Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Robust network coding against path failures

Robust network coding against path failures

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Communications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, an approach for robust network coding is introduced for multicast in a directed acyclic network in the presence of network edge failures. The proposed designs aim at combating the resulting path failures, which result in interestingly scalable solutions. A robust network coding scheme (RNC1) is proposed that, devising a rate-path diversity trade-off for the receivers, attains the post-failure capacity of the network with high probability. The scheme is receiver based and can also be applied for correcting random erasures. Next, a rate-guaranteed robust network coding scheme (RNC2) is proposed. The code guarantees the maximum rate for a predetermined number of path failures. The scheme, of course, attains the refined Singleton bound for the edge failure model. A path failure may not necessarily reduce the network capacity, as the remaining intact edges within the network may still facilitate backup paths from the source to the sinks. We introduce RNC3 to employ such backup paths in addition to the original paths and guarantee multicast at a certain rate in the presence of all edge/path failure patterns that do not reduce the capacity below this rate. All the three proposed schemes for multicast are robust to a number of edge failures that may, in general, exceed the refined Singleton bound. Our analyses indicate that the design complexities and the required field sizes grow as a function of the number of network paths, as opposed to the number of network edges because of prior schemes.

References

    1. 1)
      • Bahramgiri, H., Lahouti, F.: `Block network error control codes and syndrome-based maximum likelihood decoding', IEEE Int. Symp. on Information Theory, 2008.
    2. 2)
      • Yao, H.: `Link level ARQ for satellite-mobile communications over blockage channels with memory', Proc. IEEE Military Communications Conf., November 2004.
    3. 3)
    4. 4)
      • Balli, H., Yan, X., Zhang, Z.: `On failure probability of random network codes', IEEE Int. Symp. on Information Theory, June 2007.
    5. 5)
      • Jaggi, S., Langberg, M., Katti, S., Ho, T., Katabi, D., Medard, M.: `Resilient network coding in the presence of Byzantine adversaries', INFOCOMM, May 2007.
    6. 6)
      • E. Lutz , D. Cygan , M. Dippold , F. Dolainsky , W. Papke . The land mobile satellite communications channel – recording, statistics and channel model. IEEE Trans. Veh. Tech. , 2 , 375 - 386
    7. 7)
      • Zhang, Z.: `Network error correction coding in packetized networks', Proc. IEEE Information Theory Workshop, October 2006, p. 433–437.
    8. 8)
    9. 9)
      • Bahramgiri, H., Jabbarihagh, M., Lahouti, F.: `Robust network coding in the presence of edge failure using a multicast rate-diversity trade off', Proc. IEEE Information Theory Workshop, July 2007.
    10. 10)
      • R. Matsumoto . Construction algorithm for network error-correcting codes attaining the Singleton bound. IEICE Trans. Fundam. , 9 , 1729 - 1735
    11. 11)
    12. 12)
      • Andersen, D., Balakrishnan, H., Kaashoek, F., Morris, R.: `Resilient overlay networks', Proc. SOSP 2001, October 2001.
    13. 13)
      • Ho, T., Koetter, R., Medard, M., Karger, D.R., Effros, M.: `The benefits of coding over routing in a randomized setting', IEEE Int. Symp. on Information Theory, Jun/Jul 2003.
    14. 14)
      • R. Koetter , M. Medard . An algebraic approach to network coding. IEEE/ACM Trans. Networking , 5 , 782 - 795
    15. 15)
      • El Rouayheb, S.Y., Sprintson, A., Georghiades, C.: `Simple network codes for instantaneous recovery from edge failures in unicast connections', Technical Report WCL-TR-06-101, January 2006.
    16. 16)
      • Koetter, R., Kschischang, F.R.: `Coding for errors and erasures in random network coding', IEEE Int. Symp. on Information Theory, June 2007.
    17. 17)
      • Fragouli, C., Soljanin, E., Shokrollahi, A.: `Network coding as a coloring problem', Proc. Conf. on Information Science and Systems, March 2004.
    18. 18)
      • Chou, P.A., Wu, Y., Jain, K.: `Practical network coding', Proc. 41st Allerton Conf. on Communication, Control and Computing, October 2003, Invited paper.
    19. 19)
    20. 20)
      • Phoel, W.G.: `Concepts for reliable satellite communications over blockage channels', Proc. IEEE Military Communications Conf., October 2005.
    21. 21)
      • Lun, D.S., Ratnakar, N., Koetter, R., Medard, M., Ahmed, E., Lee, H.: `Achieving minimum cost multicast: a decentralized approach based on network coding', Proc. IEEE INFOCOM, March 2005.
    22. 22)
      • R.W. Yeung , N. Cai . Network error correction, part I: Basic concepts and upper bounds. Commun. Inf. Syst. , 1 , 19 - 36
    23. 23)
      • Yang, S., Ngai, C.K., Yeung, R.W.: `Construction of linear network codes that achieve a refined Singleton bound', IEEE Int. Symp. on Information Theory, June 2007.
    24. 24)
      • S. Yang , R.W. Yeung . (2007) Characterizations of network error correction/detection and erasure correction.
    25. 25)
      • Cai, N., Yeung, R.W.: `Network coding and error correction', Proc. IEEE Information Theory Workshop, October 2002.
    26. 26)
      • M. Rice , J. Slack , B. Humpherys , D.S. Pinck . K-band land-mobile satellite channel characterization using ACTS. Int. J. Sat. Commun. , 283 - 296
    27. 27)
      • O. Gerstel , R. Ramaswami . Optical layer survivability: a services perspective. IEEE Commun. Mag. , 3 , 104 - 113
    28. 28)
      • Zhang, Z., Yan, X., Balli, H.: `Some key problems in network error correction coding theory', Proc. IEEE Information Theory Workshop, July 2007.
    29. 29)
    30. 30)
      • Bahramgiri, H., Lahouti, F.: `Robust network coding using diversity through backup flows', Proc. Workshop on Network Coding Theory and Applications, January 2008.
    31. 31)
      • Jabbarihagh, M., Lahouti, F.: `A decentralized approach to network coding based on learning', Proc. IEEE Information Theory Workshop, July 2007.
    32. 32)
      • Z. Zhang . Linear network error correction codes in packet networks. IEEE Trans. Inf. Theory , 1 , 209 - 218
    33. 33)
    34. 34)
      • N. Cai , R.W. Yeung . Network error correction, part II: Lower bounds. Commun. Inf. Syst. , 1 , 37 - 54
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2009.0224
Loading

Related content

content/journals/10.1049/iet-com.2009.0224
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address