with wavelength routing and wavelength reuse', Proc. IEEE INFOCOM'94, June 1994, Toronto, Canada, p. 534–543.
    31. 31)
      • R.S. Tucker . Optical packet switching: a reality check. Opt. Switch. Netw. , 1 , 2 - 9
    32. 32)
      • P.-H. Ho , H.T. Mouftah . Routing and wavelength assignment with multi-granularity traffic in optical networks. IEEE J. Lightwave Technol. , 8 , 1292 - 1303
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2008.0673
Loading

Related content

content/journals/10.1049/iet-com.2008.0673
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address